## THE ROYAL SOCIETY



# Pushing the precision frontier at the LHC

## Sarah Alam Malik University College London







## CMS measurement : 523 $\pm$ 16 MeV

First precise measurement of invisible Z decays at a hadron collider

# CMS measurement : 523 ±16 MeV

| Source of systematic uncertainty                                                    | Uncertainty (%) |
|-------------------------------------------------------------------------------------|-----------------|
| Muon identification efficiency (syst.)                                              | 2.1             |
| Jet energy scale                                                                    | 1.8–1.9         |
| Electron identification efficiency (syst.)                                          | 1.6             |
| Electron identification efficiency (stat.)                                          | 1.0             |
| Pileup                                                                              | 0.9–1.0         |
| Electron trigger efficiency                                                         | 0.7             |
| $\tau_h$ veto efficiency                                                            | 0.6–0.7         |
| $p_{\rm T}^{\rm miss}$ trigger efficiency (jets plus $p_{\rm T}^{\rm miss}$ region) | >0.7            |
| $p_{\rm T}^{\rm miss}$ trigger efficiency (Z/ $\gamma^* \rightarrow \mu\mu$ region) | 0.6             |
| Boson $p_{\rm T}$ dependence of QCD corrections                                     | 0.5             |
| Jet energy resolution °                                                             | 0.3–0.5         |
| $p_{\rm T}^{\rm miss}$ trigger efficiency ( $\mu$ +jets region)                     | 0.4             |
| Muon identification efficiency (stat.)                                              | 0.3             |
| Electron reconstruction efficiency (syst.)                                          | 0.3             |
| Boson $p_{\rm T}$ dependence of EW corrections                                      | 0.3             |
| PDFs                                                                                | 0.2             |
| Renormalization/factorization scale                                                 | 0.2             |
| Electron reconstruction efficiency (stat.)                                          | 0.2             |
| Overall                                                                             | 3.2             |
|                                                                                     |                 |

#### Z invisible decays at LEP collider

Large Electron Positron collider: Highest energy electron-positron collider ever built (1989 - 2000)



- LEP legacy: properties of the Z boson measured to <u>unprecedented</u> precision
- Direct and indirect measurement of Z boson invisible decays, indirect measurement used to deduce <u>three</u> species of light neutrinos



#### Z invisible decays at LEP collider

Large Electron Positron collider: Highest energy electron-positron collider ever built (1989 - 2000)



## LEP combined direct measurement : 503 $\pm$ 16 MeV

# CMS measurement : 523 $\pm$ 16 MeV LEP combined measurement : 503 $\pm$ 16 MeV

# CMS measurement : 523 $\pm$ 16 MeV LEP combined measurement : 503 $\pm$ 16 MeV

## Standard Model : 501.44 $\pm$ 0.04 MeV

# CMS measurement : 523 $\pm$ 16 MeV LEP combined measurement : 503 $\pm$ 16 MeV

## Standard Model : 501.44 $\pm$ 0.04 MeV

CMS result : Single most precise direct measurement in the world

## Dark matter and dark energy at the LHC: from the very big to the very small

Michaela Queitsch-Maitland University of Manchester



#### **Content of the Universe**





#### Top quark









Mass [GeV/c<sup>2</sup>]

**Gold atom** 





![](_page_21_Picture_0.jpeg)

PUBLISHED FOR SISSA BY D SPRINGER RECEIVED: March 6, 2019 ACCENTED: May 9, 2019

PUBLISHED: May 23, 2019

Constraints on mediator-based dark matter and scalar dark energy models using  $\sqrt{s}=13$  TeV pp collision data collected by the ATLAS detector

![](_page_21_Picture_4.jpeg)

The ATLAS collaboration

E-mail: atlas.publications@cern.ch

ABSTRACT: Constraints on selected mediator-based dark matter models and a scalar dark energy model using up to 7 Hr $^{-1}$ , 92 = 13 KeV pp collision data collected by the ATLAS detector at the LHC during 2015–2016 are summarised in this paper. The results of performed assexhes in a variety of Hm states are interpreted in terms of a set of spin-1 and spin-0 simple-mediator dark matter simplified models and a second set of models involving an extended Higgs sector pulse and ditional vector or peusob-scalar mediator. The searches considered in this paper constrain spin-1 leptopholic and hypophilic mediators, embedded in extended Higgs sector pulse mediator are low  $\zeta = 5$  ReV pp collision data eucle of the interpretation of the result. The results are also interpreted for the first time in terms of light scalar particles that could contribute to the accelerating expansion of the universe (dark energy).

