Collider Phenomenology

Eleni Vryonidou

STFC school, Oxford
9-16/9/22

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Plan for the lectures

- Basics of collider physics
- Basics of QCD
- DIS and the Parton Model
- Higher order corrections
- Asymptotic freedom
- QCD improved parton model
- State-of-the-art computations for the LHC
- Monte Carlo generators
- Higgs phenomenology
- Top phenomenology
- Searching for New Physics: EFT

Fixed order computations

Going to higher orders

Fixed order computations

Going to higher orders

Fixed order computations

Going to higher orders

Fixed order computations

Going to higher orders

Fixed order computations

Going to higher orders

Fixed order computations

Going to higher orders

Fixed order computations

Going to higher orders

Fixed order computations

Going to higher orders

$$
\begin{gathered}
\sum_{a, b} \int d x_{1} d x_{2} d \Phi_{\mathrm{FS}} f_{a}\left(x_{1}, \mu_{F}\right) f_{b}\left(x_{2}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow X}\left(\hat{s}, \mu_{F}, \mu_{R}\right) \\
\hat{\sigma}=\sigma^{\text {Born }}\left(1+\frac{\alpha_{s}}{2 \pi} \sigma^{(1)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \sigma^{(2)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \sigma^{(3)}+\ldots\right) \\
\text { LO NLO } \quad \text { NNLO }
\end{gathered}
$$

Fixed order computations

Going to higher orders

We need to add real and virtual corrections to the hard scattering dealing with singularities

Relatively straightforward at NLO (automated), complicated at NNLO (tens of processes), extremely hard at NNNLO (handful of processes known)

Structure of an NLO calculation

Difficulties:

- Loop calculations: tough and time consuming
- Divergences: Both real and virtual corrections are divergent
- More channels, more phase space integrations

Structure of an NLO calculation

Difficulties:

- Loop calculations: tough and time consuming
- Divergences: Both real and virtual corrections are divergent
- More channels, more phase space integrations

Structure of an NLO calculation

Difficulties:

- Loop calculations: tough and time consuming
- Divergences: Both real and virtual corrections are divergent

- More channels, more phase space integrations

How to deal with NLO in practice?

NLO corrections involve divergences: Divergences are bad for numerical computations

Subtraction techniques at NLO

Dipole subtraction

- Catani, Seymour hep-ph/9602277
- Automated in MadDipole, Sherpa, HELAC-NLO

FKS subtraction

- Frixione, Kunszt, Signer hep-ph/9512328
- Automated in MadGraph5_aMC@NLO and Powheg/Powhel

A note about NLO
 NLO is relative

Example: top pair production

Which observables do we compute at NLO?
Total cross-section
pT of a top quark
pT of top pair
pT of hardest jet
tt invariant mass

It is certain observables which are computed at NLO

A note about NLO
 NLO is relative

Example: top pair production

NLO

Which observables do we compute at NLO? Total cross-section
pT of a top quark
pT of top pair
pT of hardest jet
tt invariant mass

It is certain observables which are computed at NLO

A note about NLO
 NLO is relative

Example: top pair production

NLO

Which observables do we compute at NLO? Total cross-section pT of a top quark
pT of top pair
pT of hardest jet
tt invariant mass

It is certain observables which are computed at NLO

A note about NLO
 NLO is relative

Example: top pair production

NLO

Which observables do we compute at NLO?
Total cross-section
pT of a top quark
pT of top pair
pT of hardest jet
tt invariant mass

It is certain observables which are computed at NLO

A note about NLO
 NLO is relative

Example: top pair production

NLO

Which observables do we compute at NLO? Total cross-section pT of a top quark
pT of top pair pT of hardest jet
tt invariant mass

It is certain observables which are computed at NLO

A note about NLO
 NLO is relative

Example: top pair production

Which observables do we compute at NLO? Total cross-section pT of a top quark pT of top pair pT of hardest jet tt invariant mass

It is certain observables which are computed at NLO

Need for higher-orders

Why is this so important?

Standard Model Total Production Cross Section Measurements

Reminder:
Level of experimental precision demands precise theoretical predictions

Theorists are not simply having fun!!!

