Collider Phenomenology Eleni Vryonidou

STFC school, Oxford 9-16/9/22

Plan for the lectures

- Basics of collider physics
- Basics of QCD
 - DIS and the Parton Model
 - Higher order corrections
 - Asymptotic freedom
 - QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators •
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Plan for the lectures

- Basics of collider physics
- Basics of QCD
 - DIS and the Parton Model
 - Higher order corrections
 - Asymptotic freedom
 - QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Fixed order computations Going to higher orders

NNLO N3LO

section HEP school 2022

Fixed order computations Going to higher orders x_1E x_2E $\sum_{a,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s},\mu_F,\mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP school 2022 functions functions

Fixed order computations Going to higher orders 0000 $\begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} Y(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} Y(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \xrightarrow{p} \\ \xrightarrow{p} \\ P \xrightarrow{p} \\ \xrightarrow{p} \\ P \xrightarrow{p$ x_2E $\sum_{a,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s},\mu_F,\mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP school 2022 functions functions

Fixed order computations Going to higher orders 0000 $\begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} Y(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} Y(S, \mu_F, \mu_R) \\ \rho \end{array} \xrightarrow{p} \\ P \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \end{array} \xrightarrow{p} \\ P \xrightarrow{p} \\ \xrightarrow{p} \\ P \xrightarrow{p} \\ \xrightarrow{p} \\ P \xrightarrow{p$ $\sum_{ma,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1, \mu_F) f_b(x_2, \mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s}, \mu_F, \mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{} \hat{\sigma}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP school 2022 functions functions

Fixed order computations Going to higher orders 9000 $\begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ p \end{array} \end{array} \xrightarrow{p} \begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_2 E} X(S, \mu_F, \mu_R) \\ p \end{array} \end{array}$ $\sum_{a,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1, \mu_F) f_b(x_2, \mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s}, \mu_F, \mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP school 2022 functions functions

Fixed order computations Going to higher orders 9000. 19995 $p \xrightarrow{\sigma_{ab}} X(S, \mu_F, \mu_R) \xrightarrow{\rho} arton-level cross section$ $\sum_{a,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s},\mu_F,\mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP school 2022 functions functions

Fixed order computations Going to higher orders 2000 0000 1000t $\begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ p \end{array} \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ y \\ y \end{array} \right) \xrightarrow{x_1 E} X(S, \mu_F, \mu_R) \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow{p} \left(\begin{array}{c} x_2 E \\ p \end{array} \right) \xrightarrow$ $\sum_{a,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s},\mu_F,\mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP school 2022 functions functions

Fixed order computations Going to higher orders 2000 0000 000 $\begin{array}{c} \hat{\sigma}_{ab} \xrightarrow{x_1 E} X(s, \mu_F, \mu_R) \\ P \end{array} \xrightarrow{\sigma_{ab} X(s, \mu_F, \mu_R)} P^{\text{Parton-level cross section}} \end{array}$ $\sum_{a,b} \int dx_1 dx_2 d\Phi_{FS} f_a(x_1,\mu_F) f_b(x_2,\mu_F) \hat{\sigma}_{ab} \xrightarrow{}_X (\hat{s},\mu_F,\mu_R)$ $\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right) \xrightarrow{}$ $\hat{\sigma}_{ab \to X}(\hat{s}, \mu_{I})$ N3LO NLO NNLO LO a,bParton density Parton-level cPoase-space Parton density section HEP school 2022 functions functions

Fixed order computations Going to higher orders

We need to add real and virtual corrections to the hard scattering dealing with singularities

Relatively straightforward at NLO (automated), complicated at NNLO (tens of $x_1 dx_2 d$ froe fases), lextremely hard at XIX (fl. ϕ_A hand fille of factor sees fk (rown)_F) $\hat{\sigma}_{ab o X}(\hat{s}, \mu_B)$

a, b

Phase-space integran Vryonidou Parton density functions

Parton-level cPoase-space section HEP school 2022

Parton density functions

Difficulties:

- Antenna's)
- Loop calculations tough and time consuming
- Divergences: Both real and virtual corrections are divergent
- More channels, more phase space integrations

Born

✤ Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS,

Difficulties:

- Antenna's)
- Loop calculations tough and time consuming
- Divergences: Both real and virtual corrections are divergent
- More channels, more phase space integrations

Born

Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS,

STFC HEP school 2022

Difficulty

Difficulties:

- Antenna's)
- Loop calculations tough and time consuming
- Divergences: Both real and virtual corrections are divergent
- More channels, more phase space integrations

Virtuals and Reals are each divergent and subtraction scheme need to be used (Dipoles, FKS,

How to deal with NLO in practice?

