From first beam to the Higgs boson discovery

Dave Charlton (University of Birmingham) LHC Paperfest, 26 May 2022

20 Nov 2009

Candidate Collision Event

First physics paper from LHC collisions

2010: Collisions at 7 TeV

2010: Collisions at 7 TeV

Addressing the dual requirements

- Higher collision energy ("√s")
- Greater number of collisions (integrated luminosity)

Re-establishing the known particles

Re-establishing the known particles

Physics Letters B 694 (2010) 209-216

	Contents lists available at ScienceDirect	20
		PHYSICS LETTERS B
6-5-22-0	Physics Letters B	
	righted Letters B	
		comment o Generalizer
ELSEVIER	www.elsevier.com/locate/physletb	

Measurement of $\sigma(pp \rightarrow b\bar{b}X)$ at $\sqrt{s} = 7$ TeV in the forward region $\stackrel{\alpha}{\Rightarrow}$

LHCb Collaboration

First measurement of the cross section for top-quark pair production in proton–proton collisions at $\sqrt{s} = 7$ TeV \approx

CMS Collaboration

CERN, Switzerland

ARTICLE INFO

ABSTRACT

The first measurement

The first measurement of the cross section for top-quark pair production in pp collisions at the Large Hadron Collider at center-of-mass energy $\sqrt{s} = 7$ TeV has been performed using a data sample

PUBLISHED FOR SISSA BY SPRINGER

RECE VED: October 13, 2010 ACCEPTED, November 24, 2010 PUBLISHED: December 14, 2010

Measurement of the $W \to \ell \nu$ and $Z/\gamma^* \to \ell \ell$ production cross sections in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration¹

ABSTRACT: First measurements of the $W \to \ell \nu$ and $Z/\gamma^* \to \ell \ell$ ($\ell = e, \mu$) production cross sections in proton-proton collisions at $\sqrt{s} = 7$ TeV are presented using data recorded

Searching for new processes

PRL 105, 161801 (2010)

Particles or interactions which are too high mass, or too weakly coupled, to have been seen before

Every step in energy and luminosity gives us more reach

Broad types of search

- topological searches looking for new/anomalous event signatures
- model-driven searches (e.g. supersymmetry: SUSY)
- and many in-between (e.g. some dark matter searches)

PHYSICAL REVIEW LETTERS

DOI: 10.1103/PhysRevLett.105.211801

PACS numbers: 13.85.Rm, 13.87.Ce, 14.80.-j

week endin

15 OCTOBER 2010

Two very high energy jets of hadrons in this event, plus a third lower energy jet

The two jets together have a mass of 3.1 TeV

No previous collider could get close to these energies

A fraction of the model constraints from searches (2022)

simplified models, c.f. refs. for the assumptions made

Today, around 800 different search papers from ATLAS and CMS

Aiming to leave no stone unturned...

