Three loop corrections for the QCD and QED form factors - setup and reduction

$\mathbf{4}^{\text {th }}$ Workstop / Thinkstart: Towards \mathbf{N}^{3} LO for $\gamma \rightarrow \ell \bar{\ell} \mid$ August 3-5, 2022
Fabian Lange
in collaboration with Matteo Fael, Kay Schönwald, Matthias Steinhauser | August 3, 2022

Motivation

- Form factors are basic building blocks for many physical observables:
- $\overline{f f}$ production at hadron and $e^{+} e^{-}$colliders
- μe scattering
- Higgs production and decay
- Form factors exhibit an universal infrared behavior which is interesting to study
- Aim of this workstop: $\gamma^{*} \rightarrow \ell \bar{\ell}$ at $\mathrm{N}^{3} \mathrm{LO}$
- This session: virtual three-loop corrections

The process

History of massive form factors

$F_{i}^{(2)}$ (NNLO):

- Non-singlet fermionic contributions [Hoang, Teubner 1997]
non-singlet:

singlet:

- QED for vector current [Mastrolia, Remiddi 2003; Bonciani, Mastrolia, Remiddi 2003]
- Complete QCD [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004-2005]
$F_{i}^{(3)}$ (NNNLO) non-singlet:
- Large $N_{\text {c }}$ [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2×2018; Ablinger, Blümlein, Marquard, Rana, Schneider $2 \times$ 2018]
- n_{1} [Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2×2018]
- n_{h} with $N_{\mathrm{c}}=3$ [Blümlein, Marquard, Rana, Schneider 2019]

This session: full (numerical) results at NNNLO

History of massive form factors

$F_{i}^{(2)}$ (NNLO):

- Non-singlet fermionic contributions [Hoang, Teubner 1997]
non-singlet:

singlet:

- QED for vector current [Mastrolia, Remiddi 2003; Bonciani, Mastrolia, Remiddi 2003]
- Complete QCD [Bernreuther, Bonciani, Gehrmann, Heinesch, Leineweber, Mastrolia, Remiddi 2004-2005]
$F_{i}^{(3)}$ (NNNLO) non-singlet:
- Large $N_{\text {c }}$ [Henn, Smirnov, Smirnov, Steinhauser 2016; Lee, Smirnov, Smirnov, Steinhauser 2×2018; Ablinger, Blümlein, Marquard, Rana, Schneider $2 \times$ 2018]
- n_{1} [Lee, Smirnov, Smirnov, Steinhauser 2018; Ablinger, Blümlein, Marquard, Rana, Schneider 2×2018]
- n_{h} with $N_{\mathrm{c}}=3$ [Blümlein, Marquard, Rana, Schneider 2019]

This session: full (numerical) results at NNNLO

Side notes:

- Massless $F_{i}^{(4)}$ computed recently [Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser 2022]
- Singlet contributions to $F_{a}^{(3)}$ with massive quark loop computed in [Chen, Czakon, Niggetiedt 2021]

Setup

- Generate diagrams with qgraf [Nogueira 1991]
- Map to predefined integral families with q2e/exp [Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999]
- FORM [Vermaseren 2000; Kuipers, Ueda, Vermaseren, Vollinga 2013; Ruijl, Ueda, Vermaseren 2017] for Lorentz, Dirac, and color algebra [van Ritbergen, Schellekens, Vermaseren 1998]
- Reduction to master integrals \Rightarrow this talk

	non-singlet	n_{n}-singlet	n_{1}-singlet
diagrams	271	66	66
families	34	17	13
integrals	302671	106883	127980
masters	422	316	158

- Solve master integrals semi-numerically \Rightarrow Kay's talk

Integral reduction

- Search for good basis of master integrals for every integral family [Smirnov, Smirnov 2020; Usovitsch 2020]
- Takes about three hours for most expensive families
- Reduce every family separately to good basis with Kira [Maierhöfer, Usovitsch, Uwer 2017; Klappert, FL, Maierhöfer, Usovitsch 2020] and Fermat [Lewis]
- Most expensive (non-singlet) families: one week on eight cores and 200 GiB of memory
- Reduce good basis of all families to minimal basis (still good) by employing symmetry relations between families with Kira:
- $3131 \rightarrow 422$ master integrals for non-singlet families
- Takes about one day for non-singlet families
- Can be done in parallel to the per-family reductions
- Establish differential equations:
- Take derivative of master integrals with respect to \hat{s} with LiteRed [Lee $2012+2013$]
- Reduce resulting integrals again on per-family basis and use known symmetry relations
- Takes a few hours for most expensive families

Good basis

- It was shown that it is always possible to find a good basis in which d and the kinematic variables in denominators factorizes [Smirnov, Smirnov 2020; Usovitsch 2020]:

$$
I=\frac{\cdots}{\text { complicated polynomial }} M_{\text {bad }}+\cdots \rightarrow \frac{\cdots}{(d-3)^{2}(d-4)\left(s-4 m^{2}\right) \cdots} M_{\text {good }}+\ldots
$$

- Strategy to find good basis:
- Reduce sample integrals (simpler than needed for actual reduction)
- Search for relation

$$
I=\frac{\text { good polynomial }}{\text { bad polynomial }} M_{\text {bad }}+\ldots
$$

- Invert and express

$$
M_{\text {bad }}=\frac{\text { bad polynomial }}{\text { good polynomial }} I+\ldots
$$

everywhere

- Bad polynomial cancels and $/$ is good master integral
- If no such relation available, choose least bad polynomial and repeat until basis is good
- Increase sample size if good basis not found
- We use an improved version of the automatized code from [Smirnov, Smirnov 2020]

Fabian Lange: Three loop corrections for the QCD and QED form factors - setup and
Institute for Theoretical Particle Physics and reduction

Good basis with less poles in ϵ

- Similarly, it was shown that one can always find an ϵ-finite basis without poles in front of master integrals [Chetyrkin, Faisst, Sturm, Tentyukov 2006]:

$$
I=\left(\frac{\cdots}{\epsilon}+\frac{\cdots}{\epsilon^{0}}+\ldots\right) M_{\text {poles }}+\cdots \rightarrow\left(\frac{\cdots}{\epsilon^{0}}+\ldots\right) M_{\epsilon-\text { finite }}+\ldots
$$

- Search procedure similar:

$$
I=\frac{\cdots}{\epsilon} M_{\text {poles }}+\ldots \quad \rightarrow \quad M_{\text {poles }}=\frac{\epsilon}{\ldots} I+\ldots
$$

- It does not seem possible to find basis which is good and ϵ-finite at the same time
- However, one can get rid of some poles in addition to having a good basis
- Easily incorporated into code of [Smirnov, Smirnov 2020] by treating ϵ as least bad denominator