NLO corrections involve divergences: Divergences are bad for numerical computations

Subtraction:

$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \left[\mathcal{V} \right]$$

 $\int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}$ $\mathcal{V} + \int d\Phi^{(1)} S + \int d\Phi^{(n+1)} [\mathcal{R} - S]$ finite finite

Subtraction techniques at NLO

Dipole subtraction

- Catani, Seymour hep-ph/9602277
- Automated in MadDipole, Sherpa, HELAC-NLO **FKS** subtraction
- Frixione, Kunszt, Signer hep-ph/9512328
- Automated in MadGraph5_aMC@NLO and Powheg/Powhel

Detailed discussion of these could be another lecture course!

7

Example: top pair production

- Which observables do we compute at NLO?
- **Total cross-section**
- pT of a top quark
- pT of top pair
- pT of hardest jet
- tt invariant mass

It is certain observables which are computed at NLO

Example: top pair production

Which observables do we compute at NLO? Total cross-section '

- pT of a top quark
- pT of top pair
- pT of hardest jet
- tt invariant mass

It is certain observables which are computed at NLO

Example: top pair production

Which observables do we compute at NLO?

Total cross-section

- pT of a top quark f
- pT of top pair
- pT of hardest jet
- tt invariant mass

It is certain observables which are computed at NLO

Example: top pair production

Which observables do we compute at NLO?

Total cross-section

- pT of a top quark ¶
- pT of top pair
- pT of hardest jet
- tt invariant mass

It is certain observables which are computed at NLO

Example: top pair production

Which observables do we compute at NLO?

Total cross-section

- pT of a top quark ¶
- pT of top pair
- pT of hardest jet
- tt invariant mass

It is certain observables which are computed at NLO

Example: top pair production

Which observables do we compute at NLO?

Total cross-section

- pT of a top quark •
- pT of top pair
- pT of hardest jet
- tt invariant mass

It is certain observables which are computed at NLO

Need for higher-orders Why is this so important?

Reminder:

Level of experimental precision demands precise theoretical predictions

Theorists are not simply having fun!!!

Higher order computations

Complexity rises a lot with each N!

STFC HEP school 2022

Status of hard scattering cross-sections

- LO automated
- NLO automated

NNLO: Several processes known (VV production, top pair production, all $2 \rightarrow 1$ processes)

NNNLO: only a handful of processes!

- Higgs in gluon fusion (Anastasiou et al, arXiv:1602.00695)
- Higgs in VBF (Dreyer et al, arXiv:1811.07906)
- Higgs in bottom annihilation (Duhr et al, arXiv:1904.09990)
- Drell-Yan (Duhr et al, arXiv:2001.07717, 2007.13313)

STFC HEP school 2022

Progress in higher-order computations

TIMELINE FOR NNLO

A. Huss, QCD@LHC-X 2020

 $\hat{\sigma}_{ab\to X}(\hat{s}, \mu_F, \mu_R)$ Parton-level cross section

Hard scattering cross-section **Perturbative expansion**

Eleni Vryonidou

$$^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots \right)$$
N3LO

Improved accuracy and precision

Dilepton production

arXiv:2203.06730

STFC HEP school 2022

Uncertainties in theory predictions

Vary the renormalisation and factorisation scale

Typically pick some central scale μ_0 and vary the scale up and down by a factor of 2

 μ/m_H

How do we actually compute all of these?

