OpenLoops at 1-loop & 2-loops status and developments

Jonas M. Lindert

Science & Technology Facilities Council

In collaboration with: F. Buccioni, J.-N. Lang, P. Maierhöfer, S. Pozzorini, H. Zhang, M. Zoller

Natalie Schär

N3LO $\gamma^* \rightarrow \ell^+ \ell^-$ kick-off workshop 4th August 2022

OpenLoops

- OpenLoops is a numerical tool providing hard scattering amplitudes to Monte Carlo simulations.
- All components to NLO fully automated in OpenLoops for QCD and EW corrections to the SM.

[Schälicke, Gleisberg, Höche, Schumann, Winter, Krauss, Soff]

OpenLoops constructs helicity and color summed scattering probability densities $w_{LL} = \sum_{h} \sum_{col} |\tilde{\mathcal{M}}_{L}(h)|^{2}$ for L = 0, 1 and $w_{0L} = \sum_{h} \sum_{col} {}^{2} \operatorname{Re} \left[\tilde{\mathcal{M}}_{L}(h) \tilde{\mathcal{M}}_{0}^{*}(h) \right]$ for L = 1from L-loop matrix elements $\tilde{\mathcal{M}}_{L}$. Example:

$$\mathcal{W}_{01} = \sum_{h} \sum_{col} 2 \operatorname{Re} \left[\sum_{h} \sqrt{2} \operatorname{Re} \left[\sum_{h} \sqrt$$

Goals: ultimate for numerical stability for real-virtual applications, automation at NNLO

Components to NLOCalculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram $\Gamma_{\rm c}$

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim → OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
- Renormalization, restoration of (D-4)-dim numerator part \rightarrow rational counterterms $R\bar{\mathcal{M}}_{1,\Gamma} = \mathcal{M}_{1,\Gamma} + \mathcal{M}_{0,1,\Gamma}^{(CT)}$ [Ossola, Papadopoulos, Pittau]
- Reduction and evaluation of tensor integrals → On-the-fly reduction [Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

input: external wavefunctions

 W_1, W_2, W_3, W_4, W_5

Combine w_4 , w_5 into subtree w_6 :

$$w_6^{\gamma} = \left[- \psi \right]_{\alpha\beta}^{\gamma} w_4^{\alpha} w_5^{\beta}$$

 $\begin{bmatrix} \neg \uparrow \\ \alpha \beta \end{bmatrix}^{\gamma} = \text{vertex} + \text{propagator,} \\ \text{universal process-independent} \\ \text{Feynman rule} \\ \end{bmatrix}$

Add next external leg:

$$\begin{split} \mathbf{w}_{6}^{\gamma} &= \left[\underbrace{\neg \mathbf{v}}_{\alpha\beta}^{\gamma} \mathbf{w}_{4}^{\alpha} \mathbf{w}_{5}^{\beta} \right] \\ \mathbf{w}_{7}^{\gamma} &= \left[\underbrace{\neg \mathbf{w}}_{\alpha\beta}^{\gamma} \mathbf{w}_{3}^{\alpha} \mathbf{w}_{6}^{\beta} \right] \end{split}$$

 $\begin{bmatrix} \sup_{\alpha\beta} \gamma \\ \text{universal process-independent} \end{bmatrix}$ Feynman rule

same on the other side:

$$\begin{split} \mathbf{w}_{6}^{\gamma} &= \left[-\mathbf{w}_{1}^{\gamma} \right]_{\alpha\beta}^{\gamma} \mathbf{w}_{4}^{\alpha} \mathbf{w}_{5}^{\beta} \\ \mathbf{w}_{7}^{\gamma} &= \left[\mathbf{w}_{1}^{\gamma} \right]_{\alpha\beta}^{\gamma} \mathbf{w}_{3}^{\alpha} \mathbf{w}_{6}^{\beta} \\ \widetilde{\mathbf{w}}_{8}^{\gamma} &= \left[\mathbf{w}_{4}^{\gamma} \right]_{\alpha\beta}^{\gamma} \mathbf{w}_{1}^{\alpha} \mathbf{w}_{2}^{\beta} \end{split}$$

