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1 Introduction. From Fermi theory to Higgs mechanism

Currently Standard Model describes to an excellent precision the vast majority of the
laboratory experiments. There are several notable exceptions, which indicate that our
understanding of the fundamental details of everything is yet far from complete. How-
ever, the SM itself does not contain indications of any problems.

This was not always the case. Actually, SM itself emerged as a theory that solved the
intrinsic problems of its predecessors. Let us do a small historic1 review.

When we study a theory at low energy, up to several hundred MeV, we have lot’s of
weak and rare effects, like nuclear β decay, µ and π decays, neutrino scattering. The
phenomenology of these processes is very rich, and all have stunning properties – parity
is maximally violated, flavour is violated. All these effects are perfectly grasped by
the Fermi theory of 4-fermion interactions. All these effects are due to the interaction
between “charged currents”

L = −4
Gf√

2
J+
µ J
−
µ + h.c., (1)

where the Fermi constant

GF = 1.116× 10−5 GeV−2 ∼ 1

(300 GeV)2
.

The currents are composed of leptonic and hadronic parts J±µ = J±µ,lepton + J±µ,hardon. For
the first two generations (not much sense to use Fermi theory for the third generation)

J+
µ,lepton = ν̄LγµeL + ν̄µLγµµL. (2)

Here the index ’L’ means left fermion ψL ≡ 1−γ5
2
ψ. The hadronic part is a bit more

complicated, as far as it mixes first and second generation quarks

J+
µ,hadron = ūLγµd

′
L + c̄Lγµs

′
L, (3)

1Not very historically precise.
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where the down quarks are mixed with the Cabibo angle θc

d′L = cos θcdL + sin θcsL,

s′L = − sin θcdL + cos θcsL.

The interaction (1) looks rather innocent (though a careful reader with QFT knowledge
may notice the suspicious negative dimension of the coupling constant). Let us see what
is the problem. For this, we can calculate the cross-section νµe→ νeµ scattering.2 This
process has only one diagram to compute

νµ, p µ, k′

e, k νe, p′

= iM = i
4GF√

2
ū(p′)γλ

1− γ5

2
u(k) · ū(k′)γλ

1− γ5

2
u(p), (4)

where u(p) are fermionic wave functions for corresponding fermions (neutrinos, electrons,
or muons). Squared modulus of the matrix element summed over all spin states, following
standard rules, is

∑
spins

|M|2 = 8G2
F tr

(
γρ

1− γ5

2
/pγλ

1− γ5

2
(/k
′
+mµ)

)
tr

(
γρ

1− γ5

2
/kγλ

1− γ5

2
/p
′
)
, (5)

where we have neglected masses of neutrinos and electron. Actually, the term with
muon mass gives zero also, as far as it enters under trace multiplied by an odd number
of gamma matrices. Using the standard trace rules, and contracting indexes for the
epsilon symbols we get after some tedious algebra∑

spins

|M|2 = 128G2
F (pk)(p′k′) = 128G2

F

s

2

s−m2
µ

2
,

where s ≡ (p+ k)2 = (p′ + k′)2 characterises the collision energy.
As far as the matrix element does not depend on directions of the final particles, we

can immediately convert it to the cross-section

σ =
1

8πs

(
1

2

∑
spins

|M|2
)
|p|
s

=
G2
F

π

(s−m2
µ)2

s
, (6)

where 1/2 is present because we have to average over the initial electron spin states (no
averaging for neutrinos as far as the have only one helicity state, and nothing for muon,
because we sum over all final states).

This result is rather peculiar. First, it iz zero at threshold, s = m2
µ. Then it grows

with energy. Of course, while sqrts� G−2
F ∼ 300 GeV it remains small due to the Fermi

constant, but for higher energies it becomes large, and grows ∝ s. At the same time,
scattering cross-sections can not be too large. Naive expectation of cross-section being

2Probably not the easiest process for experiment, but it requires only one diagram for us to study.
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“size” of something just tells us that it should be at most constant, while precise unitarity
arguments (basically, requirement that probability should be smaller than one) state
that all cross-sections3 can not grow faster than ∝ (ln s)2. Another related statement
tells us that partial amplitudes should be constant, or partial cross-sections should fall
as ∝ 1/E2, where E is typical energy scale. Thus, the Fermi theory fails to produce
physically sensible results at energies above G−2

F ∼ 300 GeV. Note, that this scale is
encoded in the theory, and follows from the low-energy cross-section measurements.

This inconsistency asked for invention of better theories. First, thing that can be done
is to replace the point-like 4-fermion interaction by an interaction with the exchange of
a vector boson. Then, instead of the Fermi constant one would expect an expression of
the form g2/(p2−m2

W ), where g is the coupling constant, and mW is the boson mass. For
momenta much smaller than the mass it would give approximately constant ∼ g2/M2

W ,
while at high energies the amplitude will become suppressed, or the cross-section (in the
limit of s� mµ) is

dσ

d|t|
=
G2
F

π

m4
W

(|t|+m2
W )2

,

The total cross-section is now

σ =

∫ s

0

dσ

d|t|
d|t| = G2

Fm
2
W

π
,

which is constant! We see, that the previous answer (6) was cut off at energies of the
order of the mass of the W boson.