KEYWORDS: Dark matter, Hadron-Hadron scattering (experiments)

ARXIV EPRINT: 1903.01400

OPEN ACCESS, Copyright CERN, for the benefit of the ATLAS Collaboration. Article funded by SCOAP<sup>3</sup>. https://doi.org/10.1007/JHEP05(2019)142

0

 $\rightarrow$ 

4

![](_page_22_Picture_0.jpeg)

PUBLISHED FOR SISSA BY Department Received: March 6, 2019 ACCEPTED: May 9, 2019 PUBLISHED: May 23, 2019

Constraints on mediator-based dark matter and scalar dark energy models using  $\sqrt{s}=13$  TeV pp collision data collected by the ATLAS detector

ATLAS

#### The ATLAS collaboration

#### E-mail: atlas.publications@cern.ch

ANETAGY: Constraints on selected mediator-based dark matter models and a scalar dark energy model using up to 7 Br<sup>-1</sup> J<sup>-2</sup> = 13 FeV pp collision data collected by the ATLAS detector at the LHC during 2015-2016 are summarised in this paper. The results of performed as acceled to the model of the model of the second secon

KEYWORDS: Dark matter, Hadron-Hadron scattering (experiments)

ARXIV EPRINT: 1903.01400

![](_page_22_Figure_9.jpeg)

https://doi.org/10.1007/JHEP05(2019)142

![](_page_22_Figure_11.jpeg)