Theory

Eleni Vryonidou

Invisibles school 2022

Experiment

Focusing on LO How to compute a LO cross-section

Example: 3 jet production in pp collisions

- 1. Know the Feynman rules (SM or BSM)
- 2. Find all possible Subprocesses

97 processes with 781 diagrams generated in 2.994 s

Total: 97 processes with 781 diagrams

- Compute the amplitude 3.
- Compute $|M|^2$ for each subprocess, sum over spin and colour 4.
- Integrate over the phase space 5.

$$\sigma = \frac{1}{2s} \int |\mathcal{M}|^2 d\Phi(n)$$

STFC HEP school 2022

LO calculation of a cross-section

- How many subprocesses?
- Amplitude computation (Feynman diagrams)
- Square the amplitude, sum over spin and colour
- Integrate over the phase space
- Complexity increases with
- number of particles in the final state
- terms of leading couplings: see tutorial)

Difficulty

number of Feynman diagrams for the process (typically organise these in

STFC HEP school 2022

Structure of an automated MC generator

- Input Feynman rules
- Define initial and final state 11_
- III. Automatically find all subprocesses
- IV. Compute matrix element (including tricks like helicity amplitudes) Integrate over the phase space by optimising the PS V.
- parametrisation and sampling
- VI. Unweight and write events in the Les Houches format

Structure of an automated MC generator

- Input Feynman rules
- Define initial and final state 11_
- III. Automatically find all subprocesses
- IV. Compute matrix element (including tricks like helicity amplitudes) Integrate over the phase space by optimising the PS V.
- parametrisation and sampling
- VI. Unweight and write events in the Les Houches format

Next: Shower+Hadronisation Detector simulation and reconstruction

Output of LO MC generators Les houches events Example: gg>ZZ

<event></event>	>									
4	0 +1	.121100	0e+0	0 1.8	9058500e+02 7.81859000	e-03 1.15931300e-01			_	
_ Г	21 -1	0	0	502	501 +0.0000000000e+00	+0.0000000000e+00 +4.6570159241e+	01 4.6570159241e+01	0.0000000000e+00	0.0000e+00	1.0000e+00
	21 -1	0	0	501	502 -0.0000000000e+00	-0.000000000e+00 -1.9187776299e+	02 1.9187776299e+02	0.0000000000e+00	0.0000e+00	1.0000e+00
	23 1	1	2	0	0 +1.3441082214e+01	+1.3065682927e+01 -5.1959303141e+	01 1.0661295577e+02	9.1187600000e+01	0.0000e+00	1.0000e+00
. L	23 1	1	2	0	0 <u>-1.3441082214e+01</u>	-1.3065682927e+01 -9.3348300610e-	01 1.3183496646e+02	9.1187600000e+01	0.0000e+00	1.0000e+00
<td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	>									
PI	Лi					IVIomenta		Mass		

All Information needed to pass to parton shower is included in the event

Νυπσπα

IVIASS

STFC HEP school 2022

Available public MC generators

Matrix element generators (and integrators):

- MadGraph/MadEvent
- Comix/AMEGIC (part of Sherpa)
- HELAC/PHEGAS
- Whizard
- CalcHEP/CompHEP

Is Fixed Order enough?

at the LHC

Fixed order computations can't give us the full picture of what we see

 μ_F

Is Fixed Order enough?

Fixed order computations can't g at the LHC

Fixed order computations can't give us the full picture of what we see

I. High-Q² Scattering 3. Hadronization

I. High-Q² Scattering

3. Hadronization

I. High-Q² Scattering 3. Hadronization 1 24 14

Is fixed order enough?

- Fixed order calculations involve only a few partons
- Not what we see in detectors
- Need Shower and Hadronisation

23

A multiscale story

High- Q^2 scattering: process dependent, systematically improvable with higher order corrections, where we expect new physics

Parton Shower: QCD, universal, soft and collinear physics

Hadronisation: low Q^2 , universal, based on different models

Underlying event: low Q^2 , involves multiple interactions

Parton Shower What does the parton shower do/should do?

- Dress partons with radiation with an arbitrary number of branchings
- Preserve the inclusive cross-section: unitary
- Needs to evolve in scale from Q~1TeV (hard scattering) down to ~GeV

Basics of parton shower Collinear factorisation

- This kind of splitting should be described by a branching probability
- The parton shower will quantify the probability of emission

• Time scale associated with splitting much longer than the one of the hard scattering

Basics of parton shower Collinear factorisation

- This kind of splitting should be described by a branching probability
- The parton shower will quantify the probability of emission

貒

Collinear factorisation:

 $|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_{a \to bc}(z)$

Time scale associated with splitting much longer than the one of the hard scattering

$$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_n$$

- t is the evolution variable
 - t tends to zero in the collinear limit (this factor is singular)