Unfortunately, this does not work immediately – the massive vector boson propagator
is more complicated

i

p2 −m2
W

(
gµν −

pµpν
m2
W

)
.

The last term does not become small at large momenta. However, it is possible to get
away from this problem, if this term, which has peculiar tensor structure, cancels in the
final answer. This is similar to cancellation of gauge dependence in QED, and actually
happens if the theory has gauge symmetry. A new problem appears here – normally,
massive vector bosons are not gauge invariant. This problem itslef can be solved by
introducing a new particle, the Higgs boson.

In the following, we will introduce the Higgs mechanism, and describe it specifically
for the case of the electroweak interactions.

2 Global and local symmetries

The Standard Model is the gauge theory with SU(3)c × SU(2)L × U(1)Y gauge group,
with spontaneous symmetry breaking. It is known, that the only good (renormalizable)

3See C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill: 1980, vol. 1. Strictly speaking,
this is true for theories without massless particles. Really, the “total” cross-section of electron-
electron scattering is infinite, because massless photons lead to scattering at arbitrary distance, but
for infinitely small scattering angle.
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quantum field theory that gives rise to the massive non-abelian vector bosons is a gauge
theory with spontaneous symmetry breaking, or Higgs mechanism. We will review the
construction of the abelian and non-abelian symmetries, and the mechanism of symmetry
breaking. Then, we will also describe the interactions with the matter fermions (leptons
and quarks).

2.1 Global Abelian U(1)

The simplest example of global symmetry is the Abelian U(1) symmetry. For a complex
scalar field it is given by

φ(x)→ φ′(x) = eiαφ(x), (7)

and the invariant Lagrangian density (up to the operators of dimension 4) is

L[φ(x), ∂µφ(x)] = ∂µφ
∗∂µφ−m2φ∗φ− λ

2
(φ∗φ)2. (8)

Let us note the consequences of this symmetry. First, it tells that the masses of the real
scalar fields defined as φ = 1√

2
(φ1 + iφ2) are equal, m1 = m2 = m. Second, by Noether

theorem, there is a conserved current

jµ = iφ∗∂µφ− iφ∂µφ∗. (9)

If the fields satisfy the equations of motion, then ∂µjµ = 0, and charge Q ≡
∫
d3xj0 does

not change with time.

2.2 Gauge (local) U(1)

If we would like to have local symmetry

φ(x)→ φ′(x) = eiα(x)φ(x), (10)

then the kinetic term in (8) stops being invariant. This can be compensated by promotion
of the derivative to the covariant derivative

Dµφ = (∂µ − ieAµ)φ. (11)

Requirement that transformation of Dµφ is covariant (just multiplication by the phase,
as for the field φ itself)

Dµφ→ (Dµφ)′ = eiα(x)(∂µφ+ iφ∂µα− ieA′µφ) (12)

= eiα(x)(∂µφ− ieAµφ) = eiα(x)Dµφ,

defines the transformation of the the gauge field Aµ

Aµ → A′µ = Aµ +
1

e
∂µα. (13)
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The gauge invariant expression constructed out of the gauge field is

Fµν = ∂µAν − ∂νAµ. (14)

Note, that a convenient form to define the gauge invariant field strength tensor is as a
commutator of the covariant derivatives (which gives the same result)

Fµν ≡
i

e
[Dµ, Dν ]. (15)

This leads to the local U(1) symmetric action (scalar electrodynamics)

L = −1

4
FµνFµν − (Dµφ)∗(Dµφ)− V (φ∗φ). (16)

Note, that we still have two equal mass scalar degrees of freedom, two polarisations for
the massless vector field, and conserved charge.

The case of fermionic matter field was discussed in detail in QED lectures.

2.3 Global non-Abelian

The next generalization is to use more complex symmetries for the action. The simplest
example is the system with N scalar fields (for concreteness think N = 3 for the QCD
case, or N = 2 for the electroweak case we will be interested mostly)

φ =

 φ1
...
φN

 (17)

and the transformation
φi(x)→ φ′i(x) = ωijφj(x), (18)

with ωij ∈ SU(N) (we assume implicitly sum over the repeated index j). SU(N) is the
group of unitary N×N matrices ωω† = 1 with detω = 1. Note, that the transformation
matrix can be conveniently parametrised by r = N2 −N parameters αa as

ω = exp

(
i

r∑
a=1

αata

)
,

where ta are generators of the group.4 In particular, for SU(2) case the generators are
ta = σa/2 with Pauli matrices

σ1 =

(
0 1
1 0

)
, σ1 =

(
0 −i
i 0

)
, σ1 =

(
1 0
0 −1

)
. (19)

4There are other groups and other representations which can be used, but all can be expressed in this
form
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Unitary transformation leaves the scalar product (φ, φ) ≡ φ∗iφi invariant, so the following
Lagrangian is invariant

L = ∂µφ
∗
i∂µφi −m2φ∗iφi − λ(φ∗iφi)

2. (20)

In a similar way a symmetric action can be written for a group of fermion fields.
As a consequence of the symmetry all the fields have the same mass, the same coupling

constant. Also, in agreement with the Noether theorem there is a set of conserved
currents (or charges).

