HEP Summer School 2022 Problems: SM

- 1. Show that the field strength $F_{\mu\nu}$ may be derived for a U(1) gauge field using the commutator of the covariant derivative D_{μ} . By definition, for a scalar field ϕ in some representation of a gauge symmetry, the object $D_{\mu}\phi$ has the same transformation property as ϕ itself. If, under this symmetry, $\phi \to U\phi$, where U is a unitary matrix, then how must D_{μ} transform? Given this, and the connection with the commutator, how does $F_{\mu\nu}$ transform?
- 2. In the four fermion operator $\mathcal{L} = \psi^4/\Lambda^2$, where ψ is a fermion, what is the mass and coupling dimension of Λ ?
- 3. Check explicitly that $\mathcal{L}(e)$ is $\mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$ invariant, by applying the infinitessimal transformations of χ_L , e_R , \vec{W}_μ and B_μ .
- 4. You will require the Feynman rules and lecture notes from 2019!

Defining $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$ show that $\gamma_5^2 = 1$, $\gamma_5^{\dagger} = \gamma_5$, and $\gamma_5, \gamma_{\mu} = 0$. Consider a massless fermion with momentum p along the z direction, $p_{\mu} = (E, 0, 0, E)$. Show that $P_R u(p)$ and $P_L u(p)$ are eigenstates of helicity

$$h = -\frac{\gamma^0 \gamma_5 \overrightarrow{\gamma} \cdot p}{E},\tag{1}$$

with eigenvalues ± 1 .

5. There is one Feynman diagram in lowest order electroweak theory for μ^- decay,

$$\mu^{-}(p) \to \nu_{\mu}(k) + e^{-}(p') + \overline{\nu}_{e}(k').$$
 (2)

Draw this diagram and use the electroweak Feynman rules to calculate the spin averaged $|\overline{\mathcal{M}}|^2$ for this decay. To simplify the calculation retain m_{μ} but set $m_e = 0$. Also, evaluate in the effective "Fermi theory" (see last years notes!) where you leave out the W propagator (set it to $g_{\mu\nu}$) and replace g at the vertices by g/M_W . Why is this a very good approximation for μ^- decay? Does setting $m_{\mu} = 0$ make any difference?

You are given $\text{Tr}[\gamma_{\mu}(1-\gamma_5)p_1\gamma^{\nu}(1-\gamma_5)p_2]Tr[\gamma_{\mu}(1-\gamma_5)p_3\gamma_{\nu}(1-\gamma_5)p_4] = 256(p_1 \cdot p_3)(p_2 \cdot p_4).$

Write out an expression for $d\Gamma$ (the differential decay rate) in terms of p and phase space. A tedious phase space integration which you need not attempt then leads to the total μ^- decay rate

$$\Gamma(\mu^{-}) = \frac{g^4 m_{\mu}^5}{6144\pi^3 M_W^4} \tag{3}$$

Given $m_{\mu} = 105.66$ MeV, and the μ_{-} lifetime

$$\tau(\mu^{-})^{\exp} = \frac{1}{\Gamma(\mu^{-})} = (2.197138 \pm 0.000065) \times 10^{-6} \text{ sec} .$$
 (4)

Estimate v, the Higgs vev, in the minimal Standard Model. (In natural units $1 \sec = 1.52 \times 10^{24} \text{ GeV}^{-1}$).

6. Use the electroweak Feynman rules to calculate the polarization averaged Z_0 decay width, $\Gamma(Z \to ff)$, $f = e, \nu, q, \dots$ Take f massless.

For an external massive spin 1 vector boson with mass M_V you need the Feynman rule for $\epsilon_{\mu}^{(\lambda)}$, where the $\epsilon_{\mu}^{(\lambda)}$ is the polarization vector of the vector boson, and the completeness sum over polarizations is

$$\sum_{\lambda} \epsilon_{\mu}^{(\lambda)*} \epsilon_{\nu}^{(\lambda)} = -g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{M_V^2} \tag{5}$$

Suitable choices are $(\overrightarrow{p}$ along the z-axis)

$$\epsilon_{\nu}^{(\lambda=\pm 1)} = \mp (0, 1, \pm i, 0) / \sqrt{2}$$
 (6)

and

$$\epsilon_{\nu}^{(\lambda=0)} = \mp (|\overrightarrow{p}|, 0, 0, E) / M_Z \tag{7}$$

One then has

$$\Gamma(Z^0 \to f\overline{f}) = \frac{1}{64\pi^2 M_Z} \int |\overline{\mathcal{M}}|^2 d\Omega \tag{8}$$

Estimate the total Z_0 decay width (take $M_Z=91$ GeV, g=0.65, $\sin^2(\theta_W)=0.23$) which should have been observed at LEP. Don't forget three colours for each quark flavour!