ST MENT

|                                                       |                                                                                                                                                            |                                                   |                                  |                                      |                                                                                                                           |                                |                    |            |          |                                              |                                                                                                                                                                          | Searches for                                       |                    | NOLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EUROS AUGUSAS ALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18-18-00 <sup>7</sup>                                                                                                                                                                                                                                                                                                                             | ark couplings in pp o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ollisions                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abread to Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Search foi<br>between<br>A                                                                              | r thavour-change<br>in the top quart<br>TLAS                                              | ing new                        | - 44                                    | CER (SC)                                                                                   |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|------------|----------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|
| ATL                                                   | AS SUSY Sear                                                                                                                                               | ches* -                                           | 95%                              | CL Lov                               | ver Limit                                                                                                                 | 6                              |                    |            |          |                                              |                                                                                                                                                                          | ATLAS Preliminary                                  | nome               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | String resonance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   | CMS preliminary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | overview of CN                                                                                                                                                          | 15 EXO results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 05-79 191                                                                                               | 11 11 19 14 7 (2)                                                                         | 16                             | 140 fb <sup>-1</sup>  13 TeV            | eV)<br>] 137 fb'                                                                           |
| March                                                 | odel                                                                                                                                                       | Sig                                               | nature                           | ∫£ dt [fb⁻                           | 1                                                                                                                         | Mass                           | limit              |            |          |                                              |                                                                                                                                                                          | Reference                                          | Frans              | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zymestiance<br>Wymestiance<br>Higgs ymestiance<br>Geor Octool Scalar, ký = 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                 | 7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 035-4 17<br>032-235 1999 (119<br>05-27 1991)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.03143 ( <b>2p + 3y; 2e + 3y</b> )<br><b>3.5-8</b> 20<br>7 ( <b>3j + 3y</b> )<br>8 9947 ( <b>2</b> j) | 12)+341<br>100:10:000 (3)+341                                                             |                                |                                         | 36 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>36 fb <sup>-1</sup><br>137 fb <sup>-1</sup> |
| $\tilde{q}\tilde{q}, \tilde{q}$                       | $\rightarrow q \tilde{t}_1^0$                                                                                                                              | 0 e, µ 2<br>mono-jet 1                            | 2-6 jets //<br>1-3 jets //       | miss 139<br>miss 139<br>7 139        |                                                                                                                           |                                |                    | 1.0<br>0.9 | 1        | 1.85                                         | m(ž <sup>0</sup> )<400 GeV<br>m(ž)-m(ž <sup>0</sup> )=5 GeV                                                                                                              | 2010.14293<br>2102.10874                           | tector             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{l} \mbox{Scalar Diquark} \\ \mbox{$\vec{\pi}$+$\phi$, provides: star (scalar), $g^1_{\mu\nu}$ $\times$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.03(0.004) #<br>= 0.03(0.004) #                                                                                                                                                                                                                                                                                                                | 8<br>8<br>8<br>9<br>1011.04968134, #40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 238-034 2911.00968 ( <b>3</b> 8, 1                                                                                                                                      | 41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03-73 1911                                                                                              | 11947 (2g)                                                                                |                                |                                         | 137 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>137 fb <sup>-1</sup>                       |
| 88, 8                                                 | $\rightarrow q\bar{q}\bar{\chi}_{1}^{0}$                                                                                                                   | 0 <i>e</i> ,µ 2                                   | 2-6 jets 1                       | <sup>miss</sup> 139                  | Ř<br>Ř                                                                                                                    |                                |                    | Forbidden  | 1.15     | 2.3<br>5-1.95                                | $m(\tilde{t}_1^0)=0 \text{ GeV}$<br>$m(\tilde{t}_1^0)=1000 \text{ GeV}$                                                                                                  | 2010.14293<br>2010.14293                           | ation              | Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | quark compositioness IM. quark = 1<br>quark compositioness IM. quark = -1<br>Excited Lepton Contact Interaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kun<br>Kun<br>W                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02-56 2001 04521 (2e+                                                                                   | - 2)                                                                                      | <24 2103.02708 (21)<br>438 210 | 3.02708 (24)                            | 140 fb <sup>-1</sup><br>140 fb <sup>-1</sup><br>77 fb <sup>-1</sup>                        |
