Collider Phenomenology

Eleni Vryonidou

STFC school, Oxford
9-16/9/22

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Basics of collider physics

Goals of collider physics:
Test theoretical predictions: Standard Model and New Physics
Hopefully find the unexpected!

Collider physics

Theory

Interpretation

Experiment
Need good control of every step

Historical perspective

Why bother? Because it works!

Collider	When	What particle	Energy	Main Impact
SPS-CERN	$1981-1984$	pp	600 GeV	W/Z bosons
Tevatron	$1983-2011$	ppbar	2 TeV	Top quark
LEP-CERN	$1989-2000$	e+e-	210 GeV	Precision EW
HERA-DESY	$1992-2007$	ep	320 GeV	QCD/PDFs
BELLE	$1999-2010$	$\mathrm{e}+\mathrm{e}-$	10 GeV	Flavour physics
LHC	$2009-T o d a y$	pp	$7 / 8 / 13 \mathrm{TeV}$	Higgs...

Future of collider physics?

Collider reach

How heavy a particle can be produced?

$$
A+B \rightarrow X \quad M_{X}^{2}=\left(p_{1}+p_{2}\right)^{2}
$$

Fixed target experiment: $\quad p_{1} \simeq(E, 0,0, E)$

$$
p_{2}=(m, 0,0,0)
$$

before

Collider experiment: $\quad p_{1} \simeq(E, 0,0, E)$

$$
p_{2} \simeq(E, 0,0,-E)
$$

$$
M_{X} \simeq \sqrt{2 m E}
$$

$$
M_{X} \simeq 2 E
$$

Better energy scaling for collider experiment
Note: fixed target can benefit from dense target

Collider aspects

Luminosity: rate of particles in colliding bunches

$$
\text { Integrated Luminosity: } L=\int \mathscr{L} d t
$$

Number of events for process with cross-section $\sigma: L \sigma$ LHC luminosity Run II $L=300 \mathrm{fb}^{-1}$

Circular vs linear: circular colliders are compact, but suffer from synchrotron radiation

Lepton vs Hadron: Lepton colliders, all energy available in the collision
Hadron colliders, energy available determined by PDFs but can generally reach higher energies

LHC: a hadron collider

LHC: a hadron collider

LHC: a hadron collider

LHC status

Rediscovering the SM

Standard Model Total Production Cross Section Measurements Status: March 2021

Searching for the unknown

Good agreement with the SM

LHC physics

What's next?

No sign of new physics! Searches for deviations continue
New Physics can be:
Weakly coupled: Small rates means that more Luminosity can help
Exotic: Need new ways to search for it, going beyond standard searches or even beyond high-energy colliders

Heavy: Not enough energy to produce it Need indirect searches: SMEFT

What is next for LHC physics

- New Physics is hiding well!
- Need to probe small deviations from the Standard Model using very precise predictions.
- Precise predictions are needed for both the SM and BSM.

In this course we will study the ingredients which enter in theoretical predictions and interpretations of LHC data!

How to compute cross-sections for the LHC

How to compute cross-sections for the LHC

How to compute cross-sections for the LHC

$$
\sum_{a, b} \int_{\text {Phase-space integral }} d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
$$

Master formula for LHC physics

$$
\sum_{a, b} \int_{\text {Phase-space integral }} d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
$$

Extracted from data

Master formula for LHC physics

$$
\sum_{a, b} \int_{\text {Phase-space integral }} d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
$$

Extracted from data
We will study in detail this formula this week!

From the hard scattering to events

Ideally

From the hard scattering to events

From the hard scattering to events

An LHC event

QCD...

LHC is a proton-proton collider:

- colliding particles are proton constituents with are coloured particles QCD plays a crucial role in what we eventually observe in the detectors

Why is QCD "special"? Let's compare it to what we know best: QED

From QED to QCD

Example 1: R-ratio

VS

Let's compute the matrix element for:
Summing and averaging:

$$
\bar{\sum}|M|^{2}=\frac{2 e^{4}}{s^{2}}\left[t^{2}+u^{2}\right] \quad \text { Try this out! }
$$

Mandelstam variables: $s=\left(p_{e_{+}}+p_{e-}\right)^{2} \quad t=\left(p_{e_{+}}-p_{\mu+}\right)^{2}=-\frac{s}{2}(1-\cos \theta)$

$$
s+t+u=0 \quad u=\left(p_{e+}-p_{\mu-}\right)^{2}=-\frac{\bar{s}}{2}(1+\cos \theta)
$$

From QED to QCD

Example 1: R-ratio

VS

Let's compute the matrix element for:
Summing and averaging:

$$
\bar{\sum}|M|^{2}=\frac{2 e^{4}}{s^{2}}\left[t^{2}+u^{2}\right] \quad \text { Try this out! }
$$

Mandelstam variables: $s=\left(p_{e_{+}}+p_{e-}\right)^{2} \quad t=\left(p_{e_{+}}-p_{\mu+}\right)^{2}=-\frac{s}{2}(1-\cos \theta)$

$$
\text { Why? } s+t+u=0 \quad u=\left(p_{e+}-p_{\mu-}\right)^{2}=-\frac{\bar{s}}{2}(1+\cos \theta)
$$

From QED to QCD

Example 1: R-ratio

$$
\bar{\sum}|M|^{2}=\frac{2 e^{4}}{s^{2}}\left[t^{2}+u^{2}\right] \quad \bar{\sum}|M|^{2} \propto\left(1+\cos ^{2} \theta\right)
$$

Cross-section:

$$
\begin{array}{rr}
\frac{d \sigma}{d \Omega}=\frac{1}{64 \pi^{2} s} \bar{\sum}|M|^{2} & d \Omega=d \phi d \mathrm{c} \\
\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}} & =\frac{4 \pi \alpha^{2}}{3 s}
\end{array}
$$

From QED to QCD

Example 1: R-ratio

$$
\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)=\frac{4 \pi \alpha^{2}}{3 s}
$$

$$
\begin{aligned}
R & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \sim N_{c} \sum_{q} e_{q}^{2} \\
& =2\left(N_{c} / 3\right) \quad q=u, d, s \\
& =3.7\left(N_{c} / 3\right) \quad q=u, d, s, c, b
\end{aligned}
$$

Quark—anti-pair can be one of $r \bar{r}, g \bar{g}, b \bar{b}$
Experimental evidence for colour!