Higher order computations

Complexity rises a lot with each N!

Status of hard scattering cross-sections

LO automated
NLO automated
NNLO: Several processes known (VV production, top pair production, all $2 \rightarrow 1$ processes)

NNNLO: only a handful of processes!

- Higgs in gluon fusion (Anastasiou et al, arXiv:1602.00695)
- Higgs in VBF (Dreyer et al, arXiv:1811.07906)
- Higgs in bottom annihilation (Duhr et al, arXiv:1904.09990)
- Drell-Yan (Duhr et al, arXiv:2001.07717, 2007.13313)

Progress in higher-order computations

A. Huss, QCD@LHC-X 2020

Hard scattering cross-section

Perturbative expansion

$$
\begin{gathered}
\hat{\sigma}=\sigma^{\text {Born }}\left(1+\frac{\alpha_{s}}{2 \pi} \sigma^{(1)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \sigma^{(2)}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} \sigma^{(3)}+\ldots\right) \\
\text { LO NLO } \quad \text { NNLO }
\end{gathered}
$$

Higgs production arXiv:2203.06730

Uncertainties in theory predictions

How do we estimate uncertainties?

Vary the renormalisation and factorisation scale

Typically pick some central scale μ_{0} and vary the scale up and down by a factor of 2

How do we actually compute all of these?

Theory

Experiment

Focusing on LO

How to compute a LO cross-section

Example: 3 jet production in pp collisions

1. Know the Feynman rules (SM or BSM)
2. Find all possible Subprocesses

97 processes with 781 diagrams generated in 2.994 s Total: 97 processes with 781 diagrams
3. Compute the amplitude

4. Compute $|M|^{2}$ for each subprocess, sum over spin and colour
5. Integrate over the phase space

$$
\sigma=\frac{1}{2 s} \int|\mathcal{M}|^{2} d \Phi(n)
$$

LO calculation of a cross-section

How many subprocesses?
Amplitude computation (Feynman diagrams)
Difficulty
Square the amplitude, sum over spin and colour
Integrate over the phase space

Complexity increases with

- number of particles in the final state
- number of Feynman diagrams for the process (typically organise these in terms of leading couplings: see tutorial)

Structure of an automated MC generator

I. Input Feynman rules
II. Define initial and final state
III. Automatically find all subprocesses
IV. Compute matrix element (including tricks like helicity amplitudes)
V. Integrate over the phase space by optimising the PS parametrisation and sampling
VI. Unweight and write events in the Les Houches format

Structure of an automated MC generator

I. Input Feynman rules
II. Define initial and final state
III. Automatically find all subprocesses
IV. Compute matrix element (including tricks like helicity amplitudes)
V. Integrate over the phase space by optimising the PS parametrisation and sampling
VI. Unweight and write events in the Les Houches format

Output of LO MC generators

Les houches events

Example: gg>ZZ

<event>

Momenta Mass
All Information needed to pass to parton shower is included in the event

Available public MC generators

Matrix element generators (and integrators):

- MadGraph/MadEvent
- Comix/AMEGIC (part of Sherpa)
- HELAC/PHEGAS
- Whizard
- CalcHEP/CompHEP

Is Fixed Order enough?

Fixed order computations can't give us the full picture of what we see at the LHC

Is Fixed Order enough?

Fixed order computations can't give us the full picture of what we see at the LHC

An LHC event

Is fixed order enough?

- Fixed order calculations involve only a few partons
- Not what we see in detectors
- Need Shower and Hadronisation

A multiscale story

High- Q^{2} scattering: process dependent, systematically improvable with higher order corrections, where we expect new physics
Parton Shower: QCD, universal, soft and collinear physics
Hadronisation: low Q^{2}, universal, based on different models

Underlying event: low Q^{2}, involves multiple interactions

Parton Shower
 What does the parton shower do/should do?