I should mention, that generalization of this construction is possible for more com-
plicated groups or group representations—then in general, instead of using the element
ω ∈ G of a group G (SU(N) in our example) we should use a matrix T (ω) which
transforms the fields according to representation T of the group.

2.4 Gauge (local) non-Abelian

The Lagrangian (20) is no longer invariant under coordinate dependent transformations

φ(x)→ φ′(x) = ω(x)φ(x) (21)

ω(x) ∈ SU(N), (22)

the terms with derivatives of ω(x) emerge from the kinetic term

∂µφ
′(x) = ω(x)∂µφ(x) + ∂µω(x) · φ(x). (23)

The remedy is the same as for the abelian case—introduce the gauge fields and upgrade
all derivatives to covariant ones,

Dµφ = ∂µφ− iAµφ,

with some matrix Aµ which transform in a covariant way under the gauge transforma-
tions

(Dµφ)′ = ωDµφ.. (24)

Here Comparing the left and right parts of this equation gives us the required transfor-
mation rule for the gauge fields

Dµφ
′ = ∂µφ

′ − iA′µφ′ = ω∂µφ+ ∂µωφ− iA′µωφ

Aµ → A′µ = ωAµω
−1 + iω∂µω

−1. (25)

The theory of continuous group guarantees that the matrix Aµ is an element of the Lie
algebra of the symmetry group and can be written as

Aµ = g
∑
a

Aaµt
a,
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where ta are generators of the group (see (19) for the SU(2) case), and Aaµ are N2 −N
independent fields. Thus

Dµφ = ∂µφφ− ig
∑
a

Aaµt
a

Thus, the Lagrangian

L = (Dµφ)†Dµφ−m2φ†φ− λ(φ†φ)2,

is invariant under gauge transformations (21,25). The kinetic term for the gauge bosons
is a generalization of the Abelian case. However, now the definition (15) leads to the
field strength

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]
= ∂µAν − ∂νAµ + igAaµA

b
νf

abctc,

which is no longer gauge invariant, but transforms in a covariant way

Fµν(x)→ F ′µν(x) = ω(x)Fµνω
−1(x). (26)

Then, the kinetic term takes the form

LA = − 1

2g2
TrFµνFµν = −1

4
F a
µνF

a
µν . (27)

where again matrix Fµν ≡ g2
∑
F a
µνt

a.
The resulting theory has a set of conserved currents, and a lot (equal to the number

of generators of the Lie algebra) massless vector bosons. Due to the commutator in the
definition of the filed strength tensor these gauge bosons interact between each other,
making the dynamics quite different from the Abelian (QED) case.

3 Spontaneous symmetry breaking

3.1 Global symmetry—Goldstone theorem

For now, we are still far from the interesting goal—getting a theory of massive vector
bosons. The next attempt is to take a Lagrangian with some internal symmetry, and
break it spontaneously. That is, find a Lagrangian which is invariant, but which has
vacuum state which is not invariant under the symmetry transformation. The simplest
example is to take the U(1) symmetric theory (8) (written for better visualisation using
two real fields φ = ϕ1+ϕ2√

2
, instead of one complex field), but select a rather peculiar

potential

V (ϕ1, ϕ2) = −µ
2

2
(ϕ2

1 + ϕ2
2) +

λ

4
(ϕ2

1 + ϕ2
2)2.

The minimum of this potential is not at zero, but at any point of the circle ϕ2
1 + ϕ2

2 =
v2 ≡ µ2/λ. Note, that symmetry transformation (rotation in the plane ϕ1, ϕ2) takes a
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point on this circle and moves it to another point—so any given vacuum is not invariant
under the symmetry. To study the theory we should first select one of the vacuums (not
really important, which one), for example

ϕ1 = v, ϕ2 = 0.

Then, we can expand the fields on top of this vacuum

ϕ1(x) = v + χ(x) (28)

ϕ2(x) = θ(x).

and study the dynamics of the small perturbations χ(x), θ(x). The expansion of the
kinetic part is trivial while the potential is more complicated

V = −µ
2

2
[(v + χ)2 + θ2] +

λ

4
[(v + χ)2 + θ2]2 +

µ4

4λ
.

Up to the quadratic order we get

L(2)
χ,θ =

1

2
(∂µχ)2 +

1

2
(∂µθ)

2 − µ2χ2.

So, we have got one massive field χ, and one massless field θ. Also, we have got a number
of higher order terms, leading to various interactions between χ and θ. This massless
field is called Goldstone boson. It is a generic consequence of spontaneous breaking of
the global symmetry. The Goldstone theorem tells, that for each broken generator of a
global symmetry one massless boson appears in the spectrum of the perturbations.