From QED to QCD

Example 1: R-ratio

R-ratio computation

Expected

Measured

From QED to QCD

Example 1: R-ratio

R-ratio computation

Expected

Measured

Quarkonium states: very small width, very long lived states

A few words about the Z-resonance

Breit -Wigner

Z contribution becomes relevant when $\sqrt{s} \sim M_{Z}$
We then need both diagrams and their interference

Z-resonance

Breit-Wigner and Narrow Width Approximation

Z is an unstable particle, we can't simply use $\frac{1}{s-M_{Z}^{2}}$
Breit-Wigner propagator: $\frac{1}{s-M_{Z}^{2}+i \Gamma M}$
Narrow width approximation:
$\frac{1}{\left(\hat{s}-M_{Z}^{2}\right)^{2}+M_{Z}^{2} \Gamma_{Z}^{2}} \approx \frac{\pi}{M_{Z} \Gamma_{Z}} \delta\left(\hat{s}-M_{Z}^{2}\right) \quad$ if $\Gamma_{Z} / M_{Z} \ll 1$
$\sigma_{e^{+} e^{-} \rightarrow Z \rightarrow \mu^{+} \mu^{-}} \simeq \sigma_{e^{+} e^{-} \rightarrow Z} \times B r\left(Z \rightarrow \mu^{+} \mu^{-}\right)$with $\operatorname{Br}\left(Z \rightarrow \mu^{+} \mu^{-}\right)=\Gamma_{Z \rightarrow \mu^{+} \mu^{-}} / \Gamma_{Z}$
Simplifies computations for particles with narrow width (e.g. Higgs)

From QED to QCD

Example 2: QCD and gauge invariance

Let's compute the amplitude for $q \bar{q} \rightarrow \gamma \gamma$

$$
i \mathcal{M}=\mathcal{M}_{\mu \nu} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}=D_{1}+D_{2}=e^{2}\left(\bar{v}(\bar{q}) \not \phi_{2} \frac{1}{\underline{q-\not \ell_{1}}} \phi_{1} u(q)+\bar{v}(\bar{q}) \not_{1} \frac{1}{d-\not \ell_{2}} \phi_{2} u(q)\right)
$$

Gauge invariance requires: $\epsilon_{1}^{* \mu} k_{2}^{\nu} \mathcal{M}_{\mu \nu}=\epsilon_{2}^{* \nu} k_{1}^{\mu} \mathcal{M}_{\mu \nu}=0$

$$
\begin{aligned}
\mathcal{M}_{\mu \nu} k_{1}^{* \mu} \epsilon_{2}^{* \nu}=D_{1}+D_{2} & \left.=e^{2}\left(\bar{v}(\bar{q}) \not \phi_{2} \frac{1}{q-\not k_{1}}\left(\not k_{1}-\not q\right) u(q)+\bar{v}(\bar{q})\left(\not k_{1}-\not\right)^{\prime}\right) \frac{1}{\not \not k_{1}-\not q^{2}} \phi_{2} u(q)\right) \\
& =-\bar{v}(\bar{q}) \not \phi_{2} u(q)+\bar{v}(\bar{q}) \not \phi_{2} u(q)=0
\end{aligned}
$$

Works fine!

From QED to QCD

Example 2: QCD and gauge invariance

$$
i \mathcal{M}=\mathcal{M}_{\mu \nu} \epsilon_{1}^{* \mu} \epsilon_{2}^{* \nu}=D_{1}+D_{2}=e^{2}\left(\bar{v}(\bar{q}) \phi_{2} \frac{1}{\underline{q-\not \ell_{1}}} \phi_{1} u(q)+\bar{v}(\bar{q}) \phi_{1} \frac{1}{q-\not \ell_{2}} \phi_{2} u(q)\right)
$$

Let's do the same for $q \bar{q} \rightarrow g g$

$$
\begin{aligned}
\frac{i}{g_{s}^{2}} M_{g} & \equiv\left(t^{b} t^{a}\right)_{i j} D_{1}+\left(t^{a} t^{b}\right)_{i j} D_{2} \\
M_{g} & =\left(t^{a} t^{b}\right)_{i j} M_{\gamma}-g^{2} f^{a b c} t_{i j}^{c} D_{1}
\end{aligned} \quad\left[t^{a}, t^{b}\right]=i f^{a b c} t^{c}
$$

Is this gauge invariant? $\quad k_{1 \mu} M_{g}^{\mu}=-g_{s}^{2} f^{a b c} t_{i j}^{c} \bar{v}_{i}(\bar{q}) \epsilon_{2} u_{i}(q)$
We don't get zero anymore!

$$
k_{1 \mu} M_{g}^{\mu}=i\left(-g_{s} f^{a b c} \epsilon_{2}^{\mu}\right)\left(-i g_{s} t_{i j}^{c} \bar{v}_{i}(\bar{q}) \gamma_{\mu} u_{i}(q)\right)
$$

From QED to QCD

Example 2: QCD and gauge invariance

What are we missing?

$$
-i g_{s}^{2} D_{3}=\left(-i g_{s} t_{i j}^{a} \bar{v}_{i}(\bar{q}) \gamma^{\mu} u_{j}(q)\right) \times\left(\frac{-i}{p^{2}}\right) \times\left(-g f^{f a_{C_{V}}}{ }_{\mu \nu \rho}\left(-p, k_{1}, k_{2}\right) \epsilon_{1}^{\mu_{1}}\left(k_{1}\right) \epsilon_{2}^{e}\left(k_{2}\right)\right)
$$