A	ATLAS Preliminary						
14	Model	Signat	ture	∫£ dt [fb⁻	Mass limit		Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, μ 2-6 ji mono-jet 1-3 ji	ets E_T^{mis} ets E_T^{mis}	⁵⁵ 139 ¹⁵ 139	[1×.8×Degen.] 1.0 [8×Degen.] 0.9	1.85 m(ξ1)<400 GeV m(ξ1)=5 GeV	2010.14293 2102.10874
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_1^0$	0 e,µ 2-6 j	ets E_T^{mis}	^{is} 139	Forbidden	2.3 m(\tilde{k}_1^0)=0 GeV m(\tilde{k}_1^0)=1000 GeV	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} W \tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} (\ell \ell) \tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_1^0$	1 e,μ 2-6 je ee,μμ 2 je 0 e,μ 7-11 j SS e,μ 6 je	ets E_T^{mis} lets E_T^{mis} ts	139 ** 139 ** 139 139	1.15	2.2 m(k ²)/<600 GeV	2101.01629 CERN-EP-2022-014 2008.06032 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t l \tilde{\chi}_1^0$	0-1 e,μ 3 ℓ SS e,μ 6 je	E_T^{mis} ts	^{ss} 79.8 139	1.2	2.25 m($\tilde{\xi}_1^0$)<200 GeV 25 m(\tilde{g}_1)=300 GeV	ATLAS-CONF-2018-041 1909.08457
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1$	0 e,µ 2 l	E_T^{mis}	** 139	0.68	55 m(k ₁ ⁰)<400 GeV 10 GeV<Δm(b ₁ , λ ₁ ⁰)<20 GeV	2101.12527 2101.12527
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}^0_2 \rightarrow b h \tilde{\chi}^0_1$	0 e,μ 6 l 2 τ 2 l	E_T^{mis} E_T^{mis}	¹⁵ 139 139	Forbidden 0.23- 0.13-0.85	1.35 $\Delta m(\tilde{t}_{2}^{0}, \tilde{t}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{t}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{t}_{2}^{0}, \tilde{t}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{t}_{1}^{0}) = 0 \text{ GeV} \end{cases}$	1908.03122 2103.08189
	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow t \tilde{k}_1^0$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow W b \tilde{k}_1^0$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow c \tilde{k}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{k}_1^0$ $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow t \tilde{k}_2^0, \tilde{k}_2^0 \rightarrow Z/h \tilde{k}_1^0$	$0-1 e, \mu \ge 1$ $1 e, \mu = 3 \text{ jets}$ $1-2 \tau = 2 \text{ jets}$ $0 e, \mu = 2 e$ $0 e, \mu = 1-4$	et E_T^{mis} $(1 \ b \ E_T^{mis})$ $(1 \ b \ E_T^{mis})$ E_T^{mis} E_T^{m	⁵⁵ 139 ⁵⁵ 139 ⁵⁵ 139 ⁵⁵ 36.1 ⁵⁵ 139 ⁵⁵ 139	1.2 Forbidden 0.65 Forbidden 0.85 0.55 0.55	25 m(t ²)=1 GeV m(t ²)=50 GeV 1.4 m(t ²)=50 GeV m(t ²)=0 GeV m(t ²)=5 GeV 3 m(t ²)=5 GeV	2004.14060,2012.03799 2012.03799 2108.07665 1805.01649 2102.10874 2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $\tilde{t}_2^{\pm} \tilde{t}_2^{0} \rightarrow \pi W^2$	3 e, µ 1 l	E_T^{mis}	⁵⁵ 139	Forbidden 0.86	$m(\tilde{x}_{1}^{0})=360 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{x}_{1}^{0})=40 \text{ GeV}$	2006.05880