There is an approximate physical example – pions are approximate Goldstone bosons
of global SU(2) symmetry in QCD with massless quarks, which is broken by non-
perturbative quark condensate. They are not exactly massless, because of small quark
masses present in the fundamental theory, but a much lighter than all other states in
the theory.

3.2 Gauge symmetry—Higgs mechanism

More interesting situation is realized if an attempt is made to spontaneously break gauge
symmetry. Let us see how this happens on the simplest example of Abelian Higgs model.
We will take the model from the previous section (we switch again to the complex field
notations which are more natural for the charged fields) with the addition of the gauge
fields

L = −1

4
FµνFµν + (Dµφ)∗Dµφ− [−µ2φ∗φ+ λ(φ∗φ)2], (29)

where, as before, the transformation rules are

Aµ(x) → A′µ(x) = Aµ(x) +
1

e
∂µα(x)

φ(x) → φ′(x) = eiα(x)φ(x).
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We can select the vacuum (minimum of the energy of the system) by setting the gauge
field to zero and using the results of the previous section for the scalar field

A(v)
µ = 0, φ(v) =

1√
2
v. (30)

Following standard rules the fields should be expanded into small perturbations on top
of the vacuum

φ(x) =
1√
2

(v + χ(x) + iθ(x)). (31)

The covariant derivative in terms of Aµ, χ, θ looks like

Dµφ =
1√
2

(∂µχ+ i∂µθ − ievAµ).

Substituting this expression into the action (29) and expanding to the quadratic order
we get

L(2) = −1

4
F 2
µν +

1

2
(∂µχ)2 − µ2χ2 +

e2v2

2

(
Aµ −

1

ev
∂µθ

)2

. (32)

Note, that θ and Aµ enter only in the combination

Bµ = Aµ −
1

ev
∂µθ,

so we can rewrite the Lagrangian for small perturbations using only Bµ and χ

L(2) = −1

4
B2
µν +

e2v2

2
BµBµ +

1

2
(∂µχ)2 − µ2χ2, (33)

where Bµν = ∂µBν−∂νBµ is the field strength tensor. This is the theory for two massive
fields with masses

mV = ev =
e√
λ
µ

mχ =
√

2λµ.

No trace of the field θ left here. No massless Goldstone bosons appeared, contrary to
the SSB of a global theory.

The absence of one field deserves a closer analysis. Let us count the number of
propagating degrees of freedom in the theory. If the potential does not lead to the SSB
(−µ2 > 0, see section 2.2) we have two massive scalar fields, and one massless vector
field. The latter has only two polarizations (remember the electrodynamics), overall 4
d.o.f. If the symmetry is broken (µ2 > 0) we have only one massive scalar field, and
a massive vector field, which has 3 degrees of freedom (we can no longer use gauge
symmetry to remove the longitudinal polarization). Overall, in both cases the system
has 4 d.o.f. This is the essence of the Higgs mechanism—the Goldstone boson that
would have been associated with the symmetry breaking is getting “eaten” by the gauge
boson. The result is exactly what we ere looking for—a theory with a massive vector
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bosons. Moreover, the theory still has gauge theory as the origin, which leads to good
UV properties of the theory. At low energies the remains of the gauge symmetry can be
seen in the relations between interaction constants and masses of the theory.

Note, that we could use gauge invariance for a simpler way to obtain the interaction
Lagrangian of the physical degrees of freedom. As far as all configurations connected by
gauge transformation are completely equivalent, we could define a gauge

Imφ = 0

Reφ =
1√
2

(v + χ).

This gauge is called unitary and has no trace of the unphysical degree of freedom.
Writing the action in this gauge immediately gives the spectrum and interaction vertices
for all the physical particles of the theory. However, analysis of the quantum radiative
corrections in this gauge is rather involved, because the original gauge structure is very
well hidden.

The generalization of the Higgs mechanism to non-abelian symmetries we can study
directly on the real world example—Standard Model.

4 Standard Model SU(3)c × SU(2)L × U(1)Y

4.1 Gauge and Higgs bosons

Let us start form the construction of the real full bosonic sector of the Standard Model.
We want two gauge symmetries, weak SU(2)L (‘L’ stands for left, which reflects its
relation to the fermionic degrees of freedom), and U(1) which is called hypercharge.
The corresponding fields will be F a

µ , with a = 1, 2, 3, corresponding to three SU(2)
generators, and Bµ. We will also add one complex doublet

Φ =

(
φ1

φ2

)
.

The gauge invariant Lagrangian is

L = −1

4
F a
µνF

a
µν −

1

4
BµνBµν + (DµΦ)†DµΦ− λ

(
Φ†Φ− v2

2

)2

,

where the field strength tensors are

F a
µν = ∂µA

a
ν − ∂µAaµ + gεabcAbµA

c
ν

Bµν = ∂µBν − ∂νBµ,

and the covariant derivative is

DµΦ = ∂µΦ− ig
2
τaAaµφ− i

g′

2
BµΦ, (34)
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Here g and g′ are coupling constants for the two gauge groups. Note, that the scalar
transforms in fundamental representation of SU(2)L, and is also charged with the charge
g′/2 under the U(1).