| 88, 8<br>88, 8                                        | $\rightarrow q\bar{q}WX_1^{\alpha}$<br>$\rightarrow q\bar{q}(\ell\ell)\bar{X}_1^{\alpha}$                                                                  | 1 e,μ 2<br>ee,μμ                                  | 2 jets /                         | 139<br>7 139                         | 8<br>8                                                                                                                    |                                |                    |            |          | 2.2                                          | m(21)<600 GeV<br>m(21)<700 GeV                                                                                                                                           | 2101.01629<br>CERN-EP-2022-014                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weter mediator (pd), g <sub>1</sub> = 0.25, g <sub>20</sub> = 1, m <sub>1</sub> = 1<br>vector mediator (pd), g <sub>1</sub> = 0.25, g <sub>20</sub> = 1, m <sub>1</sub> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | и<br>IGeV и<br>Lei,>ITeV и                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                     | -07 2011.007411 # 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-1 82 2003 02 708 (2+, 2p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02-52 ANTIH-SETTIN                                                                                      | +4                                                                                        |                                |                                         | 18 fb <sup>-1</sup><br>140 fb <sup>-1</sup>                                                |
| 88.8                                                  | $\rightarrow q\bar{q}\bar{w}Z\bar{r}_{1}$<br>$\rightarrow t\bar{t}\bar{x}_{1}^{0}$                                                                         | SS e,μ<br>0-1 e,μ                                 | 6 jets<br>3 h l                  | 7 139<br>139<br><sup>miss</sup> 79.8 | ž<br>ž                                                                                                                    |                                |                    | 1          | .15      | 2.25                                         | m(t) <600 GeV<br>m(t)-m(t)=200 GeV<br>m(t)<200 GeV                                                                                                                       | 1909.08457<br>ATLAS-CONF-2018-041                  | ANIS               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (anal-herctor mediator (pd), g <sub>1</sub> = 0.25, g <sub>20</sub> = 1,<br>(anal-herctor mediator (gg), g <sub>1</sub> = 0.25, g <sub>20</sub> = 1,<br>(anal-herctor mediator (g), g <sub>2</sub> = 0.1, g <sub>20</sub> = 1,<br>(anal-herctor mediator (g), g <sub>2</sub> = 0.1, g <sub>20</sub> = 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lm,=10eV #<br>Lm,=10eV #<br>A=01.m,>m,,0 #                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 05-28 201102047 (2)<br><1.95 210712021 ( a kj + p(**)<br>02-4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a 2103.02709 (2+, 2y)                                                                                   |                                                                                           |                                |                                         | 137 fb <sup>-1</sup><br>101 fb <sup>-1</sup><br>140 fb <sup>-1</sup>                       |
| h.h.                                                  |                                                                                                                                                            | SS e.µ                                            | 6 jets                           | 139<br>nis 139                       | Ř<br>L                                                                                                                    |                                |                    |            | 1.25     |                                              | m(g)-m(t <sup>0</sup> )=300 GeV                                                                                                                                          | 1909.08457                                         | "ATI               | Card Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\label{eq:constant} \begin{array}{c} \mbox{transmit} \left\{ V_{1}(x_{1},y_{2},m,z_{2},y_{2},m,z,m,z) \\ \mbox{transmit} \left\{ V_{1}(x_{1},y_{2},m,z) \\ \mbox{transmit} \left\{ V_{2}(x_{1},y_{2},m,z) \right \\ transmi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 GeV #<br>m,=1 GeV #<br>m,=1 GeV #                                                                                                                                                                                                                                                                                                               | л —<br>лл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +0.47 2207<br>+0.3 190101553-00, 87 + m                                                                                                                                 | -1.5<br>3021 ( # 1( + p(*))<br>2( + p(*))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2307.13623(#3)+#7**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                           |                                |                                         | 101 fb <sup>-1</sup><br>101 fb <sup>-1</sup><br>36 fb <sup>-1</sup>                        |
| D b.b.                                                | $\bar{h}_1 \rightarrow h \bar{\chi}_1^0 \rightarrow h h \bar{\chi}_1^0$                                                                                    | 0 e. µ                                            | 6 <i>b</i> 1                     | 7 139                                | b <sub>1</sub> Forbi                                                                                                      | 'den                           |                    | 0.68       | .23-1.35 | $\Delta m(\hat{x}_{1}^{0}, \hat{x}_{1}^{0})$ | $10 \text{ GeV} < \Delta m(\tilde{b}_1, \tilde{k}_1^2) < 20 \text{ GeV}$<br>= 130 GeV, $m(\tilde{k}_1^2) = 100 \text{ GeV}$                                              | 2101.12527 1908.03122                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | complex ac. med. (dark QCD), $m_{min} = 5$ GeV, $c_m = 2$<br>2 mediator (dark QCD), $m_{min} = 20$ GeV, $c_m = 0$<br>Baryonic 27, $g_{\mu} = 0.25$ , $g_{\mu\nu} = 1$ , $m_{\mu} = 1$ GeV<br>2 $Z = 2450$ M, $g_{\mu\nu} = 0.8$ , $g_{\mu\nu} = 1$ , and $\theta = 1$ , $m_{\mu} = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | τ <sub>hc</sub> = 25 mm #<br>0.3. a <sub>cere</sub> = a <sup>men</sup> <sub>tere</sub> #<br>#<br>20.0eV #                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                       | <154<br><16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1810 10099 (4)<br>1908 02713 (h + p(**)<br>0.5-13 2008 02723 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>-51</b> 2112 11125 (2) + p7*                                                                         | "                                                                                         |                                |                                         | 16 fb <sup>-1</sup><br>138 fb <sup>-1</sup><br>36 fb <sup>-1</sup>                         |
| iii.                                                  | $1 \rightarrow t \tilde{t}_1^0$                                                                                                                            | 2τ<br>0-1 e,μ                                     | 2 b //<br>≥ 1 jet //             | miss 139<br>7 139                    | b <sub>1</sub><br>ī <sub>1</sub>                                                                                          |                                |                    | 0.13-0.85  | 1.25     | $\Delta m(k_2^0, k$                          | $\tilde{\chi}_{1}^{0}$ ]=130 GeV, m( $\tilde{\ell}_{1}^{0}$ )=0 GeV<br>m( $\tilde{\ell}_{1}^{0}$ )=1 GeV                                                                 | 2103.08189<br>2004.14060,2012.03799                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leptoquark mediator, $\beta = 1$ , $\delta = 0.1$ , $\delta_{e, pre} = 0$ .<br>RPV stap to 6 quarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1, 800 < M <sub>10</sub> < 1500 GeV W                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3+05<br>0.05+0.52                                                                                                                                                     | 181110151(3p+3j+p(**))<br>08:03124(3p;4p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         | -                                                                                         |                                |                                         | 36 fb <sup>-1</sup>                                                                        |