EW direct	$ \begin{array}{c} \mathcal{K}_{1,2}^{2} \in \mathcal{K}_{1}^{2} \text{ with } \mathcal{W}_{2} \\ \mathcal{K}_{2}^{2} \mathcal{K}_{2}^{2} \text{ with } \mathcal{W}_{3} \\ \mathcal{K}_{1,2}^{2} \mathcal{K}_{2}^{2} \text{ with } \mathcal{K}_{1}^{2} \\ \mathcal{K}_{1,2}^{2} \mathcal{K}_{1,2}^{2} \\ \mathcal{K}_{1,2}^{2} \mathcal{K}_{1,2}^{2} \\ \mathcal{K}_{1,2}^{2} \mathcal{K}_{1,2}^{2} \\ \mathcal{K}_{1,2}^{2} \mathcal{K}_{1,2}^{2} \\ \mathcal{K}_{1,2}^{2} \mathcal{K}_{2}^{2} \\ \mathcal{K}_{2}^{2} \mathcal{K}_{2}^$	$ \begin{array}{l} \text{Multiple } f \mu \geq 1 \\ \hline ee, \mu \\ \text{Multiple } f \text{rets} \\ 2 e, \mu \\ 2 r, \mu \\ ee, \mu \\ ee, \mu \\ 1 \\ 0 e, \mu \\ 2 \\ 1 \\ 0 e, \mu \\ 2 \\ 1 \\ 0 \\ ee, \mu \\ 2 \\ 1 \\ 0 \\ ee, \mu \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	s 139 s 139 s 139 s 139 s 139 s 139 s 139 s 139 s 139 s 36.1 s 139 s 139 s 139 s 139	0.205 0.42 /f1 Forbüssen 1.06 /f2 Forbüssen 1.0 /f2 5.0.256 0.7 0.256 0.7 0.256 0.13-0.23 0.55 0.45-0.88 0.45-0.83 0.45-0.83 0.45-0.83	ແຫ້ດ ຈານ k var (1) ຈາງ ແຫ້ດ ຈານ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊິ່ງ ແມ່ນ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊິ່ງ ແມ່ນ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊິ່ງ ແມ່ນ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊິ່ງ ແມ່ນ ແມ່ນ ເຊິ່ງ ແມ່ນ ເຊັ່ງ ແມ່ນ ເຊິ່ງ	1911.12000 1900.08215 2004.1089-2.105.07586 1908.08215 1911.06660 1908.08215 1911.12006 1906.04215 2103.11684 2108.07586
Long-lived particles	Direct $\tilde{k}_{1}^{+}\tilde{k}_{1}^{-}$ prod., long-lived \tilde{k}_{1}^{+} Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\ell}_{1}^{0}$ $\tilde{t}\tilde{t}, \tilde{t} \rightarrow \ell \tilde{G}$	Disapp. trk 1 je pixel dE/dx pixel dE/dx Displ. lep pixel dE/dx	et E_T^{mis} E_T^{mis} E_T^{mis} E_T^{mis} E_T^{mis}	* 139 * 139 * 139 * 139 * 139	$p^{(r(\frac{1}{p})=10 \text{ res})} = \frac{0.34}{0.36}$	Pure Wino Pure Mipgaino 2.05 2.2 $m_i^{(2)} = 100 \text{ GeV}$ $\pi_i^{(2)} = 100 \text{ GeV}$ $\pi_i^{(2)} = 0.1 \text{ ns}$ $\pi_i^{(2)} = 0.1 \text{ ns}$	2201 02472 2221 02472 CEIN-EP-2022 029 CEIN-EP-2022 029 2011 07812 2011 07812 CEIN-EP-2022 029
RPV	$\begin{array}{l} k_1^+ k_1^+ / k_1^0 \ , k_1^+ \rightarrow Z \ell \rightarrow \ell \ell \ell \\ k_1^+ k_1^+ / k_2^+ \rightarrow W R Z \ell R \ell \\ k_2^- k_1^- R k_2^- \rightarrow W R \ell \\ \overline{n}, \overline{l} \rightarrow k_1^+ , k_1^+ \rightarrow \ell b s \\ \overline{n}, \overline{l} \rightarrow b k_1^+ , k_1^+ \rightarrow b b s \\ \overline{l}, \overline{l}, \overline{l}, \overline{l} \rightarrow b s \end{array}$	$\begin{array}{ccc} 3 \ e, \mu & & 0 \ {\rm je} \\ 4 \ e, \mu & 0 \ {\rm je} \\ 4.5 \ {\rm targ} & & \\ {\rm Multi} \\ \geq 4 \\ 2 \ {\rm jets} \\ 2 \ {\rm jets} \\ 2 \ e, \mu & 2 \ l \\ 1 \ \mu & & \\ {\rm D} \\ 1 - 2 \ e, \mu & \geq 6 \ {\rm je} \end{array}$	ts E_T^{mis} e jets ple b $E \ge b$ of ats	139 36.1 36.1 139 36.7 36.7 36.1 136 139	[A] Binzzn=1; Binzzn=1; 0.625 1.05 [A]	Priore Wino 1.55 m(i ²)=200 GeV 1.3 1.9 Lage A ₁ , or (1) m(i ²)=200 GeV Lone-like m(i ²)=200 GeV Lone-like m(i ²)=201 GeV 4-1.45 BR(i ₁ -4or/lpj)=20% BR(i ₁ -4or/lpj)=20% 1.6 BR(i ₁ -4or/lpj)=20% BPR(i ₁ -4or/lpj)=20%	2011:10543 2103:11684 8164:03568 8TLAS-COMF-2016:003 2010:01015 1710:07771 1710:05546 2003:11656 2166:09609
*Only	a selection of the available ma	ass limits on new si	lates or	1	· · · · · · · · · · · · · · · · · · ·	Mass scale [TeV]	