The vacuum configuration can be chosen as

Aaµ = Bµ = 0

Φ =

(
0
v√
2

)
≡ Φ(v). (35)

Note, that this configuration is still invariant under some specific gauge transformations.
Really, the group transformations corresponding to the generator

Q =

(
1 0
0 0

)
would not change the vacuum

QΦ(v) = 0 (36)

(if the generator annihilates the vacuum, then the group transformation of the form
exp(iαQ) would leave the vacuum intact). This specific generator is is a combination of
the generators of the U(1) hypercharge rotation and the third SU(2)L generator

Q = T 3 + Y/2, . (37)

where Y is the hypercharge operator, which is proportional to the unit matrix for all
fields, but may have different value for different fields. Therefore, we expect that the cor-
responding U(1) group will remain unbroken, leading to the electromagnetic interaction
with massless photon.

The simplest way to analyse the spectrum of the theory is to fix the unitary gauge

Φ =

(
0

v√
2

+ χ√
2

)
. (38)

Really, it can be easily verified that arbitrary (non-zero) doublet can be transformed by
an SU(2) transformation to this form. The covariant derivative is

DµΦ = ∂µΦ +

[
−ig

2
A1
µ

(
0 1
1 0

)
− ig

2
A2
µ

(
0 −i
i 0

)
−ig

2
A3
µ

(
1 0
0 −1

)
− ig′

2
Bµ

(
1 0
0 1

)]
Φ.

In the unitary gauge we get

DµΦ =

(
− ig

2
√

2
(A1

µ − iA2
µ)(v + χ)

− i
2
√

2
(g′Bµ − gA3

µ)(v + χ) + 1√
2
∂µχ

)
. (39)
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It is convenient to introduce instead of A1,2 complex fields

W±
µ =

1√
2

(A1
µ ∓ iA2

µ)

so that (W−
µ )∗ = W+

µ . Let us also introduce two vector fields

Zµ =
1√

g2 + g′2
(gA3

µ − g′Bµ) (40)

Aµ =
1√

g2 + g′2
(gBµ + g′A3

µ). (41)

Fields Zµ and Aµ are chosen in a way, so that the covariant derivative (39) contains only
Zµ, and the following normalization condition is satisfied

Z2
µ + (Aµ)2 = (A3

µ)2 +B2
µ. (42)

Finally, the covariant derivative (39) takes the form

Dµφ =

(
−igv

2
W+
µ

1√
2
∂µχ+

i
√
g2+g′2

2
√

2
vZµ

)
+

(
−ig

2
W+
µ χ

i
√
g2+g′2

2
√

2
Zµχ

)
, (43)

Here the first column is linear in excitations (fields W±
µ , χ, Zµ), and the second is of the

second order. The contribution of the covariant derivative to the quadratic part of the
Lagrangian is then given by

[(DµΦ)†DµΦ](2) =
1

2
(∂µχ)2 +

g2v2

4
W+
µ W

−
µ +

1

2

(
(g2 + g′2)v2

4

)
Z2
µ. (44)

The quadratic parts of the kinetic terms for the gauge fields is expressed in the usual form
in terms of the new fields W,Z,A because the redefinitions were orthogonal. Finally,
collecting all terms quadratic in the small perturbations gives

L(2) = −1

2
W+

µνW−µν +m2
WW

+
µ W

−
µ

−1

4
FµνFµν

−1

4
ZµνZµν +

m2
Z

2
ZµZµ

+
1

2
(∂µχ)2 −

m2
χ

2
χ2,

where the field strengthsW±µν , Fµν , and Zµν are obtained in the standard way from W±
µ ,

Aµ, Zµ, and the masses are

mW =
gv

2

mZ =

√
g2 + g′2v

2

mχ =
√

2λv.
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fields\ groups SU(3)c SU(2)L U(1)Y U(1)EM
χL ≡

(
νL
eL

)
1 2 -1

(
0
−1

)
eR 1 1 -2 -1

QL =
(
UL
DL

)
3 2 +1/3

(
+2/3
−1/3

)
UR 3 1 +4/3 +2/3
DR 3 1 -2/3 -1/3

The Lagrangian describes one massive scalar field with the mass mχ, massless photon
Aµ, two massive (complex) vector bosons W±

µ with mass mW , and massive vector boson
Zµ with the mass mZ .

It is convenient also to introduce the Weinberg mixing angle as

cos θW =
g√

g2 + g′2

sin θW =
g′√

g2 + g′2
.