• $\oint azimuthal angle$ $P_{q \to qg}(z) = C_F \left[\frac{1+a_z}{1-z}\right], \quad P_{q \to gq}(z) = C_F \left[\frac{1+(1-z)^2}{z}\right].$ The branching probability has the same form for all quantities $\propto \theta^2$

- transverse momentum $k_{\perp} \sim z^2 (1-z)^2 \theta^2 E^2$
- invariant mass $Q^2 \sim z(1-z)\theta^2 E^2$

Eleni Vryonidou

n and splitting functions $e_{a \to bc}(z)$ a θ

- $\sum_{P_{g \to qq}(z) = T_R} f_{z} = \sum_{x \to q} f_$

$$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_n$$

- t is the evolution variable
 - t tends to zero in the collinear limit (this factor is singular) lacksquare

• $\oint azimuthal angle P_{q \to qg}(z) = C_F \left[\frac{1+(1-z)^2}{1-z} \right], \quad P_{q \to gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right].$ The branching probability has the same form for all quantities $\propto \theta^2$

- transverse momentum $k_{\perp} \sim z^2 (1-z)^2 \theta^2 E^2$
- invariant mass $Q^2 \sim z(1-z)\theta^2 E^2$

Eleni Vryonidou

n and splitting functions a θ

- $z \operatorname{energy}_{R \neq qq(z)} = Q_R [z \neq (1 z)], \text{ for } p_{g \to gg(z)} = C_A [z(1 z)], \text{ for } p_{g \to gg(z)} = C_A$

 $t \in \{\theta^2, k_1^2, Q^2\}$

$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_{a \to bc}(z)$ **Altarelli-Parisi Splitting** as functions ching probability' is actually a singular factor, so one will need to make sense precisely of this definition. * At the leading contribution to the (n+1)-body cross section the Altarelli-Parisi Branching has a universal former give to the Altarelli Parisi splitting functions (as we saw in DIS) M_n $*^a$ P_{a-} $P_{q \to qg}(z) = C_F \left[\frac{1+z^2}{1-z} \right], \qquad P_{q \to gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right].$

 $P_{g \to gg}(z) = C_A \left| z(1-z) + \frac{z}{1-z} + \frac{1-z}{z} \right|,$ $q \rightarrow gq(z)$ EleniQryonidou

$|\mathcal{M}_{n+1}|^2 d\Phi_{n+1} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_s}{2\pi} P_{a \to bc}(z)$ **Altarelli-Parisi Splitting** as **functions** ching probability' is actually a singular factor, so one will need to make sense precisely of this definition. At the leading rontribution to the (n+1)-body cross section the Altarelli-Parisi Branching has a universal sport of the prover why dasie Altarelli Parisi splitting functions (as we saw in DIS) M_n $*^a$ C_c P_{q-} $P_{q \to qg}(z) = C_F \left[\frac{1+z^2}{1-z} \right], \qquad P_{q \to gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right].$ $P_{q \to qq}(z) =$

$$P_{g \to gg}(z) = C_A \left[z(1-z) + \frac{z}{1-1} \frac{1-z}{\text{These functions are un}} \right]$$

$$\rightarrow gg(z) \text{Eleni(Pryononidou)} \left[\frac{1+(1-z)^2}{1-1} \right].$$
ST

$$T_R \left[z^2 + (1-z)^2 \right], \qquad P_{g \to gg}(z) = C_A \left[z(1-z) + \frac{z}{1-z} + \frac{1-z}{z} \right]$$

niversal for each type of splitting

 $|\mathcal{M}_{n+2}|^2 d\Phi_{n+2} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{a\to bc}(z) \times \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{b\to de}(z')$

We $|\phi_{an+g}|^2 = |t_{n}|^2 |t_{n}$ Iterative sequence of emissions which does not depend on the history (Markov Chain)

 $|\mathcal{M}_{n+2}|^2 d\Phi_{n+2} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{a\to bc}(z) \times \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{b\to de}(z')$

We $|\phi_{an}| g_{en}^{2}$ where $|t_{n}| s^{2} f_{en} a_{n}^{dt} a_{n} d_{n} s_{n}^{dt} h_{n} s_{n} h_{n} h_$ Iterative sequence of emissions which does not depend on the history (Markov Chain)