 $\begin{bmatrix} \sup_{\alpha\beta} \gamma \\ _{\alpha\beta} = & \text{vertex}, \\ \text{universal process-independent} \\ & \text{Feynman rule} \end{bmatrix}$

combine to full diagram:

$$\begin{split} w_{6}^{\gamma} &= \left[\underbrace{\neg \psi}_{\alpha\beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta} \\ w_{7}^{\gamma} &= \left[\underbrace{\neg \psi}_{\alpha\beta}^{\gamma} w_{3}^{\alpha} w_{6}^{\beta} \\ \widetilde{w}_{8}^{\gamma} &= \left[\underbrace{\neg \psi}_{\alpha\beta}^{\gamma} w_{1}^{\alpha} w_{2}^{\beta} \\ \mathcal{M}_{0} &= \left[\underbrace{\neg \psi}_{\alpha\beta}^{\gamma} w_{7}^{\alpha} w_{8}^{\beta} \right] \end{split}$$

OpenLoops Tree Level Algorithm

Recursively construct subtrees starting from external wavefunctions:

Then contract into full diagram:

$$\mathcal{M}_{0,\Gamma}(h) = \underbrace{w_a}_{b} = C_{0,\Gamma} \cdot w_a^{\sigma_a}(k_a, h_a) \, \delta_{\sigma_a \sigma_b} \widetilde{w}_b^{\sigma_b}(k_b, h_b)$$

- diagrams constructed using universal Feynman rules
- identical subtrees are recycled in multiple tree and loop diagrams

External subtrees constructed in tree level algorithm (together with tree diagrams):

 $w_2, w_3 \rightarrow w_6$

Open Loop: Diagram factorizes into chain of segments: $\mathcal{N} = S_1 \cdots S_N$

Construct first segment S_1 attaching the external subtree w_1 .

$$\mathcal{N}_0 = \mathbb{1}$$

 $\mathcal{N}_1 = \mathcal{N}_0 \cdot S_1(w_1)$

Add second segment attaching the subtree w_6 .

$$\mathcal{N}_0 = \mathbb{1}$$

 $\mathcal{N}_1 = \mathcal{N}_0 \cdot S_1(w_1)$
 $\mathcal{N}_2 = \mathcal{N}_1 \cdot S_2(w_6)$

Add third segment.

$$\begin{split} \mathcal{N}_0 &= \mathbb{1} \\ \mathcal{N}_1 &= \mathcal{N}_0 \cdot S_1(w_1) \\ \mathcal{N}_2 &= \mathcal{N}_1 \cdot S_2(w_6) \\ \mathcal{N}_3 &= \mathcal{N}_2 \cdot S_3(w_4) \end{split}$$

Add last segment.

$$\begin{split} \mathcal{N}_0 &= \mathbb{1} \\ \mathcal{N}_1 &= \mathcal{N}_0 \cdot S_1(w_1) \\ \mathcal{N}_2 &= \mathcal{N}_1 \cdot S_2(w_6) \\ \mathcal{N}_3 &= \mathcal{N}_2 \cdot S_3(w_4) \\ \mathcal{N}_4 &= \mathcal{N}_3 \cdot S_4(w_5) \end{split}$$

$$\begin{split} \mathcal{N}_0 &= \mathbb{1} \\ \mathcal{N}_1 &= \mathcal{N}_0 \cdot S_1(w_1) \\ \mathcal{N}_2 &= \mathcal{N}_1 \cdot S_2(w_6) \\ \mathcal{N}_3 &= \mathcal{N}_2 \cdot S_3(w_4) \\ \mathcal{N}_4 &= \mathcal{N}_3 \cdot S_4(w_5) = \mathcal{N}_4 \frac{\beta_N}{\beta_0} \end{split}$$

$$\mathcal{N} = Tr(\mathcal{N}_{4}{}_{\beta_0}{}^{\beta_N})$$

↑

OpenLoops One Loop Algorithm

One Loop Amplitude:

Chain is const

$$\mathcal{M}_{1,\Gamma} = C_{1,\Gamma} \int d\bar{q} \frac{\text{Tr}[\mathcal{N}(q)]}{D_0 D_1 \cdots D_{N_1-1}} = \sum_{\substack{D_{n-1} \\ D_n \\ D_n$$