| hin hin                                               | $1 \rightarrow W b \tilde{V}_1^0$<br>$1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$<br>$r_0^0$                              | 1 e,μ 3<br>1-2 τ 2                                | jets/1 b I<br>jets/1 b I         | 7 139<br>7 139<br>7 139              | ī1<br>ī1                                                                                                                  |                                | Forbidden 0        | Forbidden  | 1.4      |                                              | m( $\hat{t}_1^0$ )=500 GeV<br>m( $\hat{t}_1$ )=800 GeV                                                                                                                   | 2012.03799<br>2108.07665                           |                    | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rev oparies to 4 quarks<br>RPV glaine to 4 quarks<br>RPV glaines to 3 quarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K K K                                                                                                                                                                                                                                                                                                                                             | а<br>я<br>я                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01                                                                                                                                                                      | 01-141 1<br>415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 806.03.058.02ji<br>1810.10.092.04ji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         |                                                                                           |                                |                                         | 38 fb <sup>-1</sup><br>36 fb <sup>-1</sup>                                                 |
| 5 hh.                                                 | $1 \rightarrow c K_1 / c c, c \rightarrow c K_1$<br>$\ldots c 0 = c 0 \dots c m c 0$                                                                       | 0 е. µ п<br>1.2 е. µ                              | nono-jet I                       | 7 36.1<br>7 139                      | č<br>1,                                                                                                                   |                                | 0.55               | 0.85       | 1 10     |                                              | m(t <sub>1</sub> )=0 GeV<br>m(t <sub>1</sub> ,t)-m(t <sub>1</sub> )=5 GeV                                                                                                | 1805.01649<br>2102.10874<br>2006.05880             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADD (p) H,Z, n <sub>10</sub> = 3<br>ADD (n <sub>2</sub> , M H,Z, n <sub>10</sub> = 3<br>ADD Gas emission, n <sub>2</sub> = 2<br>ADD Gas emission, n <sub>2</sub> = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * * *                                                                                                                                                                                                                                                                                                                                             | 7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -91                                                                                                     | <pre>x12 1803 08030 (2)) 1812 10443 (2y, 20 x103 2107 13121 ( a 1j + p) 000 080 (2)</pre> |                                |                                         | 36 fb <sup>-1</sup><br>36 fb <sup>-1</sup><br>101 fb <sup>-1</sup>                         |
| 111.<br>1212,                                         | $1 \rightarrow \infty_2, \alpha_2 \rightarrow z_2/\alpha_1$<br>$1 \rightarrow \tilde{t}_1 + Z$                                                             | 3 e,µ                                             | 16 1                             | miss 139                             | 12<br>28.28                                                                                                               |                                | Forbidden          | 0.86       |          | m( $\tilde{k}_{1}^{0}$ )=360                 | 0 GeV, m(f <sub>1</sub> )-m( $\tilde{k}_{1}^{0}$ )= 40 GeV                                                                                                               | 2006.05880                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACD C014 (apl, no. +4<br>ACD C014 (apl, no. +4<br>ACD C014 (apl, no. +4<br>ACD C014 (apl, no. +4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŝ                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 456 045-945-040-04-452 045-945-040-045-045-045-045-045-045-045-045-0                                    | -014 (ep)<br>4 (et)<br>(pt)                                                               |                                |                                         | 137 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>137 fb <sup>-1</sup>                       |
| X1X2<br>0*0*                                          | via WZ                                                                                                                                                     | ee, µµ                                            | ≥ljet /                          | miss 139                             | $\frac{\chi_{1}^{-}/\chi_{2}^{-}}{\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}} = 0.20$                                    |                                | 0.42               | 0.96       |          | m(k                                          | $m(\tilde{k}_1^n)=0$ , wino-bino<br>$\tilde{k}_1^n)=m(\tilde{k}_1^n)=5$ GeV, wino-bino<br>$m(\tilde{k}_1^n)=0$ mino bino                                                 | 2106.01676, 2108.07586<br>1911.12606               | 20 11              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 Guilli ANG = 0.1<br>8 Guilli ANG = 0.1<br>8 Guilli ANG = 0.1<br>8 Guilli ANG = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * * *                                                                                                                                                                                                                                                                                                                                             | я<br>я<br>я                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41 1<br>65-26 19110343 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78 2003 02 708 (2r)<br>809 00 327 (2y)                                                                  |                                                                                           |                                |                                         | 140 m <sup>-1</sup><br>36 m <sup>-1</sup><br>137 m <sup>-1</sup>                           |
| 11/1<br>11/2<br>11/2<br>11/2                          | via Wh                                                                                                                                                     | Multiple (/jets<br>2 e, µ                         | 1                                | 7 139<br>7 139<br>miss 139           | $\hat{\chi}_{1}^{\pm}/\hat{\chi}_{2}^{0}$ Forbidden $\hat{\chi}_{1}^{\pm}$                                                |                                | 0.44               | 1.0        | 5        |                                              | m(t <sup>2</sup> )=70 GeV, wino-bino<br>m(t <sup>2</sup> )=70 GeV, wino-bino<br>m(t <sup>2</sup> ,9)=0.5(m(t <sup>4</sup> )+m(t <sup>2</sup> ))                          | 2004.10894, 2108.07586<br>1908.08215               | in                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\label{eq:second} \begin{array}{l} \mbox{non-relating } B(-M_{c}=4\mbox{ TeV}, n_{\rm ini}=6\mbox{ split-LED}, \mu \simeq 2\mbox{ TeV} \\ \mbox{3.6 same INED} \mbox{g}_{\rm in}(\phi+\phi=gpg)(, g_{\rm ini}=6, g_{\rm ini}=6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | и<br>и<br>30<br>3, г = 0.5, мартицац = 0.1 марти                                                                                                                                                                                                                                                                                                  | 2<br>20<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84-28 2202.00075.01+<br>2-4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97""1<br> 2201.02.140 ( <b>2</b> g)                                                                     | 9.7 1805.06013 ( <b>2</b> .7)7. yli                                                       |                                |                                         | 36 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>137 fb <sup>-1</sup>                        |
| 11, 1<br>1, 1                                         | $\rightarrow \tau \tilde{\chi}_{1}^{0}$<br>                                                                                                                | 2 T<br>2 e, µ                                     | 0 jets /                         | miss 139<br>miss 139                 | † (†L. † <sub>R.L</sub> )<br>7                                                                                            | 0.16-0.3 0.                    | 12-0.39            | 0.7        |          |                                              | $m(\tilde{t}_1^0)=0$<br>$m(\tilde{t}_1^0)=0$                                                                                                                             | 1911.05660<br>1908.08215                           | ecay               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | excited light quark $\log t, \delta_i = f - f' = 1, \Lambda = m_i^2$<br>excited b gash, $\delta_i = f - f' = 1, \Lambda = m_i^2$<br>excited light quark light $\Lambda = m_i^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                 | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1711 04652 ( <b>y</b> + J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-5.5 1711.04652.1y+j                                                                                   | ai.                                                                                       |                                |                                         | 36 fb <sup>-1</sup><br>36 fb <sup>-1</sup><br>117 fb <sup>-1</sup>                         |