Eleni Vryonidou

 $|\mathcal{M}_{n+2}|^2 d\Phi_{n+2} \simeq |\mathcal{M}_n|^2 d\Phi_n \frac{dt}{t} dz \frac{d\phi}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{a\to bc}(z) \times \frac{dt'}{t'} dz' \frac{d\phi'}{2\pi} \frac{\alpha_{\rm S}}{2\pi} P_{b\to de}(z')$

We $|\phi_{an}| g_{en}^{2}$ where $|t_{n}| s^{2} f_{en} a_{n}^{dt} a_{n} d_{n} s_{n}^{dt} h_{n} s_{n} h_{n} h_$ Iterative sequence of emissions which does not depend on the history (Markov Chain)

Multiple emissions How does this change with multiple emissions?

- Q is the hard scale and Q_0 is an infrared cut off (separating non-perturbative regime)

$$n\left(\frac{\alpha_{\rm S}}{2\pi}\right)^k \log^k(Q^2/Q_0^2)$$

• Each power of α_{c} comes with a logarithm (breakdown of perturbation theory when large)

Basics of PS What we saw so far

- Collinear factorisation allows subsequent branchings from the hard process scale down to the non-perturbative regime
- Different legs and subsequent emissions are uncorrelated
- No interference effects
- Captures leading contributions
 - Resummed calculation
 - Bridge between fixed order and hadronisation

Sudakov form factor

scale *t* if it has not branched at t' > t

The probability of branching between scale t and t + dt (with no emission before) is:

$$dp(t) = \sum_{bc} \frac{dt}{t} \int_{dz} dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z)$$

collity between scale *t* and *t* + *dt* is 1 - *dp(t)*
mission between *Q*² and *t* is:

$$\Delta(Q^{2}, t) = \prod_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{2\pi} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} \frac{dt_{k}}{2\pi} \frac{d\phi}{2\pi} \frac{$$

The no-splitting proba

The probability of no

exp

$$dp(t) = \sum_{bc} \frac{dt}{t} \int_{dz} dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z)$$
ability between scale t and $t + dt$ is $1 - dp$
emission between Q^{2} and t is:
$$\Delta(Q^{2}, t) = \prod_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{t_{k}} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{dt_{k}}{2\pi} \int_{dz} \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{k} \left[1 - \sum_{bc} \frac{d\phi}{2\pi} \frac{d\phi}$$

We need to take the survival probability into account, i.e. a parton can split at

Sudakov form factor

- scale t if it has not branched at t' > t
- The probability of branching between scale t and t + dt (with no emission before) is:

$$dp(t) = \sum_{bc} dt t \int dz dt \frac{d\phi}{2\pi 2\pi} P_{a \to bc}(z)$$

collection between scale t and $t + dt$ is $1 - dp(t)$
mission between Q_{a}^{2} and t is:

$$\Delta(Q^{2}, t) = \prod_{k} \left[1 - \sum_{bc} dt_{k} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \begin{bmatrix} 1 - \sum_{bc} dt_{k} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} dt_{k} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \begin{bmatrix} 1 - \sum_{bc} dt_{k} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \end{bmatrix} = \exp\left[-\int_{t}^{Q^{2}} dp(t') \right] t'$$

- The no-splitting proba
- The probability of no e

exp

$$dp(t) = \sum_{bc} dt t \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z)$$
g probability between scale t and $t + dt$ is $1 - dp(t)$
v of no emission between $\sum_{c} Q_{c}^{2}$ and t is:

$$\Delta(Q^{2}, t) = \prod_{k} \left[1 - \sum_{bc} dt_{k} \int dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \sum_{c} \left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] = \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z) \right] + \exp\left[-\sum_{bc} \int_{t}^{Q^{2}} dt' dz \frac{d\phi}{2\pi} \frac{$$

We need to take the survival probability into account, i.e. a parton can split at