Diagram is cut open resulting in a chain, which factorizes into segments:

$$\mathcal{N}_{n}(q) = \prod_{a=1}^{n} S_{a}(q) = \int_{\mathbb{R}^{n}} \int_{D_{1}} \int_{D_{2}} \int_{D_{2}} \int_{D_{n}} \int_{D_{n+1}} \int_{D_{n+1}} \int_{D_{n+1}} \int_{D_{n-1}} \int_{D_{n}} \int_{D_{n+1}} \int_{D_{n-1}} \int_{D_{n}} \int_{D_{n}} \int_{D_{n-1}} \int_{D_{n}} \int_{D_{n-1}} \int_{D_{n}} \int_{D_{n-1}} \int_{D_{n}} \int_{D_{n-1}} \int_{D_{n}} \int_{D_{n-1}} \int_{D_{n-1}}$$

Implemented at level of tensor coefficients in $\mathcal{N} = \mathcal{N}_{\mu_1 \cdots \mu_r} q_1^{\mu_1} \cdots q_1^{\mu_r}$.

Segment = vertex + propagator + subtree(s)

Exploit factorization to construct 1l diagrams from universal process-independent building blocks.

The Open Loops algorithm: From tree recursion to loop diagrams

propagators

Build numerator recursively connecting subtrees along the loop keeping the a dependence

 \Rightarrow very fast!

Freat one-loop diagram as ordered set of sub-trees $\mathcal{I}_n = \{i_1, \ldots, i_n\}$ connected by

$$\mathcal{N}^{\beta}_{\alpha}(\mathcal{I}_{n};\boldsymbol{q}) = X^{\beta}_{\gamma\delta}(\boldsymbol{q}) \ \mathcal{N}^{\gamma}_{\alpha}(\mathcal{I}_{n-1};\boldsymbol{q}) \ \boldsymbol{w}^{\delta}(\boldsymbol{i}_{n})$$
$$X^{\beta}_{\gamma\delta} = Y^{\beta}_{\gamma\delta} + \boldsymbol{q}^{\nu} Z^{\beta}_{\nu;\gamma\delta}$$
$$\mathcal{N}^{\beta}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n}) = \left[Y^{\beta}_{\gamma\delta} \ \mathcal{N}^{\gamma}_{\mu_{1}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1}) + Z^{\beta}_{\mu_{1};\gamma\delta} \ \mathcal{N}^{\gamma}_{\mu_{2}\dots\mu_{r};\alpha}(\mathcal{I}_{n-1})\right]$$

The (original) Open Loops algorithm: recycle loop structures

OpenLoops recycling:

Illustration:

child 1

Lower-point open-loops can be shared between diagrams if

- cut is put appropriately
- direction chosen to maximise recyclability

Complicated diagrams require only "last missing piece"

child 2

The (original) Open Loops algorithm: one loop amplitudes

[F. Cascioli, P. Maierhöfer, S. Pozzorini; '12]

- evaluated with **COLLIER** [Denner, Dittmaier, Hofer; '16]

Tensorial coefficients $\mathcal{N}^{\alpha}_{\mu_1...\mu_r;\alpha}$ can directly be contracted with Tensor Integrals

Fast evaluation of $\mathcal{N}(q) = \sum \mathcal{N}_{\mu_1 \dots \mu_r} q^{\mu_1} \dots q^{\mu_r}$ at multiple q-values allows for efficient application of OPP reduction methods e.g. with CutTools [Ossola, Papadopolous, Pittau; '07]

Standard OpenLoops reduction

Complexity grows exponential with tensor rank!

Bottlenecks:

- Large growths of structures prior to reduction

• Evaluation of coefficients required for every helicity h

Complexity grows exponential with tensor rank!