| ĤĤ,                                                   | $\bar{H} \rightarrow h\bar{G}/Z\bar{G}$                                                                                                                    | 0 e, µ                                            | ≥ 1 jot 1<br>≥ 3 b 1<br>0 inte 1 | mins 36.1<br>fails 120               | 1<br>Ĥ 0.13                                                                                                               | 0.256                          | 0.55               | 0.29-0.88  |          |                                              | $m(\ell) \cdot m(\ell_1^{\circ}) = 10 \text{ GeV}$<br>$BR(\tilde{\ell}_1^{\circ} \rightarrow h\tilde{G}) = 1$<br>$DR(\tilde{\ell}_1^{\circ} \rightarrow h\tilde{G}) = 1$ | 1911.12606<br>1806.04030<br>2100.11694             |                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | excited electron, $f_1 = f = f = 1, A = m_1^2$<br>excited moon, $f_2 = f = f = 1, A = m_2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ж<br>ж                                                                                                                                                                                                                                                                                                                                            | я<br>я                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 025-3.9 141<br>025-3.8 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.03.052 ( <b>y + 2</b> e)<br>1.03052 ( <b>y + 2</b> e)                                                |                                                                                           |                                |                                         |                                                                                            |
|                                                       |                                                                                                                                                            | $0 e, \mu \ge 2$                                  | large jets I                     | 7 139<br>7 139                       | n<br>İl                                                                                                                   |                                | 0.55               | 0.45-0.93  |          |                                              | $BP(\tilde{x}_1^0 \rightarrow ZG)=1$<br>$BP(\tilde{x}_1^0 \rightarrow ZG)=1$                                                                                             | 2108.07586                                         |                    | ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WOR, [Car] = 1.0, [Car] = 1.0<br>WER, [Car], [Var], [Var] + [Car] = 1.0<br>Type II sease heavy femion, Tavar demon<br>Vector like taus, Doublet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ndc R                                                                                                                                                                                                                                                                                                                                             | л<br>л<br>л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         | 01-1045 2202 065351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | act covers, secent covers (ablg, eg. a by e a<br>1000 (1000) ( a bj + y + e)<br>. a 4/)<br>ht, a 4/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA 40                                                                                                   |                                                                                           |                                |                                         | 36 fb <sup>-1</sup><br>36 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>137 fb <sup>-1</sup> |
| Direc                                                 | $t \tilde{x}_{1}^{*} \tilde{x}_{1}^{-}$ prod., long-lived $\tilde{x}_{1}^{*}$                                                                              | Disapp. trk                                       | 1 jet 2                          | miss 139                             | $\frac{\tilde{x}_{1k}^{\pm}}{\tilde{x}_{1}^{\pm}}$ 0.3                                                                    | 1                              | (                  | 0.66       |          |                                              | Pure Wino<br>Pure higgsino                                                                                                                                               | 2201.02472<br>2201.02472                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vector like taus, Singlet<br>scalar 10 (pair prod.), coupling to 1" gen. form<br>scalar 10 (pair prod.), coupling to 1" gen. form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nins, J=1 m                                                                                                                                                                                                                                                                                                                                       | # 0125+035 2202.0917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 (3t, a.4t)                                                                                                                                                            | <14 :<br><1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1011.01.107 (2e+2))<br>11.107 (2e+2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                         |                                                                                           |                                |                                         |                                                                                            |
| Meta<br>22 2                                          | e ğ H-hadron<br>stable ğ R-hadron, ğ→qqΫ <sup>0</sup>                                                                                                      | pixel dE/dx<br>pixel dE/dx                        | E                                | miss 139<br>miss 139<br>miss 130     |                                                                                                                           |                                |                    | 0.7        |          | 2.05                                         | m( $\tilde{t}_1^0$ )=100 GeV                                                                                                                                             | CERN-EP-2022-029<br>CERN-EP-2022-029<br>2011-07812 | 20.4               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | scalar 10 (pair prod.), coupling to 2 <sup>rd</sup> pen. New<br>scalar 10 (pair prod.), coupling to 2 <sup>rd</sup> pen. New<br>scalar 10 (pair prod.), coupling to 2 <sup>rd</sup> pen. New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | miors, β = 1 #<br>miors, β = 1 #<br>miors, β = 0.5 #                                                                                                                                                                                                                                                                                              | а<br>а а<br>а а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         | <153<br>08-15<br><129 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 1808.05082(2\mu+2j)\\ 1811.10.151(2\mu+2j+\mu \zeta^{***})\\ 05082(2\mu+2j;\mu+2j+\mu \zeta^{***}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                           |                                |                                         | 36 fb <sup>-1</sup><br>37 fb <sup>-1</sup><br>36 fb <sup>-1</sup>                          |