STFC HEP school 2022

facto

Sudakovs

- The Sudakov is used to create the branching tree of a parton The probability of k ordered splittings form a leg at given scale is
 - $dP_1(t_1) = \Delta(Q^2, t_1) dp(t_1) \Delta(t_1, Q_0^2),$ $dP_2(t_1, t_2) = \Delta(Q^2, t_1) dp(t_1) \Delta(t_1, t_2) dp(t_2) \Delta(t_2, Q_0^2) \Theta(t_1 - t_2)$ $dP_k(t_1, ..., t_k) = \Delta(Q^2, Q_0^2) \prod^k dp(t_l) \Theta(t_{l-1} - t_l)$

with no emission probability (before or after)

貒

The shower selects the t_i scales for the splitting randomly but weighted

Unitarity

The parton shower is unitary Sum of all possibilities should be 1. Probability of k ordered splittings: $l_{l=1}^{k}$

 $dP_k(t_1, ..., t_k) = \Delta(Q^2, Q_0^2) \prod_{k=1}^{k}$ Integrating this gives us: $P_{k} \equiv \int dP_{k}(t_{\mp}, \cdot) \cdot dP_{k}(t_{\mp}, \Delta(\mathcal{Q}_{k}^{2}), \mathcal{Q}_{\mathcal{Q}}^{2}) \int_{\mathcal{R}} \frac{1}{\mathcal{Q}^{2}} \int_{\mathcal{R}} \frac{1}{\mathcal{Q}^$

Summing over all possible numbers of emissions (0 to ∞):

$$\sum_{k=0}^{\infty} P_k = \Delta(Q^2, Q_0^2) \sum_{k=0}^{\infty} \frac{1}{k!} \left[\int_{Q_0^2}^{Q^2} dp(t) \right]^k = \Delta(Q^2, Q_0^2) \exp\left[\int_{Q_0^2}^{Q^2} dp(t) \right] = 1 \quad = 1$$
$$\sum_{k=0}^{\infty} P_k = \Delta(Q^2, Q_0^2) \sum_{k=0}^{\infty} \frac{1}{k!} \left[\int_{Q_0^2}^{Q^2} dp(t) \right]^k = \Delta(Q^2, Q_0^2) \exp\left[\int_{Q_0^2}^{Q^2} dp(t) \right] = 1$$

Eleni Vryonidou

$$\int_{=1}^{1} dp(t_l) \Theta(t_{l-1} - t_l)$$

$$\oint_{Q_0^2}^{Q^2} \frac{1}{k!} dp \left(\oint_{Q_0^2}^{Q^2} dp(t) \not k = 0 \forall k = 0, 1, \dots \right)$$

Unitarity

The parton shower is unitary Sum of all possibilities should be 1. Probability of k ordered splittings: $l_{l=1}^{k}$

 $dP_k(t_1, ..., t_k) = \Delta(Q^2, Q_0^2) \prod_{k=1}^{k}$ Integrating this gives us: $P_{k} \equiv \int dP_{k}(t_{\mp}, \int, dP_{k}(t_{\mp}, \Delta(\mathcal{Q}_{k}^{2}), \mathcal{Q}_{\mathcal{Q}}^{2}) \int_{k}^{1} \mathcal{Q}^{2}(\mathcal{Q}_{k}^{2}, \mathcal{Q}^{2}) \int_{k}^{1} \mathcal{Q}^{2}(\mathcal{Q}_{k}^{2}, \mathcal{Q}^{2}) \int_{k}^{1} \mathcal{Q}^{2}(\mathcal{Q}_{k}^{2}, \mathcal{Q}^{2}) \int_{k}^{1} \mathcal{Q}^{2}(\mathcal{Q}_{k}^{2}, \mathcal{Q}^{2}) \int_{k}^{1} \mathcal{Q}^{2}(\mathcal{Q}^{2}, \mathcal{Q}^{2}) \int_{k}^{1} \mathcal{Q}^{2}$

Summing over all possible numbers of emissions (0 to ∞):

$$\sum_{k=0}^{\infty} P_k = \Delta(Q^2, Q_0^2) \sum_{k=0}^{\infty} \frac{1}{k!} \left[\int_{Q_0^2}^{Q^2} dp(t) \right]^k = \Delta(Q^2, Q_0^2) \exp\left[\int_{Q_0^2}^{Q^2} dp(t) \right] = 1$$
$$\sum_{k=0}^{\infty} P_k = \Delta(Q^2, Q_0^2) \sum_{k=0}^{\infty} \frac{1}{k!} \left[\int_{Q_0^2}^{Q^2} dp(t) \right]^k = \Delta(Q^2, Q_0^2) \exp\left[\int_{Q_0^2}^{Q^2} dp(t) \right] = 1$$

