

www.kit.edu

Three loop corrections for the QCD and QED form factors - setup and reduction

4th Workstop / Thinkstart: Towards N³LO for $\gamma o \ell \bar{\ell}$ | August 3 – 5, 2022

Fabian Lange

in collaboration with Matteo Fael, Kay Schönwald, Matthias Steinhauser | August 3, 2022

Motivation

- Form factors are basic building blocks for many physical observables:
 - $f\bar{f}$ production at hadron and e^+e^- colliders
 - µe scattering
 - Higgs production and decay
 - ...
- Form factors exhibit an universal infrared behavior which is interesting to study
- \blacksquare Aim of this workstop: $\gamma^* \to \ell \bar{\ell}$ at $\mathrm{N}^3\mathrm{LO}$
- This session: virtual three-loop corrections

Fabian Lange: Three loop corrections for the QCD and QED form factors - setup and

Institute for Theoretical Particle Physics and Institute for Astroparticle Physics

The process

$$X(q) o Q(q_1) + ar Q(q_2)$$
 $q_1^2 = q_2^2 = m^2, \quad q^2 = s = \hat s \cdot m^2$

vector :
$$j^{v}_{\mu} = \overline{\psi}\gamma_{\mu}\psi$$
, $\Gamma^{v}_{\mu} = F^{v}_{1}(s)\gamma_{\mu} - \frac{1}{2m}F^{v}_{2}(s)\sigma_{\mu\nu}q^{\nu}$
axial-vector : $j^{a}_{\mu} = \overline{\psi}\gamma_{\mu}\gamma_{5}\psi$, $\Gamma^{a}_{\mu} = F^{a}_{1}(s)\gamma_{\mu}\gamma_{5} - \frac{1}{2m}F^{a}_{2}(s)q_{\mu}\gamma_{5}$
scalar : $j^{s} = m\overline{\psi}\psi$, $\Gamma^{s} = mF^{s}(s)$
pseudo-scalar : $j^{p} = im\overline{\psi}\gamma_{5}\psi$, $\Gamma^{p} = imF^{p}(s)\gamma_{5}$

Fabian Lange: Three loop corrections for the QCD and QED form factors - setup and

Institute for Theoretical Particle Physics and Institute for Astroparticle Physics

.

History of massive form factors

- $F_i^{(2)}$ (NNLO):
 - Non-singlet fermionic contributions [Hoang, Teubner 1997]
 - QED for vector current [Mastrolia, Remiddi 2003; Bonciani, Mastrolia, Remiddi 2003]
- Complete QCD [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004 2005] *F*⁽³⁾_i (NNNLO) non-singlet:
 - Large N_c [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2 × 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018]
 - ILee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018]
 - *n*_h with *N*_c = 3 [Blümlein, Marquard, Rana, Schneider 2019]
- This session: full (numerical) results at NNNLO

History of massive form factors

- $F_i^{(2)}$ (NNLO):
 - Non-singlet fermionic contributions [Hoang, Teubner 1997]
 - QED for vector current [Mastrolia, Remiddi 2003; Bonciani, Mastrolia, Remiddi 2003]
- Complete QCD [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004 2005] *F*⁽³⁾_i (NNNLO) non-singlet:
 - Large N_c [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2 × 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018]
 - ILee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2 × 2018]
 - *n*_h with *N*_c = 3 [Blümlein, Marquard, Rana, Schneider 2019]

singlet:

non-singlet:

- This session: full (numerical) results at NNNLO
- Side notes:
 - Massless F⁽⁴⁾ computed recently [Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 2022]
 - Singlet contributions to $F_a^{(3)}$ with massive quark loop computed in [Chen, Czakon, Niggetiedt 2021]

Fabian Lange: Three loop corrections for the QCD and QED form factors - setup and

Setup

- Map to predefined integral families with q2e/exp [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]
- FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013; Ruijl, Ueda, Vermaseren 2017] for Lorentz, Dirac, and color algebra [van Ritbergen, Schellekens, Vermaseren 1998]
- Reduction to master integrals ⇒ this talk
- Solve master integrals semi-numerically ⇒ Kay's talk

	non-singlet	<i>n</i> h-singlet	<i>n</i> l-singlet
diagrams	271	66	66
families	34	17	13
integrals	302671	106883	127980
masters	422	316	158

Fabian Lange: Three loop corrections for the QCD and QED form factors - setup and

Institute for Theoretical Particle Physics and Institute for Astroparticle Physics

Integral reduction

- Search for good basis of master integrals for every integral family [Smirnov, Smirnov 2020; Usovitsch 2020]
 - Takes about three hours for most expensive families
- Reduce every family separately to good basis with Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhöfer, Usovitsch 2020] and Fermat [Lewis]
 - Most expensive (non-singlet) families: one week on eight cores and 200 GiB of memory
- Reduce good basis of all families to minimal basis (still good) by employing symmetry relations between families with Kira:
 - \blacksquare 3131 \rightarrow 422 master integrals for non-singlet families
 - Takes about one day for non-singlet families
 - Can be done in parallel to the per-family reductions
- Establish differential equations:

5/7

- Take derivative of master integrals with respect to \hat{s} with LiteRed [Lee 2012 + 2013]
- Reduce resulting integrals again on per-family basis and use known symmetry relations
- Takes a few hours for most expensive families

Good basis

It was shown that it is always possible to find a good basis in which d and the kinematic variables in denominators factorizes [Smirnov, Smirnov 2020; Usovitsch 2020]:

$$M = rac{1}{ ext{complicated polynomial}} M_{ ext{bad}} + \cdots o rac{1}{(d-3)^2(d-4)(s-4m^2)\cdots} M_{ ext{good}} + \cdots$$

- Strategy to find good basis:
 - Reduce sample integrals (simpler than needed for actual reduction)
 - Search for relation

$$I = rac{ ext{good polynomial}}{ ext{bad polynomial}} M_{ ext{bad}} + \dots$$

Invert and express

$$M_{\rm bad} = {{\rm bad \ polynomial}\over {\rm good \ polynomial}} I + \dots$$

everywhere

- Bad polynomial cancels and *I* is good master integral
- If no such relation available, choose least bad polynomial and repeat until basis is good
- Increase sample size if good basis not found
- We use an improved version of the automatized code from [Smirnov, Smirnov 2020]

Fabian Lange: Three loop corrections for the QCD and QED form factors - setup and Institute for Theoretical

Institute for Theoretical Particle Physics and Institute for Astroparticle Physics

Good basis with less poles in ϵ

Similarly, it was shown that one can always find an ε-finite basis without poles in front of master integrals [Chetyrkin, Faisst, Sturm, Tentyukov 2006]:

$$I = \left(\frac{\dots}{\epsilon} + \frac{\dots}{\epsilon^0} + \dots\right) M_{\text{poles}} + \dots \rightarrow \left(\frac{\dots}{\epsilon^0} + \dots\right) M_{\epsilon-\text{finite}} + \dots$$

Search procedure similar:

$$I = \frac{\dots}{\epsilon} M_{\text{poles}} + \dots \rightarrow M_{\text{poles}} = \frac{\epsilon}{\dots} I + \dots$$

• It does not seem possible to find basis which is good and ϵ -finite at the same time

- However, one can get rid of some poles in addition to having a good basis
- Easily incorporated into code of [Smirnov, Smirnov 2020] by treating ϵ as least bad denominator