- Lorentz invariant
$V_{\mu_{1} \mu_{2} \mu_{3}}\left(p_{1}, p_{2}, p_{3}\right)=V_{0}\left[\left(p_{1}-p_{2}\right)_{\mu_{3}} g_{\mu_{1} \mu_{2}}+\left(p_{2}-p_{3}\right)_{\mu_{1}} g_{\mu_{2} \mu_{3}}+\left(p_{3}-p_{1}\right)_{\mu_{2}} g_{\mu_{3} \mu_{1}}\right]$ • Anti-symmetry
$k_{1} \cdot D_{3}=g^{2} f^{a b c_{c} t^{c} V_{0}\left[\bar{v}(\bar{q}) \epsilon_{2} u(q)-\frac{k_{2} \cdot \epsilon_{2}}{2 k_{1} \cdot k_{2}} \bar{v}(\bar{q}) k_{1} u(q)\right]}$
- Dimensional analysis

Gauge invariant IFF the other gluon is physical!
An empirical way to write down the triple gluon vertex!

From QED to QCD

Example 2: QCD and gauge invariance

What are we missing?

$$
-i g_{s}^{2} D_{3}=\left(-i g_{s} t_{i j}^{a} \bar{v}_{i}(\bar{q}) \gamma^{\mu} u_{j}(q)\right) \times\left(\frac{-i}{p^{2}}\right) \times\left(-g f^{f a_{C_{V}}}{ }_{\mu \nu \rho}\left(-p, k_{1}, k_{2}\right) \epsilon_{1}^{\mu_{1}}\left(k_{1}\right) \epsilon_{2}^{e}\left(k_{2}\right)\right)
$$

- Lorentz invariant
$V_{\mu_{1} \mu_{2} \mu_{3}}\left(p_{1}, p_{2}, p_{3}\right)=V_{0}\left[\left(p_{1}-p_{2}\right)_{\mu_{3}} g_{\mu_{1} \mu_{2}}+\left(p_{2}-p_{3}\right)_{\mu_{1}} g_{\mu_{2} \mu_{3}}+\left(p_{3}-p_{1}\right)_{\mu_{2}} g_{\mu_{3} \mu_{1}}\right]$ • Anti-symmetry
$k_{1} \cdot D_{3}=g^{2} f^{\left.\left.a b c^{c} t^{c} V_{0}\left[\bar{v}(\bar{q}) \xi_{2} u(q)-\frac{k_{2} \cdot \epsilon_{2}}{2 k_{1} \cdot k_{2}} \bar{v}(\bar{q}) k_{1} u(q)\right] .\right] .\right] .}$
- Dimensional analysis

Gauge invariant IFF the other gluon is physical!
An empirical way to write down the triple gluon vertex!

From QED to QCD

Example 2: QCD and gauge invariance

What are we missing?

$$
-i g_{s}^{2} D_{3}=\left(-i g_{s} t_{i j}^{a} \bar{v}_{i}(\bar{q}) \gamma^{\mu} u_{j}(q)\right) \times\left(\frac{-i}{p^{2}}\right) \times\left(-g f^{a b c} V_{\mu \nu \rho}\left(-p, k_{1}, k_{2}\right) \epsilon_{1}^{\nu}\left(k_{1}\right) \epsilon_{2}^{p}\left(k_{2}\right)\right)
$$

- Lorentz invariant
$V_{\mu_{1} \mu_{2} \mu_{3}}\left(p_{1}, p_{2}, p_{3}\right)=V_{0}\left[\left(p_{1}-p_{2}\right)_{\mu_{3}} g_{\mu_{1} \mu_{2}}+\left(p_{2}-p_{3}\right)_{\mu_{1}} g_{\mu_{2} \mu_{3}}+\left(p_{3}-p_{1}\right)_{\mu_{2}} g_{\mu_{3} \mu_{1}}\right]$ • Anti-symmetry
$k_{1} \cdot D_{3}=g^{2} f^{\left.a b c^{c} t^{c} V_{0}\left[\bar{v}(\bar{q}) \xi_{2} u(q)-\frac{k_{2} \cdot \epsilon_{2}}{2 k_{1} \cdot k_{2}}\right)(\bar{q}) k_{1} u(q)\right]}$
- Dimensional analysis

Gauge invariant IFF the other gluon is physical!
An empirical way to write down the triple gluon vertex!

QCD Lagrangian

Colour algebra

$$
\begin{aligned}
& \operatorname{Tr}\left(t^{a}\right)=0 \\
& \cdots=0 \\
& \operatorname{Tr}\left(t^{a} t^{b}\right)=T_{R} \delta^{a b} \\
& \cdots \bigcirc 000=T_{R} * \infty \\
& {\left[t^{a}, t^{b}\right]=i f^{a b c} c^{c}} \\
& {\left[F^{a}, F^{b}\right]=i f^{a b c} F^{c}} \\
& \text { |-loop vertices } \\
& \left(t^{a} t^{a}\right)_{i j}=C_{F} \delta_{i j} \\
& =C_{F} \text { * } \\
& { }_{i f}{ }^{a b c}\left(t^{b} t^{c}\right)_{i j}=\frac{C_{A}}{2} t_{i j}^{a} \\
& \begin{array}{l}
2 \\
90 \\
9
\end{array} \\
& =C_{A} / 2 \text { * } \\
& \infty \\
& \sum_{c d} f^{f a c d} f^{b c d} \\
& =\left(F^{c} F^{c}\right)_{a b}=C_{A} \delta_{a b} \\
& =C_{A} * \infty \\
& \left(t^{b} t^{a} t^{b}\right)_{i j}=\left(C_{F}-\frac{C_{A}}{2}\right) t_{i j}^{a} \text { 气ed }
\end{aligned}
$$

Can be a bottleneck for higher order computations! People always on the lookout for simplifications! Quite a few computations are done in the large N_{c} limit.