Eleni Vryonidou

$$\prod_{l=1}^{n} dp(t_l) \Theta(t_{l-1} - t_l)$$

$$\oint_{Q_0^2}^{Q^2} \frac{1}{k!} dp \left(\oint_{Q_0^2}^{Q^2} dp(t) \right)_{k=0}^{k} dp(t) dp($$

Probability is conserve

Evolution parameter in parton shower

A parton shower is constructed:

- Within the simplest collinear approximation, the splitting functions are universal, and fully factorized from the "hard" cross section
- Within the simplest approximation, decays are independent (apart from being ordered in a decreasing sequence of scales)

Other variables can be used as evolution parameter:

- θ : HERWIG
- Q^2 : PYTHIA ≤ 6.3 , SHERPA.
- p_{\perp} : PYTHIA \geq 6.4, ARIADNE, Catani–Seymour showers.
- \tilde{q} : Herwig++.

- $\frac{\mathrm{d}\theta^2}{\theta^2} \sim \frac{\mathrm{d}Q^2}{Q^2} \sim \frac{\mathrm{d}p_{\perp}^2}{p_{\perp}^2} \sim \frac{\mathrm{d}\tilde{q}^2}{\tilde{q}^2} \sim \frac{\mathrm{d}t}{t}$

- Same collinear behaviour, differences in the soft limit
 - STFC HEP school 2022

Ordered branchings Angular ordering

Shower is based on ordered splittings $t_1 \gg t_2 \gg t_3 \gg t_4$ and $t_2 \gg t'_2$

$\begin{array}{ll} \mbox{Emission with smaller and smaller angles} \\ \theta_1 > \theta_2 > \theta_3 & \theta > \theta_4 \end{array}$

Inside the cones partons emit as independent charges, outside radiation is coherent as if coming directly from the initial colour charge

Hadronisation

- Colourless hadrons observed in detectors, not partons.
- \bullet
- Requires non perturbative input
- Two models: cluster and string \bullet

Color-singlet parton pairs end up "close" in phase space. This is called preconfinement. Involves collecting $q\bar{q}$ pairs into color-singlet clusters.

Cluster hadronisation

Hadronisation describes creation of hadrons in QCD at low scales where $\alpha_{s} \sim O(1)$

Create strings from color string, with gluons "stretching the string" locally. It uses nonperturbative insights

String hadronisation

Hadronisation String vs Cluster

energy-momentum pictur

parameters flavour composition

parameters

Sjöstrand, Durham '09

	PYTHIA	HERWIG			
	string	cluster			
re	powerful	simple			
	predictive	unpredictive			
		many			
	few	many			
	few messy	many simple			
	few messy unpredictive	many simple in-between			

Summary: Parton shower

- - Predictions become exclusive.
 - General-purpose, process-independent tools
 - resummed prediction
 - Similar ideas can be used for the initial state shower (need to account for PDFsdeconstruction of the DGLAP evolution, **backwards evolution**)
- Move to hadronisation at a cut off at which perturbative QCD can't be trusted
 - Hadronisation is also universal and independent of the collider energy

A parton shower dresses partons with radiation such that the sum of probabilities is one.

Based on collinear factorisation and build around the Sudakov form factors provide a

• Full description starting from hard scattering, shower and hadronisation (also underlying event)

Parton shower programs

	Current release series	Hard matrix elements	Shower algorithms	NL OIPI atching Haultöetzateog ir		Shopper		
H7	Herwig 7	Internal, libraries, event files	QTilde, Dipoles	Internally Eikonal automated	Climisternally (Suttorgs)ted	Fressonal	Clusters, (Strings)	Yes
	Pythia 8	Internal, event files	Pt ordered, DIRE,VINCIA	Intersteaveal	Internal, ME via Strings event files	Herwig LHE file in AG5	and Pythia s e.g. prod aMGings	use uced _{Yes}
A A A A A A A A A A A A A A A A A A A	Sherpa 2	Internal, libraries	CSShower, DIRE	Internally Eikonal automated	Clusteenally Strongsated	Effessonal	Clusters, Strings	Yes

40