Advantage of OFR:

- (less reliance on external codes)
- •unprecedented numerical stability (crucial for real-virtual applications)

•one algorithm for construction and reduction of amplitude

On-the-fly reduction

• At each Open Loops step that gives rank=2 perform "on-the-fly" 2 -> 1 integrand-level reduction:

rank=2

$$q^{\mu}q^{\nu} = A_{-1}^{\mu\nu} + A_{0}^{\mu\nu}D_{0} + \left(B_{-1,\lambda}^{\mu\nu} + \sum_{i=0}^{3} B_{i,\lambda}^{\mu}\right)$$

$$D_{i} = (q + p_{i})^{2} - m_{i}^{2}$$

- For N > 3 the reduction identify requires (p_1, p_2, p_3) independent momenta.
- This reduction follows from decomposition:

$$q^{\mu} = \sum_{i=1}^{4} c_{i} l_{i}^{\mu}, \quad l_{i} = l_{i}(p_{1}, p_{2})$$
We such such reduction basis
$$\bullet A_{i}^{\mu\nu}, B_{i}^{\mu\nu} \text{ depend on } l_{i}, \text{ e.g.} \quad B_{1,\lambda}^{\mu\nu} = \frac{1}{4\gamma^{2}} \bigg[\xi_{2} \Big(L_{33}^{\mu\nu} \ell_{4,\lambda} + L_{33}^{\mu\nu} \ell_{4,\lambda} \bigg]$$

rank=1 [F. del Aguila and R. Pittau; '04] $\left(\begin{array}{c} u^{\nu} D_{i} \\ z, \lambda \end{array} \right) q^{\lambda},$

can choose this decomposition freely h that we can cancel propagators D_i

On-the-fly reduction

• At each Open Loops step that gives rank=2 perform "on-the-fly" 2 -> 1 integrand-level reduction:

rank=2

$$q^{\mu}q^{\nu} = A_{-1}^{\mu\nu} + A_{0}^{\mu\nu}D_{0} + \left(B_{-1,\lambda}^{\mu\nu} + \sum_{i=0}^{3} B_{i,\lambda}^{\mu}\right)$$

$$D_{i} = (q + p_{i})^{2} - m_{i}^{2}$$

- For N > 3 the reduction identify requires (p_1, p_2, p_3) independent momenta.
- This reduction follows from decomposition:

$$q^{\mu} = \sum_{i=1}^{4} c_i l_i^{\mu}, \quad l_i = l_i (p_1, p_2)$$
We such such reduction basis

~ank=1 [F. del Aguila and R. Pittau; '04] $\left(\begin{array}{c} u^{\nu} D_{i} \\ z, \lambda \end{array} \right) q^{\lambda},$

can choose this decomposition freely h that we can cancel propagators D_i

• $A_i^{\mu\nu}, B_i^{\mu\nu}$ depend on l_i , e.g. $B_{1,\lambda}^{\mu\nu} = \frac{1}{4\gamma^2} \left| \xi_2 \left(L_{33}^{\mu\nu} \ell_{4,\lambda} + \frac{1}{\alpha} L_{44}^{\mu\nu} \ell_{3,\lambda} \right) - \left(r_2^{\mu} L_{34,\lambda}^{\nu} + r_2^{\nu} L_{34,\lambda}^{\mu} \right) \right| + \frac{1}{\gamma} \left(r_2^{\mu} \delta_{\lambda}^{\nu} - A_0^{\mu\nu} r_{2,\lambda} \right)$ Cram determinants!

On-the-fly reduction

4 pinched topologies generated per reduction step

$$\begin{array}{lll} \mathcal{A}_X &= & \log_{10} \left| \frac{\mathcal{W}_{01}^X - \mathcal{W}_{01}^{qp}}{\mathcal{W}_{01}^{qp}} \right| & \longrightarrow \mathsf{Huge nur} \\ \mathcal{M}_{qp} & \mathsf{via OLI} \text{ with CutTools} \end{array}$$

On-the-fly reduction: stability

merical instabilities in naive OFR implementation

Sources of numerical instabilities in OFR

- →Clear correlation between severe numerical instabilities and $\Delta_{12} \rightarrow 0$
- →Instabilities propagate through the reduction and amplify

- 10⁰

Solutions to numerical instabilities in OFR

1. Use freedom of choice of OFR basis for $N \ge 4$ such that $\Delta_{i_1 i_2} \rightarrow \max$. This corresponds to permutation of propagators.