Observation of jet quenching

LHC also collides lead (Pb) nuclei

 Forms a region of hot dense matter quark-gluon plasma

First LHC Pb+Pb collisions in 2010: saw immediately the new phenomenon of "jet quenching"

- High-energy quark or gluon travelling far through the hot dense matter loses energy
- "One-sided" jet events

While not "conventional" Beyond-the-Standard Model new physics, this was a new physical phenomenon

Observation of j

PHYSICAL

LHC also collides lead (Pb) nuclei

• Forms a region of hot dense matter quark-gluon plasma

First LHC Pb+Pb collisions in 2010: saw immediately the new phenomenon of "jet quenching"

- High-energy quark or gluon travelling far through the hot dense matter loses energy
- "One-sided" jet events

2010 to 2012: Collisions at 7, 8 TeV

End 2011: the first new particle of many

A new excited particle state of bottomonium, the $\chi_{\rm b}(3P)$, was found via a distinctive decay mode - an new hadron state

Observed bottomonium radiative decays in ATLAS, $L = 4.4 \text{ fb}^1$

By Jonathan Amos Science correspondent, BBC News

③ 22 December 2011

End 2011: the first new particle of many

Many more *new hadrons* discovered since then a speciality particularly of LHCb

LHCb measures a vast range of properties of hadrons containing b and c quarks

The big one: Higgs boson search

The two key channels for discovery: $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$ ($\ell = e/\mu$) Both allow to reconstruct the *mass* of a putative object decaying to either state

H search papers with 2011 data

Article history

Received 7 February 2012

A search for a Higgs boson decaying into two photons is described. The analysis is performed using a

December 2011 - "Intriguing hints"

December 2011 - "Intriguing hints"

Minimum p-value at 125 GeV Local significance 2.8 Global significance ~0.8-2.1

Minimum p-value at 126 GeV Local significance 2.5σ Estimated global significance ~0.5σ-1.6σ

"Opening the box" in 2012

"Opening the box" in 2012

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC *

ATLAS Collaboration *

This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their contributions to the experiment.

ABSTRACT

ARTICLE INFO

Article history. Received 31 July 2012 Received in revised form 8 August 2012 Accepted 11 August 2012 Available online 14 August 2012 Editor: W.-D. Schlatter

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \to ZZ^{(*)} \to 4\ell$, $H \to \gamma\gamma$ and $H \to WW^{(*)} \to e\gamma\mu\gamma$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from improved analyses of the $H \to ZZ^{(*)} \to 4\ell$ and $H \to \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ±0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} is compatible with the production and decay of the Standard Model Higgs boson

© 2012 CERN, Published by Elsevier B.V. Open access under CC BY-NC-ND license

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

CMS Collaboration*

CERN. Switzerland

This paper is dedicated to the memory of our colleagues who worked on CMS but have since passed away. In recognition of their many contributions to the achievement of this observation

ARTICLE INFO

ABSTRACT

Article history Received 31 July 2012 Received in revised form 9 August 2012 Accepted 11 August 2012 Available online 18 August 2012 Editor: W.-D. Schlatter

Keywords: CMS Physics Higgs

Results are presented from searches for the standard model Higgs boson in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb⁻¹ at 7 TeV and 5.3 fb⁻¹ at 8 TeV. The search is performed in five decay modes: $\gamma\gamma$, ZZ, W⁺W⁻, $\tau^+\tau^-$, and bb. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, $\gamma\gamma$ and ZZ; a fit to these signals gives a mass of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license

B Vol. 716/1 (2012) 1-254

ELSEVIER

Volume 716, Issue 1, 17 September 2012 ISSN 0370-2693 ELSEVIE A State of the second state PHYSICS LETTER R SciVerse ScienceDirect Mart 15+7 TeV.L+5.1 6 (S=8%/L=538 **W**1000 CMS ~ - Data 500 S+8 Ft Bkg Fit Compone S/(S+B) 1.1.0 -20 120 130 140 150 m., (GeV) a ATLAS 2011-12 5 = 7-8 TeV Expected Sinnal + 1-0 400 500 m, [GeV]

http://www.elsevier.com/locate/physletb

That was just a tiny taster of the wide scope of physics papers from the LHC

Next: some specific physics results from the "analysts on the ground"