Then the relations (40), (41) take the explicit form of a rotation

Zµ = cos θWA
3
µ − sin θWBµ (45)

Aµ = cos θWBµ + sin θWA
3
µ

and also we get the important relation between the weak vector boson masses

mZ =
mW

cos θW
. (46)

Experimental value of sin θW is sin2 θW = 0, 23, and it can be measured independently
of the vector boson masses in the interactions of photons and W and Z bosons with
quarks and leptons. The equation (46) is satisfied with very good precision and provides
a test of the Standard Model.

Expansion of the Lagrangian beyond the quadratic level gives the interactions of the
bosons, with all the vertices expressed from the three coupling constants g, g′, λ and
vacuume expectation value v.

For completeness, we should mention the QCD gauge kinetic term

LQCD = −1

2

8∑
a=1

Ga
µνGµνa ,

which was described in detail in the corresponding lectures. The SU(3) group is not
broken, the corresponding gauge bosons—gluons—are massles, but are self-interacting.

4.2 Leptons

In the SM there were only left handed (V − A) charged currents. Thus, left and right
components of the spinors enter differently in the SM action. We can extract the left
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and right components out of the usual four spinor using the projectors

ψL ≡ PLψ ≡
1− γ5

2
ψ, ψR ≡ PRψ ≡

1 + γ5

2
ψ. (47)

Note, that ψL = (ψL)†γ0 = ψ† 1−γ5
2
γ0 = ψ 1+γ5

2
= ψPR. In the Weyl basis for gamma

matrices γ5 is diagonal, and the meaning of these definitions boils down to selecting
upper two or lower two components of the 4-spinor for the left or right part. In Dirac
basis (which is often used in non-relativistic limit) the meaning of (47) is less obvious.

The left electron eL and neutrino νL form a doublet under gauge transformation
U = exp

(
−i τa

2
∆a(x)

)
∈ SU(2)L

χL ≡
(
νL
eL

)
, χL → χ′L = UχL.

The Dirac conjugate spinors should transform in a conjugate way, that is χL = (νL, eL),
χL → χLU

† = χLU
−1.

They also transform under hypercharge with charge YL = −1:

χL → exp(iYLα(x))χL.

For the normal massive electron we need also the right handed component. It does
not transform at all under SU(2)L, and has hypercharge YR = −2

eR → exp(iYRα(x))eR.

According to the formula for the electric charge Q = T 3 + Y/2 we get Q = −1 for both
electron components, and 0 for neutrino, as needed.

We can now readily write the kinetic terms for the lepton Lagrangian.

Lkin = χLiγ
µDµχL + eRiγ

µDµeR, (48)

where the covariant derivatives are

DµχL = (∂µ − igAaµT a − i
g′

2
YLBµ)χL, (49)

DµeR = (∂µ − i
g′

2
YRBµ)eR. (50)

The only terms that are allowed by the SU(2)L × U(1)Y symmetries and contains only
fermions of the form ψ̄ψ and not more than one scalar field are

LYukawa = −Geχ
a
LΦaeR −GeeRΦ†aχaL, (51)

where repeated SU(2) index a implies summation. Note, that the terms are trivially
SU(2)L invariant. The sum of hypercharges for this term is zero, so it is U(1)Y invariant.
The requirement −YL + YΦ + YR = 0 constraints possible hypercharges that can be
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assigned to the fields. Note also, that terms of the form χ̄LχL are trivially zero because
of the chirality projectors.

The kinetic part (48) gives rise to the normal kinetic terms for the fermions, and to the
interactions with all the gauge bosons—charge, neutral and electric currents. Writing
explicitly in components (48) using (49) and (50) we get for the charged current

LCC = − g√
2

(J+
µW

+
µ + J−µW

−
µ ), (52)

J+
µ = ν̄LγµeL.

To get the neutral and electromagnetic current we also have to express A3 and B via
Z-boson and photon fields using (45), which gives

LEC = eAµēγµe, (53)

LNC =
g

2 cos θW
Zµ
(
−ν̄LγµνL − ēLγµeL + 2 sin2 θW ēγµe

)
, (54)

where the electric charge is
e ≡ g sin θW . (55)

The Yukawa interaction part in the Lagrangian (51) after symmetry breaking gives
both mass term for electrons, and electron interaction with the Higgs boson. It is easiest
to see this in the unitary gauge (38), which leads to

LYukawa = − 1√
2
Ge(v +H)ēLeR −

1√
2
Ge(v +H)ēReL ≡ −

1√
2
Ge(v +H)ēe, (56)

leading to the electron mass me = Gev/
√

2, and electron Higgs interaction with the
strength Ge/

√
2 = me/v. Note, that the interaction strength is directly proportional to

the mass of the particle, so that this interaction is practically absent for the electron,
but is sizeable for τ -lepton.