$$\frac{\mathcal{V}^{\mu\nu}q_{\mu}q_{\nu}}{D_0D_1D_2D_3\dots} \to \frac{\mathcal{V}^{\mu\nu}q_{\mu}q_{\nu}}{D_0D_{i_1}D_{i_2}D_{i_3}\dots}, \quad i_1, i_2, i_3 \in [1, 2, 3]$$

- \rightarrow Avoids small rank=2 Gram-determinant instabilities down to N=3
- I. For N=3 and hard kinematics: Gram determinant instabilities arise only in t-channel topologies n_1 $p_2 - p_1$
 - \rightarrow Can be avoided using analytical reduction to MI plus expansions in Δ_{12}

Solutions to numerical instabilities in OFR

→ No rank=2 Gram determinant instabilities!

10^{0}

Numerical stability with OFR

 \rightarrow For remaining instabilities: use qp ▶ This also requires true qp benchmark: remove any dp "noise" (inputs, phase-space,...) Any-order expansions such that rescaling test is reliable

Numerical stability with OFR

Local estimate of numerical stability

• For each step in the OL+OFR construction we construct and propagate an error estimate

Local error sources

Reduction basis

 \rightarrow Estimated via rank=3 Gram determinant (no rank=2 Gram determinant instabilities remaining!)

- Reduction steps
 - \rightarrow Estimated via reduction coefficients
- Scalar integrals → Estimated using Collier (via mod. Cayley determinant)

Hybrid precision

• Trigger qp only where locally necessary, e.g.

 \rightarrow CPU cost: O(1%) of full qp evaluation

 \rightarrow for hard kinematics: excellent numerical stability at only O(10%) cost with respect to pure dp

→ dressing — reduction double precision quadruple precision

Hybrid precision performance

Hybrid precision performance

Numerical instabilities in the IR

• Frequent appearance of double small rank 2 GD instabilities

$$\Delta_{ij} \approx 0, \quad \Delta_{kl} \approx 0$$

 \rightarrow change of basis is futile

• Unstable triangle reductions

▶ IR t-channel $(p_2 - p_1)^2 \approx 0$

 $\blacktriangleright \text{ IR triangles } \Delta_{12} \approx 0$

 \rightarrow IR features and dedicated IR qp triggers via hp_mode=2 ocurrently only fully consistent for NLO QCD extension to NLO QED trivial

$$\xi_{\text{soft}} = E_{\text{soft}}/Q$$
$$\xi_{\text{coll}} = \arccos\left(\frac{\boldsymbol{p}_i \cdot \boldsymbol{p}_j}{|\boldsymbol{p}_i||\boldsymbol{p}_j|}\right)^2$$

Numerical stability in the IR

initial-state collinear radiation in gg $\rightarrow t\bar{t}g$ at $\mathcal{O}(\alpha_s^4)$

soft radiation in $u\bar{u} \to W^+W^-g$ at $\mathcal{O}(\alpha^2 \alpha_s^2)$

New: On-The-fly TEnsor Reduction (OTTER)

• Perform OFR directly at the level of tensor integrals

$$T_N^{\mu_1 \cdots \mu_r} = \int d^D \bar{q} \frac{q^{\mu_1} \cdots q^{\mu_r}}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{N-1}}$$

- \rightarrow targeted stability improvements as in OFR: change of basis, expansions, hp, ...
- \rightarrow Most important advantages:
 - 1. for the first time OFR including hp for loop² processes (game-changer for loop-induced processes) 2. qp/dp can be restricted to tensor integrals. Coefficients can be determined in dp only

$$\underbrace{i_{n}}_{q \text{ o }} \underbrace{i_{n-1}}_{l} = \int \frac{d^{D} \mathcal{N}(q)}{D_{0} D_{1} \dots D_{n-1}} = \sum_{r=0}^{R} \mathcal{N}_{\mu_{1} \dots \mu_{r}} \underbrace{\int \frac{q^{\mu_{1}} \dots q^{\mu_{n}}}{D_{0} D_{1} \dots D_{n-1}}}_{\text{tensor integral}}$$