Properties of QCD

UV: Asymptotic freedom

- Perturbative computations
- Parton model

IR: Universality

- Collinear Factorisation
- Parton showers

Deep Inelastic Scattering

Can we guess what F looks like?

Deep Inelastic scattering

What can $F^{2}\left(q^{2}\right)$ look like?

1. Proton charge is smoothly distributed (probe penetrates proton like a knife through butter)
$F_{\text {elastic }}^{2}\left(q^{2}\right) \sim F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \ll 1$
2. Proton consists of tightly bound charges (quarks hit as single particles, but cannot fly away because tightly bound)
$F_{\text {elastic }}^{2}\left(q^{2}\right) \sim 1 \quad F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \ll 1$
!!!3. $F_{\text {elastic }}^{2}\left(q^{2}\right) \ll 1 \quad F_{\text {inelastic }}^{2}\left(q^{2}, x\right) \sim 1$
Quarks are free particles which fly away without caring about confinement!

Parton Model

DIS cross-section

$$
\begin{aligned}
& d \Phi=\frac{d^{3} k^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} d \Phi_{X}=\frac{M E}{8 \pi^{2}} y d y d x d \Phi_{X} \\
& \frac{1}{4} \sum|\mathcal{M}|^{2}=\frac{e^{4}}{Q^{4}} L^{\mu \nu} h_{X \mu \nu} \\
& L^{\mu \nu}=\frac{1}{4} \operatorname{tr}\left[\not k \gamma^{\mu} \not k^{\prime} \gamma^{\nu}\right]=k^{\mu} k^{\prime \nu}+k^{\prime \mu} k^{\nu}-g^{\mu \nu} k \cdot k^{\prime}
\end{aligned}
$$

Based on Lorentz and gauge invariance

$$
\begin{aligned}
& W^{\mu \nu}=\sum_{X} \int d \Phi_{X} h_{X \mu \nu} \\
& W_{\mu \nu}(p, q)=\left(-g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\left(p_{\mu}-q_{\mu} \frac{p \cdot q}{q^{2}}\right)\left(p_{\nu}-q_{\nu} \frac{p \cdot q}{q^{2}}\right) \frac{1}{p \cdot q} F_{2}\left(x, Q^{2}\right)
\end{aligned}
$$

Parton Model

$$
\sigma^{e p \rightarrow e X}=\sum_{X} \frac{1}{4 M E} \int d \Phi \frac{1}{4} \sum_{\text {spin }}|\mathcal{M}|^{2}
$$

After a bit of maths (good exercise), we get:

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left\{\left[1+(1-y)^{2} F_{1}\left(x, Q^{2}\right)+\frac{1-y}{x} F_{2}\left(x, Q^{2}\right)-2 x F_{1}\left(x, Q^{2}\right)\right)\right\}
$$

Transverse photon
Longitudinal photon

Parton Model

Breit frame

The proton moves fast and the photon has zero energy

Breit frame: Proton extent: $\quad \Delta x^{+} \sim \frac{Q}{m^{2}}, \quad \Delta x^{-} \sim \frac{1}{Q}$

$$
\text { Photon extent: } \quad \Delta x^{+} \sim 1 / Q,
$$

$$
\left(\Delta x^{+}\right)_{\text {photonn }} \ll\left(\Delta x^{+}\right)_{\text {protonn }}
$$

The time scale of a typical parton-parton interaction is much larger than the hard interaction time.

Parton Model

Breit frame

The proton moves fast and the photon has zero energy

- The time scale of a typical parton-parton interaction is much larger than the hard interaction time.
- Schematically: in the Breit frame the proton moves very fast towards the photon, and is therefore Lorentz contracted to a kind of pancake.
- The photon interaction then takes place on the very short time scale when the photon passes that pancake.
- During the short interaction time, the struck quark thus does not interact with the spectator quarks and can be regarded as a free parton.

Factorisation

Breit picture frame allows us to assume partons are free within proton:

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\int_{0}^{1} \frac{d \xi}{\xi} \sum_{i} f_{i}(\xi) \frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\left(\frac{x}{\xi}, Q^{2}\right)
$$

DIS cross-section

Comparing our inclusive cross-section:

$$
\frac{d^{2} \sigma}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left\{\left[1+(1-y)^{2}\right] F_{1}\left(x, Q^{2}\right)+\frac{1-y}{x}\left[F_{2}\left(x, Q^{2}\right)-2 x F_{1}\left(x, Q^{2}\right)\right]\right\}
$$

Factorised cross-section in the parton model:
$\frac{d^{2} \sigma}{d x d Q^{2}}=\int_{0}^{1} \frac{d \xi}{\xi} \sum_{i} f_{i}(\xi) \frac{d^{2} \sigma}{d x d Q^{2}}\left(\frac{x}{\xi}, Q^{2}\right) \quad$ with $\frac{d^{2} \hat{\sigma}}{d Q^{2} d x}=\frac{4 \pi \alpha^{2}}{Q^{4}} \frac{1}{2}\left[1+(1-y)^{2}\right] e_{q}^{2} \delta(x-\xi)$
We can express the structure functions as:

$$
F_{2}(x)=2 x F_{1}=\sum_{i=q, \bar{q}} \int_{0}^{1} d \xi f_{i}(\xi) x e_{q}^{2} \delta(x-\xi)=\sum_{i=q, \bar{q}} e_{q}^{2} x f_{i}(x)
$$

DIS cross-section

We can express the structure functions as:

$$
F_{2}(x)=2 x F_{1}=\sum_{i=q, \bar{q}} \int_{0}^{1} d \xi f_{i}(\xi) x e_{q}^{2} \delta(x-\xi)=\sum_{i=q, \bar{q}} e_{q}^{2} x f_{i}(x)
$$

Quarks and anti-quarks enter together.
How can we separate them?
No dependence on Q: Scaling
$f_{i}(x)$ are the parton distribution functions which describe the probabilities of finding specific partons in the proton carrying momentum fraction x

Scaling and Callan-Gross relation

Scaling: Structure function does not depend on Q
Callan-Gross relation
Quarks are spin-1/2 particles!