- Dress partons with radiation with an arbitrary number of branchings
- Preserve the inclusive cross-section: unitary
- Needs to evolve in scale from Q~1TeV (hard scattering) down to $\sim \mathrm{GeV}$

Basics of parton shower

Collinear factorisation

Starting with one splitting

small angle=collinear

- Time scale associated with splitting much longer than the one of the hard scattering
- This kind of splitting should be described by a branching probability
- The parton shower will quantify the probability of emission

Basics of parton shower

Collinear factorisation

Starting with one splitting

small angle=collinear

- Time scale associated with splitting much longer than the one of the hard scattering
- This kind of splitting should be described by a branching probability
- The parton shower will quantify the probability of emission

Collinear factorisation:

$$
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{S}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Collinear factorisation and splitting functions

$\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)$

- t is the evolution variable
- t tends to zero in the collinear limit (this factor is singular)
- z energy fraction transferred from parton a to parton b in splitting $(z \rightarrow 1$ in the soft limit)
- ϕ azimuthal angle

The branching probability has the same form for all quantities $\propto \theta^{2}$

- transverse momentum $k_{\perp} \sim z^{2}(1-z)^{2} \theta^{2} E^{2}$
- invariant mass $Q^{2} \sim z(1-z) \theta^{2} E^{2}$

Collinear factorisation and splitting functions

$\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n}\left(\frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}(z)\right.$

- t is the evolution variable
- t tends to zero in the collinear limit (this factor is singular)
- z energy fraction transferred from parton a to parton b in splitting $(z \rightarrow 1$ in the soft limit)
- ϕ azimuthal angle

The branching probability has the same form for all quantities $\propto \theta^{2}$

$$
\begin{aligned}
& \frac{d \theta^{2}}{\theta^{2}}=\frac{d k_{\perp}^{2}}{k_{\perp}^{2}}=\frac{d Q^{2}}{Q^{2}} \\
& t \in\left\{\theta^{2}, k_{\perp}^{2}, Q^{2}\right\}
\end{aligned}
$$

- invariant mass $Q^{2} \sim z(1-z) \theta^{2} E^{2}$

Altarelli-Parisi Splitting functions

Branching has a universal form given by the Altarelli-Parisi splitting functions (as we saw in DIS)

$$
P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right], \quad P_{q \rightarrow g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right]
$$

$\frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)$

$$
P_{g \rightarrow q q}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g \rightarrow g g}(z)=C_{A}\left[z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
$$

Altarelli-Parisi Splitting functions

Branching has a universal form given by the Altarelli-Parisi splitting functions (as we saw in DIS)

$$
P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right], \quad P_{q \rightarrow g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right]
$$

$\frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)$

$$
P_{g \rightarrow q q}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g \rightarrow g g}(z)=C_{A}\left[z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
$$

[^0]
Multiple emissions

How does this change with multiple emissions?

$$
\left|\mathcal{M}_{n+2}\right|^{2} d \Phi_{n+2} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \times \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{d \phi^{\prime}}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right)
$$

We can generalise this for an arbitrary number of emissions
Iterative sequence of emissions which does not depend on the history (Markov Chain)

Multiple emissions

How does this change with multiple emissions?

$$
\left|\mathcal{M}_{n+2}\right|^{2} d \Phi_{n+2} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \times \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{d \phi^{\prime}}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right)
$$

We can generalise this for an arbitrary number of emissions
Iterative sequence of emissions which does not depend on the history (Markov Chain)

Multiple emissions

How does this change with multiple emissions?

$$
\left|\mathcal{M}_{n+2}\right|^{2} d \Phi_{n+2} \simeq\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \times \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{d \phi^{\prime}}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right)
$$

We can generalise this for an arbitrary number of emissions
Iterative sequence of emissions which does not depend on the history (Markov Chain)

No interference: Classical

Multiple emissions

How does this change with multiple emissions?