New: On-The-fly TEnsor Reduction (OTTER)

Details of OTTER reduction strategy:

- $\bullet N > 4$ - rank=2...N: dAP - rank=0, I: OPP•N=4 - rank=2,3,4: dAP - rank=1: special case •N=3
 - rank=1,2,3: dAP or PV

N=2

- rank=1,2: PV

Implementation:

- I. determination of reduction dependences: top-down (large N to small N)
- 2. evaluation of tensor integrals: bottom-up (small N to large N)

OTTER performance

Mode

- OL2.1+Collier DP
- OL2.1+Collier DP + error estimation
- OL2.1+CutTools QP
- OL2.2+Otter DP
- OL2.2+Otter DP + error estimation
- OL2.2+Otter DP+QP tensor integra
- OL2.2+Otter QP

	$gg ightarrow Hgg~({ m time/psp})$	$gg \rightarrow Hggg ~({\rm time/psp})$
	$13\mathrm{ms}$	0.56s
on	$19\mathrm{ms}$	$0.89 \mathrm{s}$
	$43000\mathrm{ms}$	$2300\mathrm{s}$
	$8.9\mathrm{ms}$	$0.29\mathrm{s}$
n	$11\mathrm{ms}$	$0.32 \mathrm{s}$
als	$68\mathrm{ms}$	$0.87\mathrm{s}$
	$740\mathrm{ms}$	$23\mathrm{s}$

 \rightarrow stability of scalar integrals becomes relevant

OTTER performance

OTTER performance

OTTER performance: RRV to $\gamma^* \rightarrow e^+e^-$

CPU performance for ee~aaa at NLO QED:

OL+OFR dp OL+OFR qp

4.4 ms 125ms

OL+Otter dp OL+Otter qp (full)

4.0 ms

78ms

ull) OL+Otter qp (only Tl)

47ms

Conclusions: real-virtual stability

- OpenLoops provides very fast and stable one-loop amplitudes in the SM at NLO QCD, NLO EW and NLO QED up to high multiplicities
- Systematic stability improvements thanks to OFR techniques
- New/upcoming: On-The-fly TEnsor Reduction (OTTER)
- OL+OTTER: new standard for one-loop real-virtual applications

Automation at NNLO

The public OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller] already delivers some components to NNLO:

- OpenLoops is already being used in NNLO calculations in particular for the real virtual components in e.g. MATRIX [Grazzini, Kallweit, Wiesemann], NNLOJET [Gehrmann-De Ridder, Gehrmann, Glover, Huss, Walker], McMule [Banerjee, Engel, Signer, Ulrich].
- NNLO in OpenLoops: require double virtual

Components to NLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram $\Gamma_{\rm c}$

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim → OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
- Renormalization, restoration of (D-4)-dim numerator part \rightarrow rational counterterms $R\bar{\mathcal{M}}_{1,\Gamma} = \mathcal{M}_{1,\Gamma} + \mathcal{M}_{0,1,\Gamma}^{(CT)}$ [Ossola, Papadopoulos, Pittau]
- Reduction and evaluation of tensor integrals → On-the-fly reduction [Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

Components to NNLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram $\Gamma_{\!:}$

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim $\rightarrow\,$ this talk, complete
- Renormalization, restoration of (D-4)-dim numerator part \rightarrow rational counterterms $R\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \mathcal{M}_{1,1,\Gamma}^{(CT)} + \mathcal{M}_{0,2,\Gamma}^{(CT)}$ [Lang, Pozzorini, Zhang, Zoller], implementation ongoing
- Reduction and evaluation of tensor integrals \rightarrow todo

Distinguish irreducible (D4) and reducible (PQ, PQ) diagrams.

Exploit numerator factorization:

Distinguish irreducible (D) and reducible (P , D) diagrams.