Parton distribution functions

$$
\begin{aligned}
& u(x)=u_{V}(x)+\bar{u}(x) \quad \int_{0}^{1} d x u_{V}(x)=2, \quad \int_{0}^{1} d x d_{V}(x)=1 \\
& d(x)=d_{V}(x)+\bar{d}(x) \quad \\
& s(x)=\bar{s}(x) \\
& \sum_{q} \int_{0}^{1} d x x[q(x)+\bar{q}(x)] \simeq 0.5
\end{aligned}
$$

Quarks carry only 50\% of the proton momentum
Evidence for gluons!

Parton model summary

DIS experiments show that virtual photon scatters off massless, free, point like, spin-1/2 quarks

One can factorise the short- and long-distance physics entering this process. Long-distance physics absorbed in PDFs. Short distance physics described by the hard scattering of the parton with the virtual photon.
$\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{S})$

Parton model summary

DIS experiments show that virtual photon scatters off massless, free, point like, spin-1/2 quarks

One can factorise the short- and long-distance physics entering this process. Long-distance physics absorbed in PDFs. Short distance physics described by the hard scattering of the parton with the virtual photon.

$d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s})$

End of Lecture 1

Collider Phenomenology (2)

Eleni Vryonidou

STFC school, Oxford
9-16/9/22

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

R-ratio@NLO

Real

Virtual

$$
\sigma_{N L O}=\sigma_{L O}+\int_{R}\left|M_{\text {real }}\right|^{2} d \Phi_{3}+\int_{V} 2 \operatorname{Re}\left(M_{0} M_{v i r}^{*}\right) d \Phi_{2}
$$

QCD in the final state

R-ratio@NLO

Real corrections:

$$
\begin{aligned}
A & =\bar{u}(p) \epsilon\left(-i g_{s}\right) \frac{-i}{\not p+\not b x} \Gamma^{\mu} v(\bar{p}) t^{a}+\bar{u}(p) \Gamma^{\mu} \frac{i}{\bar{p}+\not x \phi}\left(-i g_{s}\right) \epsilon v(\bar{p}) t^{a} \\
& =-g_{s}\left[\frac{\bar{u}(p) \epsilon(\not p+\not p) \Gamma^{\mu} v(\bar{p})}{2 p \cdot k}-\frac{\bar{u}(p) \Gamma^{\mu}(\bar{p}+\not x) \epsilon v(\bar{p})}{2 \bar{p} \cdot k}\right] t^{a}
\end{aligned}
$$

What are those denominators?

$$
p \cdot k=p_{0} k_{0}(1-\cos \theta)
$$

What happens when the gluon is soft $\left(k_{0} \rightarrow 0\right)$ or collinear $(\theta \rightarrow 0)$ to the quark?

QCD in the final state
 R-ratio@NLO

What happens when the gluon is soft $\left(k_{0} \rightarrow 0\right)$ or collinear $(\theta \rightarrow 0)$ to the quark?

$$
A_{\text {soft }}=-g_{s} t^{a}\left(\frac{p \cdot \epsilon}{p \cdot k}-\frac{\bar{p} \cdot \epsilon}{\bar{p} \cdot k}\right) A_{\text {Born }}
$$

Very important property of QCD
Factorisation of long-wavelength (soft) emission from the shortdistance (hard) scattering!

Soft emission factor is universal!

QCD in the final state
 R-ratio@NLO

$$
\sigma_{N L O}=\sigma_{L O}+\int_{R}\left|M_{\text {real }}\right|^{2} d \Phi_{3}+\int_{V} 2 \operatorname{Re}\left(M_{0} M_{v i r}^{*}\right) d \Phi_{2}
$$

$$
A_{\text {soft }}=-g_{s} t^{a}\left(\frac{p \cdot \epsilon}{p \cdot k}-\frac{\bar{p} \cdot \epsilon}{\bar{p} \cdot k}\right) A_{B o r n}
$$

What does that mean for the NLO cross-section?

$$
\begin{aligned}
\sigma_{q \bar{q} g}^{\mathrm{REAL}} & =C_{F} g_{s}^{2} \sigma_{q \bar{q}}^{\mathrm{Born}} \int \frac{d^{3} k}{2 k^{0}(2 \pi)^{3}} 2 \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)} \\
& =C_{F} \frac{\alpha_{S}}{2 \pi} \sigma_{q \bar{q}}^{\mathrm{Born}} \int d \cos \theta \frac{d k^{0}}{k^{0}} \frac{4}{(1-\cos \theta)(1+\cos \theta)}
\end{aligned}
$$

QCD in the final state
 R-ratio@NLO

$$
\begin{aligned}
\sigma_{q \bar{q} g}^{\mathrm{REAL}} & =C_{F} g_{s}^{2} \sigma_{q \bar{q}}^{\mathrm{Born}} \int \frac{d^{3} k}{2 k^{0}(2 \pi)^{3}} 2 \frac{p \cdot \bar{p}}{(p \cdot k)(\bar{p} \cdot k)} \\
& =C_{F} \frac{\alpha_{S}}{2 \pi} \sigma_{q \bar{q}}^{\mathrm{Born}} \int d \cos \theta \frac{d k^{0}}{k^{0}} \frac{4}{(1-\cos \theta)(1+\cos \theta)}
\end{aligned}
$$

Soft divergence Collinear divergence

$$
\begin{aligned}
& x_{1}=1-x_{2} x_{3}\left(1-\cos \theta_{23}\right) / 2 \\
& x_{2}=1-x_{1} x_{3}\left(1-\cos \theta_{13}\right) / 2 \\
& x_{1}+x_{2}+x_{3}=2 \\
& 0 \leq x_{1}, x_{2} \leq 1, \quad \text { and } \quad x_{1}+x_{2} \geq 1
\end{aligned}
$$

