Neutrino Physics

Neutrino masses and phenomenology

Jessica Turner

Neutrino masses
Whys fermions any filled in en irreducible representation of the horentz group will be a leys fermion

$$
x_{+}=(1 / 2,0) \quad x_{-}=(0,1 / 2)
$$

- two component spiers which obey:

$$
\begin{array}{ll}
i G^{\mu} \partial_{\mu} x+=0 & \epsilon^{\mu}=(1,6) \\
i \bar{\sigma}^{\mu} \partial_{\mu} x-=0 & \bar{\sigma}^{\mu}=(1,-6)
\end{array}
$$

- x_{t} and x - have different chicalities:

$$
\begin{aligned}
& x_{+} \Rightarrow \text { left - handed } \\
& x_{-} \Rightarrow \text { right - hacled }
\end{aligned}
$$

Neutrino masses
Dirac fermions

$$
\begin{array}{ll}
(i \varnothing-m) 4=0 & 4 \equiv \text { four -component spinor } \\
4=4 L+4 R=P_{L} 4+P_{R} 4 & P_{L}=\frac{1-\gamma^{5}}{2} \\
& P_{R}=\frac{1+\gamma^{5}}{2}
\end{array}
$$

In chiral representation, γ_{s} diagand $\& 4$ has the following form:

$$
4=\binom{x_{+}}{x_{-}} \quad 4=42+4 e=\binom{x_{1}}{0}+\binom{0}{x-}
$$

Ex in massless limit $(m=0)$ show that two independent Weyl equations on obeyed

Neutrino masses
Majwara fermions Magovana fermions obey the Meynnana condition

$$
4=4^{c}=c \overline{4}^{\top}
$$

- C is the charge conjugation matrix
quick check $\gamma^{0}=\gamma^{0},-\gamma^{2}=\gamma^{2 t}$

$$
\begin{aligned}
& C^{-1} \gamma^{\mu} C=-\left(\gamma^{\mu}\right)^{\top} \\
& C^{-1}=C^{+}=-C^{*} \Rightarrow C \text { is an antisymnetic } \\
& \text { matrix }
\end{aligned}
$$

$$
c^{4}=-i \gamma^{0} \gamma^{2}=i \gamma^{0} \gamma^{2}
$$

- C can be defined in any basis butit hes the rep $C=i \gamma^{0} \gamma^{2}$
- Magrana condition is equivalent to saying a particle is its own ant-partide.

ONeutrino masses

$$
\tau \equiv \text { Pavli matrics. }
$$

$=-i \gamma^{2}\binom{x_{t}^{*}}{x_{-}^{*}}$ use chiral replesentation $\gamma^{2}=\left(\begin{array}{cc}0 & \tau_{2} \\ -\tau_{2} & 0\end{array}\right)$

$$
\left.\begin{array}{l}
=-i\left(\begin{array}{cc}
0 & \tau_{2} \\
-\tau_{2} & 0
\end{array}\right)\binom{x_{+}^{*}}{x_{-}^{*}}=-i\left(\begin{array}{cc}
\tau_{2} & x_{-}^{*} \\
-\tau_{2} & x_{+}^{*}
\end{array}\right) \Rightarrow\binom{x_{+}}{x_{-}}=\left(\begin{array}{cc}
-i \tau_{2} & x_{-}^{*} \\
i \tau_{2} & x_{+}^{*}
\end{array}\right) \\
\Rightarrow x_{+}=-i \tau_{2} x_{-}^{*}, x_{-}=i \tau_{2} x_{+}^{*} \Rightarrow \\
x-=i \tau_{2}\left(i \tau_{2}^{*} x_{-}\right)=-\tau_{2} \tau_{2}^{*} x_{-}=x-
\end{array}\right\} \Rightarrow 4=\binom{-i \tau_{2} x_{-}^{*}}{x-}
$$

$$
\begin{aligned}
& 4^{c}=c \overline{4}^{\top} \\
& 4=\binom{x_{+}}{x_{-}}=c\left(\overline{x_{+}}\right)^{\top}=c\left[\left(x_{+} x_{-}\right)^{*} \gamma^{0}\right]^{\top} \\
& =c \gamma^{0}\binom{x_{+}^{*}}{x_{-}^{*}}=\frac{i \gamma^{0} \gamma^{2} \gamma^{0}}{c}\binom{x_{+}^{*}}{x_{-}^{*}}
\end{aligned}
$$

Neutrino masses
\Rightarrow Majorana fermion only has two degrees of freedom \Rightarrow a single Weal spier. You con see to s form computing:

$$
\begin{aligned}
4_{i} & =C \overline{4}_{R}^{\top} \quad 4 R=C \overline{4}_{L}^{\top} \\
4 & =4 L+(4 L)^{c} \\
4(x) & =\int \frac{d^{3} p}{(2 \pi)^{3} 2 \omega_{p}} \sum_{s=1}\left[{\overline{\left(u_{s}(p)\right.}}^{\top}\left(a_{p}^{s}\right)^{+} e^{i p \cdot x}+u_{s}(p) a_{p}^{s} e^{-i p \cdot x}\right]
\end{aligned}
$$

nb Dirac Reid wold abo contain v spine rot joist u !