Exploit numerator factorization:

1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.

$$\mathcal{N}_{n}^{\left(1\right)} = \mathcal{N}_{n-1}^{\left(1\right)} S_{n}^{\left(1\right)}, \qquad \mathcal{N}_{0}^{\left(1\right)} = \mathbb{1}, \qquad \left[\mathcal{M}^{\left(1\right)}\right]^{\alpha_{1}} = \int \mathrm{d}\tilde{q}_{1} \frac{\mathsf{Tr} \left[\mathcal{N}_{N_{1}}^{\left(1\right)}(q_{1})\right]^{\alpha_{1}}}{\mathcal{D}^{\left(1\right)}(\tilde{q}_{1})}$$

Distinguish irreducible (D) and reducible (P , D) diagrams.

Exploit numerator factorization:

- 1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.
- 2. Connect bridge using tree algorithm

 \rightarrow treat first loop as external "subtree".

$$P_n = P_{n-1} S_n^{(B)}(w_n^{(B)}), \quad w_0^{(B)} = \left[\mathcal{M}^{(1)}\right]^{\alpha_1}, \quad P_{-1} = \mathbb{1}$$

Distinguish irreducible (D) and reducible (P , D) diagrams.

Exploit numerator factorization:

- 1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.
- 2. Connect bridge using tree algorithm
 - \rightarrow treat first loop as external "subtree".
- 3. Construct chain 2 using extension of one-loop algorithm

 \rightarrow treat first loop + bridge as external "subtree".

 $\mathcal{N}_n^{(2)} = \mathcal{N}_{n-1} S_n^{(2)}(w_n^{(2)}), \qquad w_1^{(2)} = \left[\mathcal{M}^{(1)}\right]^{\alpha_1} P_{\alpha_1 \alpha_2}, \qquad \mathcal{N}_0^{(2)} = \mathbbm{1}$

Two-loop numerator factorizes:

$$\mathcal{N}(q_1, q_2) = \mathcal{N}^{(1)}(q_1) \underbrace{\mathcal{N}^{(2)}(q_2)}_{\mathcal{N}^{(i)}(q_i)} \underbrace{\mathcal{N}^{(3)}(q_3)}_{\mathcal{N}^{(i)}(q_i)} \underbrace{\mathcal{N}^{(i)}(q_i)}_{\mathcal{N}^{(i)}(q_i)} = S_0^{(i)}(q_i) \underbrace{S_1^{(i)}(q_i)}_{\mathcal{N}^{(i)}(q_i)} \cdots \underbrace{S_{N_i-1}^{(i)}(q_i)}_{\mathcal{N}_i-1} \underbrace{\mathcal{N}^{(i)}(q_i)}_{\mathcal{N}_i-1} \underbrace{\mathcal{N}^{($$

 \Rightarrow Construct Born-loop interference recursively from building blocks:

$$\mathcal{U}_n = \mathcal{U}_{n-1}\mathcal{K}_n, \quad \mathcal{K}_n \in \{\mathcal{U}_0, \mathcal{N}^{(i)}, S_a^{(i)}, \mathcal{V}_j\}$$

Factorization results in freedom of choice for two-loop algorithm.

- CPU cost ~ # multiplications
- determine most efficient variant through cost simulation

m

1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.

$$\mathcal{N}_{n}^{(3)}(q_{3}) = \mathcal{N}_{n-1}^{(3)}S_{n}^{(3)}, \qquad \mathcal{N}_{0}^{(3)} = \mathbb{1}$$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- 2. Construct longest chain $\mathcal{N}^{(1)}(q_1)$ using $\mathcal{U}_0=2\sum_{col} C\mathcal{M}_0^*(h)$ as the initial condition.

$$\mathcal{U}_{n}^{(1)} = \mathcal{U}_{n-1}^{(1)} S_{n}^{(1)}, \qquad \mathcal{U}_{0}^{(1)} = 2 \sum_{col} C \mathcal{M}_{0}^{*}$$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- 2. Construct longest chain $\mathcal{N}^{(1)}(q_1)$ using $\mathcal{U}_0=2\sum_{col}C\mathcal{M}_0^*(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal # helicities in \mathcal{U}_0 , sum helicities of ext. subtrees at each vertex.