Divergences

$$
\begin{aligned}
& x_{1}=1-x_{2} x_{3}\left(1-\cos \theta_{23}\right) / 2 \\
& x_{2}=1-x_{1} x_{3}\left(1-\cos \theta_{13}\right) / 2 \\
& x_{1}+x_{2}+x_{3}=2 \\
& 0 \leq x_{1}, x_{2} \leq 1, \quad \text { and } \quad x_{1}+x_{2} \geq 1
\end{aligned}
$$

$$
x_{2}=\frac{2 E_{\bar{q}}}{\sqrt{s}}
$$

Why is $x_{1}=x_{2}=1$ the soft case?
$\sigma^{q \bar{q} g}=\frac{4 \pi^{2}}{3 s} f_{q}^{2} C_{F} \frac{\alpha_{s}}{2 \pi} \iint d x_{1} d x_{2} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}$
Integral diverges if $x_{1} \rightarrow 1$ or $x_{2} \rightarrow 1$ or $x_{1}, x_{2} \rightarrow 1$!

What happens now?

IR singularities

IR singularities arise when a parton is too soft or if two partons are collinear

- Infrared divergences arise from interactions that happen a long time after the creation of the quark/antiquark pair.
- When distances become comparable to the hadron size of ~ 1 Fermi, quasi-free partons of the perturbative calculation are confined/hadronized non-perturbatively.

How do we proceed with our calculation?

Cancellation of divergences

Divergent! Real
In practice: regularise both divergences (with either dimensional regularisation or mass regulator)

Cancellation of divergences

Divergent!
Real
In practice: regularise both
 divergences (with either dimensional regularisation or mass regulator)

Cancellation of divergences

Divergent!
Real
In practice: regularise both divergences (with either dimensional regularisation or mass regulator)

$$
\begin{aligned}
\sigma^{\mathrm{REAL}} & =\sigma^{\mathrm{Born}} C_{F} \frac{\alpha_{S}}{2 \pi}\left(\frac{2}{\epsilon^{2}}+\frac{3}{\epsilon}+\frac{19}{2}-\pi^{2}\right) \\
\sigma^{\mathrm{VIRT}} & =\sigma^{\mathrm{Born}} C_{F} \frac{\alpha_{S}}{2 \pi}\left(-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}-8+\pi^{2}\right)
\end{aligned}
$$

$$
\lim _{\epsilon \rightarrow 0}\left(\sigma^{\mathrm{REAL}}+\sigma^{\mathrm{VIRT}}\right)=C_{F} \frac{3}{4} \frac{\alpha_{S}}{\pi} \sigma^{\mathrm{Born}} \quad R_{1}=R_{0}\left(1+\frac{\alpha_{S}}{\pi}\right) \text { Finite! }
$$

KLN Theorem

Why does this work?

Kinoshita-Lee-Nauenberg theorem: Infrared singularities in a massless theory cancel out after summing over degenerate (initial and final) states

Physically a hard parton can not be distinguished from a hard parton plus a soft gluon or from two collinear partons with the same energy. They are degenerate states. A final state with a soft gluon is nearly degenerate with a final state with no gluon at all (virtual)
Hence, one needs to add all degenerate states to get a physically sound observable

Infrared safety

How can we make sure IR divergences cancel?

We need to pick observables which are insensitive to soft and collinear radiation. These observables are determined by hard, short-distance physics, with long distance effects suppressed by an inverse power of a large momentum scale.

Schematically for an IR safe observable:

$$
\mathcal{O}_{n+1}\left(k_{1}, k_{2}, \ldots, k_{i}, k_{j}, \ldots k_{n}\right) \rightarrow \mathcal{O}_{n}\left(k_{1}, k_{2}, \ldots k_{i}+k_{j}, \ldots k_{n}\right)
$$

whenever one of the $\mathrm{k}_{\mathrm{i}} / \mathrm{k}_{\mathrm{j}}$ becomes soft or k_{i} and k_{j} are collinear

Which observables are infrared safe?

- energy of the hardest particle in the event
- multiplicity of gluons
- momentum flow into a cone in rapidity and angle
- cross-section for producing one gluon with $\mathrm{E}>\mathrm{E}_{\min }$ and $\theta>\theta_{\min } \mathrm{NO}$
- jet cross-sections

Event shapes

Event shapes: describe the shape of the event, but are largely insensitive to soft and collinear branching

- widely used to measure α s
- measure colour factors
- test QCD
- learn about non-perturbative physics

pencil-like

Thrust

Event-shape example

$$
T=\max _{\overrightarrow{\hat{n}}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \overrightarrow{\hat{n}}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \quad \text { Su }
$$

Sum over all final state particles

Find axis n which maximises this projection
Noteby: if one of the partons emits a soft or collinear gluon the value of thrust is not changing. IRC safe

What happens in an $e^{+} e^{-} \rightarrow q \bar{q} g$ event?

Thrust

What happens in an $e^{+} e^{-} \rightarrow q \bar{q} g$ event?

$$
T=\max _{\overrightarrow{\hat{n}}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \overrightarrow{\hat{n}}\right|}{\sum_{i}\left|\vec{p}_{i}\right|} \quad \frac{1}{\sigma} \frac{d \sigma}{d T}=C_{F} \frac{\alpha_{S}}{2 \pi}\left[\frac{2\left(3 T^{2}-3 T+2\right)}{T(1-T)} \log \left(\frac{2 T-1}{1-T}\right)-\frac{3(3 T-2)(2-T)}{1-T}\right]
$$

Divergent for $\mathrm{T}=1$

Why?

$$
\frac{1}{\sigma_{0}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} T} \xrightarrow{T \rightarrow 1}-C_{F} \frac{\alpha_{S}}{2 \pi}\left[\frac{4}{(1-T)} \ln (1-T)+\frac{3}{1-T}\right]
$$

Large higher order terms of the form $\alpha_{S}^{N} \frac{\log ^{2 N-1}(1-T)}{1-T}$ need to be resummed.