4.3 Quarks

The left-handed components of the quarks also form a doublet under SU(2)L, however, as
far as the electric quark charges are different from leptons, the choice of the hypercharge
is different

QL =

(
UL
DL

)
, YQ = 1/3. (57)

The right handed components are still SU(2)L singlets, but as far as all the quarks
are Dirac massive fermions, we need right-handed counterparts to both up and down
components of the left-handed doublet, UR and DR with hypercharges YU = 4/3, and
YD = −2/3. Also, all of the quark fields, QL, UR, and DR have SU(3) colour index
i = 1, 2, 3, which we don’t write explicitly here (see QCD lectures for details).
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The kinetic quark terms in the Lagrangian are, as usual

Lkin = Q̄LiγµD
µQLŪRiγµD

µURD̄RiγµD
µDR, (58)

DµQL = (∂µ − igAaµT a − ig′YQBµ − igsGµ)QL, (59)

DµUR = (ig′YUBµ − igsGµ)UR, (60)

DµDR = (ig′YDBµ − igsGµ)DR. (61)

Similarly to the lepton sector, this term generates the normal quark kinetic terms, and
gauge boson interactions. The SU(3) strong force interactions are described in QCD
lectures, while the electroweak currents in the interaction terms (52), (53), and (54) get
the following contributions

J+
µ = ŪLγµDL, (62)

JEMµ = QU ŪγµU +QDD̄γµD, (63)

JNCµ =
∑

fermions

ψ̄γµ((1− γ5)T 3 − 2Q sin2 θW )ψ, (64)

where T 3 = 1/2, Q = 2/3 for the up quarks, T 3 = −1/2, Q = −1/3 for the down quarks.
Note, that this is a generic formula, that can be used for leptons also.

The Yukawa term is more complicated for quarks. The term similar to (51) gives
mass to the down quark, while to generate mass for the up component the Higgs doublet
should have non-zero value in the upper component, instead of the lower component.
There are two ways to achieve this. One is to introduce another Higgs doublet Φ(2),

which in the vacuum is equal to
(
v/
√

2
0

)
. This is actually the situation that is realized

in SUSY, which imposes significant constraints on the possible Lagrangians. Without
SUSY, in plain SM, the mass of the up quarks can be generated without addition of
new scalar fields. This is possible because5 the doublet Φc

a ≡ εabΦ
∗
b , where εab is the

antisymmetric tensor, and we have explicitly written the SU(2) indexes, transforms
under the fundamental representation of SU(2) (to insure the gauge invariance we had
to use the complex conjugate field in this expression, which is impossible according to
the SUSY rules). Then, the Yukawa Lagrangian for quarks can be written as

LYukawa = −GDQ̄LΦDR −GUQ̄LΦcUR, (65)

and using the unitary gauge expressions (38) and Φc = 1√
2

(
v+H(x)

0

)
we get masses both

for up and down quarks, and proportional interactions with the Higgs boson.
One more complication arises when the construction is generalized to several genera-

tions of matter. In general, all the Yukawa constants Ge, GD, and GU can become arbi-
trary matrices in flavour. Thus, the mass matrices mu,ij = Gu,ijv/

√
2, md,ij = Gd,ijv/

√
2,

that are generated after symmetry breaking are not diagonal. They can be diagonalized

5Mathematically this corresponds to the observation that fundamental and conjugate representations
are isomorphic in case of SU(2).

16



by separate orthogonal redefinitions of the left and right up and down quarks,

uL,i = VuL,ijũL,j, uR,i = VuR,ijũR,j,
dL,i = VdL,ij d̃L,j, dR,i = VdR,ij d̃R,j,

where V... are orthogonal matrices. With this transformation the masses can be made
diagonal, the kinetic terms, electromagnetic and neutral currents stay diagonal, but the
charged current changes

J+
µ = ūfLγµVfgd

f
L, (66)

where f, g = 1, 2, 3 are flavour indexes, and Vfg ≡ V−1
uL
VdL is the unitary CKM (Cabibbo-

Kobayashi-Maskawa) matrix. In particular, it has quite strong mixing between the first
two generations for the charged current

Vfg '

 cos θc sin θc 0
− sin θc cos θc 0

0 0 1

 , (67)

where the Cabibbo angle θc ' 19◦, and other off-diagonal elements are of the order 10−2.
A general 3×3 unitary matrix is parametrized by 9 real parameters. However, constant

phase rotation of quark fields makes 5 of them unobservable, so there are only 4 physical
parameters in the CKM matrix—three mixing angles and one phase.

Vfg =

 c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

 , (68)

where cij ≡ cos θij, sij = sin θij, and θij, i, j = 1, 2, 3 are mixing angles, and δ13—CP-
violating phase.

4.4 Parameter count

Overall SM has 19 parameters. The electroweak scalar sector is parametrized by 4
parameters—v, λ, g, g′ are the parameters in the Lagrangian, which map to equivalent
observables with more physical sense

MZ = 91.2 GeV, MH = 125 GeV, (69)

α ≡ e2

4π
=

1

137
, sin2 θW = 0.231. (70)

Note, that other parameters, like MW can be expressed from these 4. One more param-

eter αS ≡ g23
4π

defines strong interactions.
For the fermions we need 9 masses for 3 charged leptons and 6 quarks. The quark

sector has CKM mixing matrix with 3 angles and one CP phase.
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There is one more parameter, QCD phase θQCD, which we left in our discussion. It
appears in the action in the form of an additional gauge invariant term

LQCD phase =

∫
d4x

θQCD

16π
εµνλρ TrGµνGλρ.