| d                                                     | 10                                                                                                                                                         | pixel dE/dx                                       | 1                                | 7 139<br>7 139                       | Ť                                                                                                                         | 0.34<br>0.3                    | 5                  | 0.7        |          |                                              | $\tau(\vec{\ell}) = 0.1 \text{ ns}$<br>$\tau(\vec{\ell}) = 10 \text{ ns}$                                                                                                | 2011.07812<br>CERN-EP-2022-029                     | 8 8                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scalar LD (pair prof.), coupling to 3" gen. fem<br>scalar LD (single prof.), coupling to 3" gen. fem<br>scalar LD (single prof.), coupling to 3" gen. fem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mions, $\beta = 1$ w<br>ermions, $\beta = 0, 3 = 1$ w<br>ermions, $\beta = 1, 3 = 1$ w                                                                                                                                                                                                                                                            | 2 X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         | <1.02 1011.00006.02<br>3+1.0<br>+0.74 1000.03.072 (2v+b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x+3)<br>2007.13022.(m3)+97**)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                                                                           |                                |                                         | 36 fb <sup>-1</sup><br>101 fb <sup>-1</sup><br>36 fb <sup>-1</sup>                         |
| <i>R</i> † <i>R</i> †<br><i>P</i> † <i>P</i> †        | $ \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$<br>$ \tilde{\chi}_{-}^{0} \rightarrow WW/Z \ell \ell \ell m$ | 3 e, µ<br>4 e, µ                                  | 0 jets /                         | 139<br>miss 139                      | $\tilde{\chi}_{1}^{*}/\tilde{\chi}_{1}^{0}$ (BR(Zr)=1,<br>$\tilde{\chi}_{1}^{*}/\tilde{\chi}_{1}^{0}$ ( $lm \neq 0, ln$ ) | R[Ze]=1]                       | 0.6                | 25 1.05    | 1.55     |                                              | Pure Wino                                                                                                                                                                | 2011.10543 2103.11684                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Za, name resonance<br>Za, name resonance<br>SSN 2100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                 | R 02115-0.075 2012:04776(2p)<br>R 011-02 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 512 04 TT 6 (240                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5 25 2003 02 708 (2+, 2p)                                                                              |                                                                                           |                                |                                         | 137 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>140 fb <sup>-1</sup>                       |
| 88.8<br>II. I-                                        | $\rightarrow qq \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qq q$<br>$s \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$             | 4-5<br>M                                          | large jets<br>Aultiple           | 36.1<br>36.1                         | ğ [m(ℓ <sup>0</sup> <sub>1</sub> )=200 GeV,<br>Î [ℓ <sup>n</sup> <sub>131</sub> =2e-4, 1e-2]                              | 1100 GeV]                      | 0.55               | 1.05       | 1.3      | 1.9                                          | Large $J_{112}^{\prime\prime}$<br>m( $\tilde{\lambda}_1^0$ )=200 GeV, bino-like                                                                                          | 1804.03568<br>ATLAS-CONF-2018-003                  |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21401<br>Superstring 2,<br>UFV.2, RR(n) = 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   | и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и<br>и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 <sub>V</sub> i                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03-23 1111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2113 12 708 (2+, 2y)<br>2-5 CH5-FAS-EX0-19-012                                                          | ~                                                                                         |                                |                                         | 36 fb <sup>-1</sup><br>140 fb <sup>-1</sup><br>137 fb <sup>-1</sup>                        |
| $\tilde{t}_1, \tilde{t}$<br>$\tilde{t}_1\tilde{t}_1,$ | $b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$<br>$_{1} \rightarrow bs$                                                                 | 2 j                                               | $\geq 4b$<br>ets + 2 b           | 139<br>36.7                          | $\tilde{I} = [qq, bi]$                                                                                                    |                                | Forbidden 0.42 0.6 | 0.95       |          |                                              | m(τ <sub>1</sub> )=500 GeV                                                                                                                                               | 2010.01015<br>1710.07171                           |                    | or Game Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEV Z, BR(er) = 10%<br>UV Z, BR(ar) = 10%<br>Laptopholic Z'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.65-0.85 2202.04                                                                                                                                                       | 134 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03-63<br>03-61 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHE-PRE-EXD 19-014 (pm)<br>MS-PRE-EXD 19-014 (pm)                                                       |                                                                                           |                                |                                         | 137 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>78 fb <sup>-1</sup>                        |
| 1(1),<br>5* (5                                        | $1 \rightarrow q\ell$<br>$0 \neq 0$ $(h = \delta^+, hh)$                                                                                                   | 2 e,μ<br>1 μ                                      | 2 b<br>DV                        | 36.1<br>136                          | $\frac{\hat{I}_1}{\hat{I}_1}$ [10-10< $\hat{J}'_{204}$ <1<br>$z^0$                                                        | -8, 3e-10< X <sub>231</sub> <3 | e-9)               | 1.0        | 0.4-1.45 |                                              | $BR(\vec{r}_1 \rightarrow br/b\mu) > 20\%$<br>$BR(\vec{r}_1 \rightarrow q\mu) = 100\%, cost) = 1$                                                                        | 1710.05544<br>2003.11956                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 55N 87161<br>55N 87161<br>55N 87161<br>185M W(((A)), Ma, = 0.5Mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ŝ                                                                                                                                                                                                                                                                                                                                                 | л<br>Я Я<br>Я                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03-38 10110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84-52 2202.06075.0 +<br>2467 (2)<br>-5 2112.00929 (2) + 2)                                              | 97"1                                                                                      |                                |                                         | 137 fb <sup>-1</sup><br>137 fb <sup>-1</sup><br>36 fb <sup>-1</sup>                        |
| A1/A                                                  | (151), 412 <sup>-4003</sup> , 41 <sup>-4003</sup>                                                                                                          | 1.6 6, μ .                                        | - o 1010                         | 139                                  | A1                                                                                                                        | 0.2-0.32                       |                    |            |          |                                              | Pule liggsino                                                                                                                                                            | 2105.03503                                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | und M WulaNLI, Ma., = 0.584 a.,<br>URSM WulaNLI, Ma., = 0.584 a.,<br>Anigluon, Coloron, col# = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   | я<br>я<br>я                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44<br>(45 H110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 2112 03909 (2++2)<br>1006 (2++2)<br>05-65 1001 0396                                                   | 17 (29)                                                                                   |                                |                                         | 36 fb <sup>-1</sup><br>36 fb <sup>-1</sup><br>137 fb <sup>-1</sup>                         |