Use either analytic resummation or the parton shower! See later!

Asymptotic freedom

How about the UV?

$$
R_{1}=R_{0}\left(1+\frac{\alpha_{S}}{\pi}\right) \quad \text { No divergences! }
$$

What happens at higher orders?

$$
R^{(2)}=R^{(0)}\left(1+\frac{\alpha_{S}}{\pi}+\left(\frac{\alpha_{S}}{\pi}\right)^{2}\left(c+\pi b_{0} \log \left(\frac{M_{\mathrm{UV}}^{2}}{Q^{2}}\right)\right)\right) \quad b_{0}=\frac{11 N_{c}-4 n_{f} T_{R}}{12 \pi}
$$

UV divergences don't cancel! We need renormalisation!
Renormalising the bare coupling we have:

$$
\alpha_{S}(\mu)=\alpha_{S}^{\mathrm{bare}}+b_{0} \log \left(\frac{M_{\mathrm{UV}}^{2}}{\mu^{2}}\right)\left(\alpha_{S}^{\mathrm{bare}}\right)^{2} \quad R_{2}^{\mathrm{ren}}\left(\alpha_{S}(\mu), \frac{\mu^{2}}{Q^{2}}\right)=R_{0}\left(1+\frac{\alpha_{S}(\mu)}{\pi}+\left[c+\pi b_{0} \log \frac{\mu^{2}}{Q^{2}}\right]\left(\frac{\alpha_{S}(\mu)}{\pi}\right)^{2}\right)
$$

Asymptotic freedom

How about the UV?

$$
R_{1}=R_{0}\left(1+\frac{\alpha_{S}}{\pi}\right) \quad \text { No divergences! }
$$

What happens at higher orders?

Finite but scale dependent!

Asymptotic freedom

$$
\begin{array}{rll}
b_{0}=\frac{11 N_{c}-2 n_{f}}{12 \pi}>0 & \Rightarrow \beta\left(\alpha_{S}\right)<0 & \text { in QCD } \\
b_{0}=-\frac{n_{f}}{3 \pi}>0 & \Rightarrow \beta\left(\alpha_{\mathrm{EM}}\right)>0 & \text { in QED }
\end{array}
$$

$$
\mu^{2} \frac{d \alpha}{d \mu^{2}}=\beta(\alpha)=-\left(b_{0} \alpha^{2}+b_{1} \alpha^{3}+b_{2} \alpha^{4}+\cdots\right)
$$

1-loop

$$
\beta\left(\alpha_{S}\right) \equiv \mu^{2} \frac{\partial \alpha_{S}}{\partial \mu^{2}}=-b_{0} \alpha_{S}^{2} \quad \Rightarrow \quad \alpha_{S}(\mu)=\frac{1}{b_{0} \log \frac{\mu^{2}}{\Lambda^{2}}}
$$

2-loop

$$
\alpha_{S}(\mu)=\frac{1}{b_{0} \log \frac{\mu^{2}}{\Lambda^{2}}}\left[1-\frac{b_{1}}{b_{0}^{2}} \frac{\log \log \mu^{2} / \Lambda^{2}}{\log \mu^{2} / \Lambda^{2}}\right]
$$

Running of α_{s}

Many measurements at different scales all leading to very consistent results once evolved to the same reference scale, M_{z}.

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\downarrow \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right)
\end{gathered}
$$

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\downarrow \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
\downarrow
\end{gathered}
$$

Going back to the Master formula

$$
\begin{aligned}
& \sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
& \sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
& \sum_{a, b} \int d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
\end{aligned}
$$

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
\underset{\square}{\boldsymbol{\downarrow}}{ }_{\text {??? }} \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{F S} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
\end{gathered}
$$

QCD improved parton model

The parton model predicts scaling. Experiment shows:

Scaling violation

QCD improved parton model

The parton model predicts scaling. Experiment shows:

Scaling violation

What are we missing?

QCD improved parton model

Given the computation of R at NLO, we expect IR divergences
We need to regulate these, and hope that they cance!!

$$
\left.\frac{d^{2} \hat{\sigma}}{d x d Q^{2}}\right|_{F_{2}} \equiv \hat{F}_{2}^{q}
$$

Soft and UV divergences cancel but a collinear divergence arises:

$$
\hat{F}_{2}^{q}=e_{q}^{2} x\left[\delta(1-x)+\frac{\alpha_{s}}{4 \pi} P_{q q} \log \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}(x)\right] \quad \hat{F}_{2}^{g}=e_{q}^{2} x\left[0+\frac{\alpha_{s}}{4 \pi} P_{q g} \log \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{g}(x)\right]
$$

QCD improved parton model

Soft and UV divergences cancel but a collinear divergence arises:

$$
\hat{F}_{2}^{q}=e_{q}^{2} x[\delta(1-x)+\frac{\alpha_{s}}{4 \pi} P_{q q} \log \underbrace{\left.\frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}(x)\right] \quad \hat{F}_{2}^{g}=e_{q}^{2} x\left[0+\frac{\alpha_{s}}{4 \pi} P_{q 8} \log \frac{Q^{2}}{m_{g}^{2}}\right.}_{\text {IR cut-off }}+C_{2}^{g}(x)]
$$

What are functions $P_{q q}$ and $P_{q g}$?
Splitting functions $P_{i j}(x)$: they give the probability of parton j splitting into parton i which carries momentum fraction x of the original parton

Altarelli-Parisi Splitting functions

Branching has a universal form given by the Altarelli-Parisi splitting functions

$$
P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right], \quad P_{q \rightarrow g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right] .
$$

$$
P_{g \rightarrow q q}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g \rightarrow g g}(z)=C_{A}\left[z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
$$

Altarelli-Parisi Splitting functions

Branching has a universal form given by the Altarelli-Parisi splitting functions

$$
P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right], \quad P_{q \rightarrow g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right] .
$$

$$
P_{g \rightarrow q q}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g \rightarrow g g}(z)=C_{A}\left\lceil z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
$$

These functions are universal for each type of splitting

What does this collinear divergence mean?