The term is actually a full derivative, so it does not change the equations of motion.
However, there are non-perturbative effects where it contributes. Via these effects this
term leads to potentially observable CP-violating effects, like neutron dipole moment.

4.5 Full SM after SSB

Let us just summarize the full SM. The whole action is rather short before spontaneous
symmetry breaking

L =− 1

2
TrGµνGµν −

1

2
TrWµνWµν −

1

2
TrBµνBµν

+
∑

ψ=χL,eR,QL,UR,DR

iψ̄γµDµψ +
∑
f,g

[
−Gfg

e χ̄
f
LΦegR −G

fg
D Q̄

f
LΦDg

R −G
fg
U Q̄

f
LΦcU g

R

]
+ (DµΦ)†DµΦ− λ

(
Φ†Φ− v2

2

)2

.

The Lagrangian after the SSB is much longer, and the fact that it originated from
a gauge symmetric action is well hidden. However, all the particle interactions can
be directly read from it. The SM Lagrangian after symmetry breaking contains the
following parts:

L = LQCD + Llept + Lf,EM + Lf,weak + LY + LV + LH + LV H .

The QCD part is

LQCD = −1

4
Ga
µνG

a
µν +

∑
quarks

q̄(iγµ∂µ −mq − gs
λa

2
γµGa

µ)q,

where we sum over all quarks. The part describing the free leptons is

Llept =
∑

g=e,µ,τ

ēg(iγ
µ∂µ −meg)eg +

∑
g

ν̄giγ
µ∂µPLνg,

where the sum is over three generations, and only left neutrino components enter (in pure
SM neutrino are massless). The electromagnetic part sums over all charged fermions f

Lf,EM = eAµ
∑
f

Qf f̄γ
µf,
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where Qf is the electric charge of the fermion in units of e. The weak interactions of
the leptons are described by

Lweak =
g

2
√

2
Wµ

∑
g

ν̄gγ
µ(1− γ5)eg + h.c.

+
g

2
√

2
Wµ

∑
f,g

ūfγ
µ(1− γ5)Vfgdg + h.c.

+
g

2 cos θW
Zµ

∑
fermions

f̄γµ(T f3 (1− γ5)− 2Qf sin2 θW )f,

where T f3 is 1/2 for neutrinos and upper quarks, and −1/2 for charged leptons and down
quarks. The fermion Higgs interactions are proportional to masses

LY =
∑

fermions

mf

v
f̄f ·H.

Careful expansion of the kinetic terms of the gauge fields gives

LV =− 1

4
(Fµν)

2 − 1

4
(Zµν)

2 +
m2
Z

2
ZµZµ

− 1

2
W−
µνW

+
µν +m2

WW
−
µ W

+
µ +

g2

4
(W+

µ W
−
ν −W+

ν W
−
µ )2

− ig

2
(F µν sin θW + Zµν cos θW )(W−

µ W
+
ν −W+

µ W
−
ν ),

where
W−
µν ≡ (∂µ − ieAµ − ig cos θWZµ)W−

ν − (µ↔ ν).

The Higgs is described the scalar theory with cubic quartic interactions

LH =
1

2
(∂µH)2 − m2

H

2
H2 − λvH3 − λ

4
H4.

Note, that the vev and self-coupling define both mass and cubic interaction terms.
Finally, there are interactions between the Higgs and vector bosons

LHV =
g4

4
vHW−

µ W
+
µ +

g2 + g′2

4
vHZµZµ +

g2

4
H2|W−

µ |2 +
g2 + g′2

8
H2ZµZµ.

4.6 Symmetries of the SM

The main starting point for the formulation of the SM action was the invariance under
gauge symmetries. At the same time, SM has more (global) symmetries.
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4.6.1 Baryon number

Simultaneous phase rotation of all quarks (and opposite rotation of antiquarks)

q → eiβ/3q, q̄ → e−iβ/3q̄

leaves all the terms in the action invariant. By Noether theorem this leads to the
conserved current

jBµ =
1

3

∑
q

q̄γµq

and, respectively, the conserved baryon number

B =

∫
d3xj0 =

1

3
(Nq −Nq̄) = Nbaryons −Nanti-baryons.

The immediate consequence is that the lightest baryon–proton–should be stable. There-
fore, evidence of proton decay would show deviations form the SM.

4.6.2 Lepton numbers

In a similar way lepton numbers can be defined. Moreover, in the absence of neutrino
masses there are no mixing between the lepton generations, and lepton numbers can be
defined individually for each generation:

Le = Ne +Nνe − (Nē +Nν̄e), (71)

Lµ = Nµ +Nνµ − (Nµ̄ +Nν̄µ), (72)

Lτ = Ne +Nντ − (Nτ̄ +Nν̄τ ). (73)

Similarly, searches for violation of lepton number, like µ → eγ decays, would indicate
deviations from SM.
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