Quantum Field Theory - Thursday Problems

Christopher McCabe (King's College London)

1.1 What is the normal ordered product : $\hat{a}^{\dagger}(\mathbf{p}) \hat{a}(\mathbf{q}) \hat{a}(\mathbf{r}) \hat{a}^{\dagger}(\mathbf{s}):$?
1.2 After normal ordering, the conserved three-momentum $P^{i}=\int d^{3} x T^{0 i}$ takes the form

$$
: \hat{P}^{i}:=\int \frac{d^{3} p}{(2 \pi)^{3}} p^{i} \hat{a}^{\dagger}(\mathbf{p}) \hat{a}(\mathbf{p})
$$

Prove the commutator relation

$$
\left[: \hat{P}^{i}:, \hat{a}^{\dagger}(\mathbf{k})\right]=k^{i} \hat{a}^{\dagger}(\mathbf{k})
$$

1.3 Write down the general result for $\left[: \hat{P}^{\mu}:, \hat{a}^{\dagger}(\mathbf{k})\right]$ in terms of k^{μ} and $\hat{a}^{\dagger}(\mathbf{k})$. Hence show that

$$
\begin{equation*}
: \hat{P}^{\mu}: \hat{a}^{\dagger}\left(\mathbf{k}_{2}\right) \hat{a}^{\dagger}\left(\mathbf{k}_{1}\right)|0\rangle=\left(k_{1}^{\mu}+k_{2}^{\mu}\right) \hat{a}^{\dagger}\left(\mathbf{k}_{2}\right) \hat{a}^{\dagger}\left(\mathbf{k}_{1}\right)|0\rangle \tag{1}
\end{equation*}
$$

Interpret the physics of this result.
1.4 The number operator is

$$
\hat{N}=\int \frac{d^{3} p}{(2 \pi)^{3}} \hat{a}^{\dagger}(\mathbf{p}) \hat{a}(\mathbf{p})
$$

Prove by induction that

$$
\int \frac{d^{3} p}{(2 \pi)^{3}} \hat{a}^{\dagger}(\mathbf{p}) \hat{a}(\mathbf{p}) \underbrace{|\mathbf{k}, \ldots, \mathbf{k}\rangle}_{n \text { momenta }}=n \underbrace{|\mathbf{k}, \ldots, \mathbf{k}\rangle}_{n \text { momenta }}
$$

[Hint: induction proceeds in two steps. i) show that the statement is true for some starting value of n; ii) show that if the statement holds for some general n, then it also holds for $n+1$.]
1.5 Show that \hat{N} is a constant of motion when

$$
\hat{H}=\int \frac{d^{3} p}{(2 \pi)^{3}} E_{p} \hat{a}^{\dagger}(\mathbf{p}) \hat{a}(\mathbf{p})
$$

1.6 We normalise our momentum eigenstates such that $\langle\mathbf{p} \mid \mathbf{k}\rangle=2 E_{p}(2 \pi)^{3} \delta^{3}(\mathbf{p}-\mathbf{k})$. Show that the combination $E_{p} \delta^{3}(\mathbf{p}-\mathbf{k})$ is Lorentz invariant.