Residual long-distance physics, not disappearing once real and virtual corrections are added. These appear along with the universal splitting functions.

Can a physical observable be divergent?
No, as the physical observable is the hadronic structure function:

$$
F_{2}^{q}\left(x, Q^{2}\right)=x \sum_{i=q, \bar{q}} e_{q}^{2}\left[f_{i, 0}(x)+\frac{\alpha_{S}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{i, 0}(\xi)\left[P_{q q}\left(\frac{x}{\xi}\right) \log \frac{Q^{2}}{m_{g}^{2}}+C_{2}^{q}\left(\frac{x}{\xi}\right)\right]\right]
$$

We can absorb the dependence on the IR cutoff into the PDF:

$$
f_{q}\left(x, \mu_{f}\right) \equiv f_{q, 0}(x)+\frac{\alpha_{S}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{q, 0}(\xi) P_{q q}\left(\frac{x}{\xi}\right) \log \frac{\mu_{f}^{2}}{m_{g}^{2}}+z_{q q}
$$

Renormalised PDFs!

Factorisation

Structure function is a measurable object and cannot depend on scale at all orders (renormalisation group invariance)

$$
F_{2}^{q}\left(x, Q^{2}\right)=x \sum_{i=q, \bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d \xi}{\xi} f_{i}\left(\xi, \mu_{f}^{2}\right)\left[\delta\left(1-\frac{x}{\xi}\right)+\frac{\alpha_{S}\left(\mu_{r}\right)}{2 \pi}\left[P_{q q}\left(\frac{x}{\xi}\right) \log \frac{Q^{2}}{\mu_{f}^{2}}+\left(C_{2}^{q}-z_{q q}\right)\left(\frac{x}{\xi}\right)\right]\right]
$$

Long distance physics is universally factorised into the PDFs, which now depend on μ_{f}. PDFs are not calculable in perturbation theory. PDFs are universal, they don't depend on the process.

Factorisation scale μ_{f} acts as a cut-off, emissions below μ_{f} are included in the PDFs.

DGLAP

We can't compute PDFs in perturbation theory but we can predict their evolution in scale:

$$
\mu^{2} \frac{\partial f\left(x, \mu^{2}\right)}{\partial \mu^{2}}=\int_{x}^{1} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} P(z) f\left(\frac{x}{z}, \mu^{2}\right)
$$

Altarelli, Parisi; Gribov-Lipatov; Dokshitzer '77

Universality of splitting functions: we can measure pdfs in one process and use them as an input for another process
$P_{a b}\left(\alpha_{S}, z\right)=\frac{\alpha_{S}}{2 \pi} P_{a b}^{(0)}(z)+\left(\frac{\alpha_{S}}{2 \pi}\right)^{2}{\underset{\text { LO }}{\text { (1974) }}}_{P_{a b}^{(1)}(z)+\left(\frac{\alpha_{S}}{2 \pi}\right)^{3} P_{a b}^{(2)}(z)+\ldots . .}^{\uparrow}$
Splitting functions improved in perturbation theory!
LO Dokshitzer; Gribov, Lipatov; Altarelli, Parisi (1977)
NLO Floratos,Ross,Sachrajda; Floratos, Lacaze, Kounnas Gonzalez-Arroyo,Lopez,Yndurain; Curci,Furmanski Petronzio, (1981)

PDF evolution

PDF extraction

We can't compute PDFs in perturbation theory but we can extract them from data, and use DGLAP equations to evolve them to different scales.

- Choose experimental data to fit and include all info on correlations

Theory settings: perturbative order, EW corrections, intrinsic heavy quarks, α_{s}, quark masses value and scheme

- Choose a starting scale Q_{0} where pQCD applies
- Parametrise independent quarks and gluon distributions at the starting scale
- Solve DGLAP equations from initial scale to scales of experimental data and build up observables
- Fit PDFs to data
- Provide PDF error sets to compute PDF uncertainties

Data for PDF determination

LHC kinematics

How can we tell which x data probes?

For the production of a particle of mass M :

$$
\begin{aligned}
M^{2} & =x_{1} x_{2} S=x_{1} x_{2} 4 E_{\text {beam }}^{2} \\
y & =\frac{1}{2} \log \frac{x_{1}}{x_{2}} \\
x_{1} & =\frac{M}{\sqrt{S}} e^{y} \quad x_{2}=\frac{M}{\sqrt{S}} e^{-y}
\end{aligned}
$$

See exercises!

Data complementarity

From. M. Ubiali

Modern PDFs

Different collaborations, predictions usually computed with different PDFs to extract an uncertainty envelope.

Impact of PDF uncertainties

Progress in PDFs!

Parton luminosities and collider reach

$\sigma(S)=\sum_{i, j} \int d \tau\left[\frac{1}{S} \frac{d L_{i j}}{d \tau}\right]\left[\hat{s} \hat{\sigma_{i j}}\right]$
$\tau \frac{d L_{i j}}{d \tau}=\int_{0}^{1} d x_{1} d x_{2} x_{1} f_{i}\left(x_{1}, \mu_{F}^{2}\right) \times x_{2} f_{j}\left(x_{2}, \mu_{F}^{2}\right) \delta\left(\tau-x_{1} x_{2}\right)$

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\downarrow \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right)
\end{gathered}
$$

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\downarrow \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
\downarrow
\end{gathered}
$$

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\downarrow \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
\underset{a}{\downarrow} \sum_{a, b} d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
\end{gathered}
$$

Going back to the Master formula

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}(\hat{s}) \\
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{P S} f_{a}\left(x_{1}\right) f_{b}(x) \hat{\sigma}\left(\hat{s}, \mu_{R}\right) \\
\underset{a}{\boldsymbol{\downarrow}, b} \int^{\downarrow} d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right)
\end{gathered}
$$

End of Lecture 2