Dominant contribution comes from subsequent emissions which satisfy strong ordering $\theta \gg \theta^{\prime} \gg \theta^{\prime \prime}$

For k emissions the rate takes the form:

$$
\sigma_{n+k} \propto \alpha_{\mathrm{s}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

- Q is the hard scale and Q_{0} is an infrared cut off (separating non-perturbative regime)
- Each power of α_{s} comes with a logarithm (breakdown of perturbation theory when large)

Basics of PS
 What we saw so far

- Collinear factorisation allows subsequent branchings from the hard process scale down to the non-perturbative regime
- Different legs and subsequent emissions are uncorrelated
- No interference effects
- Captures leading contributions
- Resummed calculation
- Bridge between fixed order and hadronisation

Sudakov form factor

We need to take the survival probability into account, i.e. a parton can split at scale t if it has not branched at $t^{\prime}>t$
The probability of branching between scale t and $t+d t$ (with no emission before) is:

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

The no-splitting probability between scale t and $t+d t$ is $1-d p(t)$
The probability of no emission between Q^{2} and t is:

$$
\begin{aligned}
& \Delta\left(Q^{2}, t\right)=\prod_{k}\left[1-\sum_{b_{c}} \frac{d t_{k}}{t_{k}} \int d z \frac{d \phi_{s}}{2 \pi} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow c}(z)\right]= \\
& \exp \left[-\sum_{b c} \int_{t}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d \frac{\left.\left.d \underline{\phi} \alpha_{s} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b_{c}(z)}\right)\right]=\exp \left[-\int_{t}^{Q^{2}} d p\left(t^{\prime}\right)\right]}{}\right.
\end{aligned}
$$

Sudakov form factor

We need to take the survival probability into account, i.e. a parton can split at scale t if it has not branched at $t^{\prime}>t$

The probability of branching between scale t and $t+d t$ (with no emission before) is:

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

The no-splitting probability between scale t and $t+d t$ is $1-d p(t)$
The probability of no emission between Q^{2} and t is:

$$
\begin{array}{r}
\Delta\left(Q^{2}, t\right)=\prod_{k}\left[1-\sum_{b c} \frac{d t_{k}}{t_{k}} \int d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]= \\
\exp \left[-\sum_{b c} \int_{t}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]=\exp \left[-\int_{t}^{Q^{2}} d p\left(t^{\prime}\right)\right]
\end{array}
$$

Sudakovs

The Sudakov is used to create the branching tree of a parton
The probability of k ordered splittings form a leg at given scale is

$$
\begin{aligned}
d P_{1}\left(t_{1}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, Q_{0}^{2}\right), \\
d P_{2}\left(t_{1}, t_{2}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, t_{2}\right) d p\left(t_{2}\right) \Delta\left(t_{2}, Q_{0}^{2}\right) \Theta\left(t_{1}-t_{2}\right) \\
\ldots & =\ldots \\
d P_{k}\left(t_{1}, \ldots, t_{k}\right) & =\Delta\left(Q^{2}, Q_{0}^{2}\right) \prod_{l=1}^{k} d p\left(t_{l}\right) \Theta\left(t_{l-1}-t_{l}\right)
\end{aligned}
$$

The shower selects the t_{i} scales for the splitting randomly but weighted with no emission probability (before or after)

Unitarity

The parton shower is unitary. Sum of all possibilities should be 1 . Probability of k ordered splittings:

$$
d P_{k}\left(t_{1}, \ldots, t_{k}\right)=\Delta\left(Q^{2}, Q_{0}^{2}\right) \prod_{l=1}^{k} d p\left(t_{l}\right) \Theta\left(t_{l-1}-t_{l}\right)
$$

Integrating this gives us:

$$
P_{k} \equiv \int d P_{k}\left(t_{1}, \ldots, t_{k}\right)=\Delta\left(Q^{2}, Q_{0}^{2}\right) \frac{1}{k!}\left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]^{k}, \quad \forall k=0,1, \ldots
$$

Summing over all possible numbers of emissions (0 to ∞):

$$
\sum_{k=0}^{\infty} P_{k}=\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{k=0}^{\infty} \frac{1}{k!}\left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]^{k}=\Delta\left(Q^{2}, Q_{0}^{2}\right) \exp \left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]=1
$$