| ly a sele<br>enomer<br>nplified                       | ction of the available mass<br>a is shown. Many of the lin<br>nodels. c.f. refs. for the as                                                                | s limits on nei<br>nits are base<br>sumptions m   | w states o<br>d on<br>ade.       | r 1                                  | ) <sup>-1</sup>                                                                                                           |                                |                    |            |          | Ma                                           | ass scale [TeV]                                                                                                                                                          |                                                    | distant<br>distant | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Selection of observed exclusion limits at 95% (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.L. (theory uncertainties are not i                                                                                                                                                                                                                                                                                                              | <ul> <li>0.1</li> <li>where the Ξ,<sup>+</sup> baryon is reconstructed in the pK<sup>−</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | π <sup>+</sup> final state.                                                                                                                                             | 10 matr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n scale (TeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | 10.0                                                                                      |                                | Moriand 2                               | 2022                                                                                       |
|                                                       | OPEN ACCESS, Copyri<br>for the benefit of the J<br>Article funded by SCC                                                                                   | ight CERN,<br>ATLAS Collabo<br>DAP <sup>3</sup> . | eration.                         | htt                                  | ps://doi.org/10.10                                                                                                        | 17/JHEP05(20)                  | 9)142              |            |          | unur<br>E                                    |                                                                                                                                                                          |                                                    |                    | a da<br>a da<br>a da<br>a da<br>a da<br>a da<br>a da<br>a da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | doubly cha<br>tate sign<br>are<br>room<br>2.5<br>soar<br>are<br>room<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>2.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soar<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>soa<br>3.5<br>so | is study uses proton-proto-<br>mass energy of 13 TeV, o<br>nificant signal is observed<br>set on the ratio of branc<br>port to the $Z_{ch}^{i+} \rightarrow (Z_{c}^{i+}$<br>theses in the rapidity ran<br>is to 25 GeV/c. The result<br>result or $\Delta_{c}^{i} K \rightarrow A_{c}^{i} K$<br>is standard deviations are<br>- Tables in energy. | oton collision data collected with the LHCs detects<br>corresponding to a total integrated minimoity o<br>well in the invariant-mass range of 3.4.3.8 GeV/ $\epsilon^{-1}$ ,<br>exclusing fractions multiplied by the production cross<br>$\Xi_{1}^{+} \rightarrow \mu \kappa^{-1} \sigma^{-1}$ decay for different $\Xi_{2}^{-1}$ mass and<br>gate from 2.0 to 4.5 and the transverse momentum<br>links from this search are combined with a previous<br>$K^{+}\sigma^{-1}$ decay mode, yielding a maximum bound<br>$K^{+}\sigma^{-1}$ decay on $(3.25)MM/\epsilon^{0}$ , including system | or at a centre-<br>f & dfb <sup>-1</sup> . No<br>Upper limits<br>section with<br>d lifetime hy-<br>m range from<br>sly published<br>significance of<br>titic uncertain- | and a second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                                           |                                | and | A State State                                                                              |
|                                                       |                                                                                                                                                            |                                                   |                                  |                                      |                                                                                                                           |                                |                    |            |          |                                              |                                                                                                                                                                          |                                                    | ares B             | the second secon | $K_{12}^{(2)}$ berryn in the<br>methods of the contract of the second second second second<br>the composition of an entration of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>anating into account the<br/>inbined global significance<br/>sywords: Charm physics<br/>CD, Flavor physics</li> <li>eXiv EPriver: 2109.07296</li> </ul>                                                                                                                                                                                  | um uosa-usaeWheffe effect in the 3.3-3.1 GeW/c <sup>2</sup> mar<br>iceo is 2.9 standard deviations including systematic<br>ice, Hadron-Hadron scattering (experiments), Bran<br>28/2                                                                                                                                                                                                                                                                                                                                                                                                        | o window, the<br>uncertainties.<br>ching fraction,                                                                                                                      | $\label{eq:starting} \begin{array}{c} \mathbf{k} \mbox{ for the length} \\ \mathbf{k} \mbo$ | $\int_{0}^{\infty} \left  \partial u \right ^{2} dv \left  \partial u \right ^{2} dv$ (i.e., $u \in U$ )<br>(i.e., $u $ | and part of the second second<br>and based based balls                                                  |                                                                                           |                                |                                         |                                                                                            |
|                                                       |                                                                                                                                                            |                                                   |                                  |                                      |                                                                                                                           |                                |                    |            |          |                                              | in the                                                                                                                                                                   |                                                    |                    | GCD. Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66 Charm physics, Backnes Backwas scattering (reportion<br>over physics)<br>Praces: 2100.07202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ents), (Baarching Insciton,                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         | manuser deviations around the man<br>a. Taking into access the look-duced<br>chined global significance is 2.9 stand<br>corrector. Charm physics, Endour-Ha<br>Th. Plasse physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s or second/W/e <sup>2</sup> , including systematic us<br>error direct in the 3.5-3.7 GeV/e <sup>2</sup> mass which<br>and deviations including systematic uncer-<br>deux southering (superiments), illusabiling f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sev, the<br>custon                                                                                      |                                                                                           | Called and                     |                                         | 230.                                                                                       |

Enne or CP violati

EUROp-

But EUROPEAN ORCANDATION FOR INCLEAN RESEARCH (CERS)

i Qili

2 mil

23

Maga

GERF

ing top quark cost

ALAS

a ma int a

ATLAS