Neutrino masses
Dirac mass

$$
m \overline{4} \psi=m\left(\bar{\psi}_{L} \psi_{k}+\bar{प}_{R} \psi_{L}\right)
$$

$$
m_{\alpha \beta} \overline{4}_{\alpha} 4_{\beta} \quad \alpha, \beta \text { flavour index. }
$$

Majurana mass

$$
\begin{aligned}
M \bar{Y} \psi & =M \cdot \frac{\psi_{L} \psi_{R}}{}+M \overline{4_{R} \psi_{L}} \\
& =M \frac{1}{4^{c} L} \frac{\psi_{L}}{4_{\alpha}^{c}}+h \cdot c \\
& =\psi_{\beta}
\end{aligned}
$$

Map complex, symmetric matrix is $M_{\alpha \beta}=\mu_{\beta \alpha \alpha}$.

$$
\begin{aligned}
\frac{1}{2} M_{\alpha \beta} \overline{4_{\alpha}^{c}} \psi_{\beta}=\frac{1}{2} M_{\alpha \beta} \overline{\left(\overline{C_{\alpha}}\right)} \psi_{\beta} & =\frac{1}{2} M_{\alpha \beta} 4_{\alpha}^{\top} C^{-1} \psi_{\beta} \\
& =\frac{1}{2} M_{\alpha \beta}\left(\psi_{\alpha}\right)_{a}\left(C^{-1}\right)_{a b}\left(\psi_{\beta}\right)_{b} \\
& =-\frac{1}{2} M_{\alpha \beta}\left(\psi_{\beta}\right)_{b}\left(C^{-1}\right)_{a b}\left(\psi_{\alpha}\right)_{a} \leftarrow \text { fermion } \\
& =\frac{1}{2} M_{\alpha \beta}\left(\psi_{\beta}\right)_{b} \frac{\left(C^{-1}\right)_{b a}\left(\psi_{\alpha}\right)_{a}}{4} \\
& =\frac{1}{2} M_{\beta \alpha}^{c} 4_{\alpha}^{c} \psi
\end{aligned}
$$

Neutrino masses
Dirac fermion charged under UCI) will transform:
$4 \rightarrow 4 e^{i \theta}$ (recall how he could rephese to charged leptons to remove 3 phase from U matrix).
Dirac mass
Majorana mas

$$
m \overline{4} 4 \rightarrow m \overline{4} 4 \quad m \overline{4} \psi^{c} \rightarrow m e^{-2 i \theta} \overline{4} c
$$

majwana mass form violates U(I) symmetry explicitly.

- any paside win a $U(1)$ change cannot have a Majarana mass.
- accidental symmetries of the SM, impotently L or $B-L$ can be violated in a model win Majarana neutrinos.

Neutrino masses
To go from flavar to man baris he mirt diagindixe tre nan-diagond mas matnix. For a coneplex symmetic motrix (legivana men matrix) this require sine con as it bist a "nand" matix ie it dosnt commute wir hernition conjugete.
We recap on SUD (singuer vale de couposition).
M square complex matis \exists SVD factrisation s-t

$$
M=U D V^{+}
$$

$D \equiv$ diagond maxix with REAL entis. $D_{i i}>0 \quad \forall i$.
U, V unitary ie $U^{+} U=U U^{+}=\mathbb{I}$.

$$
V^{+} V=V V^{+}=\text {II. }
$$

Weutrino masses
We ca compte $U \times V$ by diagondising the rernition matix:

$$
U^{+}\left(M M^{+}\right) U=D^{2} \quad V+\left(M^{+} M\right) V=D^{2}
$$

If M is complex, symretic \Rightarrow relctionship betien UAV

$$
M=U^{\top} D U
$$

$$
U^{+} U=U U^{+}=1 \quad \text { Takagi factorisution. }
$$

Neutrino masses
Application to max matrices
Dirac mass maxtix mas is an arbitrary corpless matrix:

$$
L_{m}=m_{\alpha \beta} 4_{c}^{\alpha} t_{k}^{B}
$$

we con act on left a night field inclependectly

$$
4_{L \rightarrow U_{\alpha}^{\alpha}} 4_{L}^{j}
$$

unitary. mantic

$$
\psi_{R}^{\alpha} \rightarrow V_{\alpha j}^{\alpha} 4_{R}^{j}
$$

For majorca man, $M \alpha \beta$, we don ot have the fredinto rok the two fieldsin the man term inclependenty:

$$
\begin{aligned}
\mathcal{L}_{m} & =M_{\alpha \beta} 4_{\alpha}^{c} \frac{\psi_{\beta}}{4_{i}^{c}} \psi_{j} \\
& =\left(U^{\top} M U\right)_{i j} \\
& =D_{i i} \overline{4_{i}^{c}} 4_{j}
\end{aligned}
$$