Unitarity

The parton shower is unitary. Sum of all possibilities should be 1 . Probability of k ordered splittings:

$$
d P_{k}\left(t_{1}, \ldots, t_{k}\right)=\Delta\left(Q^{2}, Q_{0}^{2}\right) \prod_{l=1}^{k} d p\left(t_{l}\right) \Theta\left(t_{l-1}-t_{l}\right)
$$

Integrating this gives us:

$$
P_{k} \equiv \int d P_{k}\left(t_{1}, \ldots, t_{k}\right)=\Delta\left(Q^{2}, Q_{0}^{2}\right) \frac{1}{k!}\left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]^{k}, \quad \forall k=0,1, \ldots
$$

Summing over all possible numbers of emissions (0 to ∞):

$$
\sum_{k=0}^{\infty} P_{k}=\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{k=0}^{\infty} \frac{1}{k!}\left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]^{k}=\Delta\left(Q^{2}, Q_{0}^{2}\right) \exp \left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]=1 \quad \text { Probability is conserved }
$$

Evolution parameter in parton shower

A parton shower is constructed:

- Within the simplest collinear approximation, the splitting functions are universal, and fully factorized from the "hard" cross section
- Within the simplest approximation, decays are independent (apart from being ordered in a decreasing sequence of scales)
Other variables can be used as evolution parameter:
- θ : HERWIG

$$
\frac{\mathrm{d} \theta^{2}}{\theta^{2}} \sim \frac{\mathrm{~d} Q^{2}}{Q^{2}} \sim \frac{\mathrm{~d} p_{\perp}^{2}}{p_{\perp}^{2}} \sim \frac{\mathrm{~d} \tilde{q}^{2}}{\tilde{q}^{2}} \sim \frac{\mathrm{~d} t}{t}
$$

- $Q^{2}:$ PYTHIA ≤ 6.3, SHERPA.
- $p_{\perp}:$ PYTHIA ≥ 6.4, ARIADNE, Catani-Seymour showers.
- $\tilde{q}:$ Herwig++.

Same collinear behaviour, differences in the soft limit

Ordered branchings

Angular ordering

Shower is based on ordered splittings

$$
t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \text { and } t_{2} \gg t_{2}^{\prime}
$$

Emission with smaller and smaller angles $\theta_{1}>\theta_{2}>\theta_{3} \quad \theta>\theta_{4}$

Note:

Inside the cones partons emit as independent charges, outside radiation is coherent as if coming directly from the initial colour charge

Hadronisation

- Colourless hadrons observed in detectors, not partons.
- Hadronisation describes creation of hadrons in QCD at low scales where $\alpha_{s} \sim \mathcal{O}(1)$
- Requires non perturbative input
- Two models: cluster and string

Cluster hadronisation

Create strings from color string, with gluons "stretching the string" locally. It uses nonperturbative insights

Hadronisation

String vs Cluster

program model	PYTHIA string	HERWIG cluster
energy-momentum picture	powerful	simple
	predictive	unpredictive
parameters	few	many
flavour composition	messy	simple
	unpredictive	in-between
parameters	many	few

Summary: Parton shower

- A parton shower dresses partons with radiation such that the sum of probabilities is one.
- Predictions become exclusive.
- General-purpose, process-independent tools
- Based on collinear factorisation and build around the Sudakov form factors provide a resummed prediction
- Similar ideas can be used for the initial state shower (need to account for PDFsdeconstruction of the DGLAP evolution, backwards evolution)
- Full description starting from hard scattering, shower and hadronisation (also underlying event)
- Move to hadronisation at a cut off at which perturbative QCD can't be trusted
- Hadronisation is also universal and independent of the collider energy

Parton shower programs

Current release series	Hard matrix elements	Shower algorithms	MPI	Hadronization
Herwig 7	Internal, libraries, event files	QTilde, Dipoles	Eikonal	Clusters, (Strings)
Pythia 8	Internal, event files	Pt ordered, DIRE,VINCIA	Interleaved	Strings
Sherpa 2	Internal, libraries	CSShower, DIRE	Eikonal	Clusters, Strings

Herwig and Pythia use LHE files e.g. produced in MG5_aMC

[^0]: These functions are universal for each type of splitting