$$\mathcal{U}_{n}^{(1)}(h_{n+1}, h_{n+2}, \ldots) = \sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}(h_{n}, h_{n+1}, h_{n+2} \ldots) S_{n}^{(1)}(h_{n}), \qquad \mathcal{U}_{0}^{(1)} = \mathcal{U}_{0}^{(1)}(h_{1}, h_{2}, \ldots, h_{N_{1}+N_{2}+N_{3}})$$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- 2. Construct longest chain $\mathcal{N}^{(1)}(q_1)$ using $\mathcal{U}_0=2\sum_{col}C\mathcal{M}_0^*(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal # helicities in \mathcal{U}_0 , sum helicities of ext. subtrees at each vertex.

$$\mathcal{U}_{n}^{(1)}(h_{n+1}, h_{n+2}, \ldots) = \sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}(h_{n}, h_{n+1}, h_{n+2} \ldots) S_{n}^{(1)}(h_{n}), \qquad \mathcal{U}_{0}^{(1)} = \mathcal{U}_{0}^{(1)}(h_{1}, h_{2}, \ldots, h_{N_{1}+N_{2}+N_{3}})$$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- 2. Construct longest chain $\mathcal{N}^{(1)}(q_1)$ using $\mathcal{U}_0=2\sum_{col}C\mathcal{M}_0^*(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal # helicities in \mathcal{U}_0 , sum helicities of ext. subtrees at each vertex.

$$\mathcal{U}_{n}^{(1)}(h_{n+1}, h_{n+2}, \ldots) = \sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}(h_{n}, h_{n+1}, h_{n+2} \ldots) S_{n}^{(1)}(h_{n}), \qquad \mathcal{U}_{0}^{(1)} = \mathcal{U}_{0}^{(1)}(h_{1}, h_{2}, \ldots, h_{N_{1}+N_{2}+N_{3}})$$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- Construct longest chain N⁽¹⁾(q₁) using U₀=2∑_{col} CM^{*}₀(h) as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal # helicities in U₀, sum helicities of ext. subtrees at each vertex. Large # of helicities summed in this step (one-loop complexity).

$$\mathcal{U}_{n}^{(1)}(h_{n+1}, h_{n+2}, \ldots) = \sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}(h_{n}, h_{n+1}, h_{n+2}, \ldots) S_{n}^{(1)}(h_{n}), \qquad \mathcal{U}_{0}^{(1)} = \mathcal{U}_{0}^{(1)}(h_{1}, h_{2}, \ldots, h_{N_{1}+N_{2}+N_{3}})$$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- Construct longest chain N⁽¹⁾(q₁) using U₀=2∑_{col} CM^{*}₀(h) as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal # helicities in U₀, sum helicities of ext. subtrees at each vertex. Large # of helicities summed in this step (one-loop complexity).
- 3. Attach $\mathcal{N}^{(1)}(q_1)$, $\mathcal{N}^{(3)}(q_3)$ first to \mathcal{V}_1 , then to \mathcal{V}_0 , sum helicities of $\mathcal{N}^{(3)}(q_3), \mathcal{V}_1, \mathcal{V}_0$.

$$[\mathcal{U}^{(13)}]_{\beta_0^{(2)}}^{\beta_{N_2}^{(2)}} = [\mathcal{U}^{(1)}]_{\beta_0^{(1)}}^{\beta_{N_1}^{(1)}} [\mathcal{N}^{(3)}]_{\beta_0^{(3)}}^{\beta_{N_3}^{(3)}} \left[\nu_0(q_1, q_2)\right]^{\beta_0^{(1)}\beta_0^{(2)}\beta_0^{(3)}} \left[\nu_1(q_1, q_2)\right]_{\beta_{N_1}^{(1)}\beta_{N_2}^{(2)}\beta_{N_3}^{(3)}} \Big|_{q_3 \to -(q_1+q_2)}$$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- Construct longest chain N⁽¹⁾(q₁) using U₀=2∑_{col} CM^{*}₀(h) as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal # helicities in U₀, sum helicities of ext. subtrees at each vertex. Large # of helicities summed in this step (one-loop complexity).
- 3. Attach $\mathcal{N}^{(1)}(q_1)$, $\mathcal{N}^{(3)}(q_3)$ first to \mathcal{V}_1 , then to \mathcal{V}_0 , sum helicities of $\mathcal{N}^{(3)}(q_3), \mathcal{V}_1, \mathcal{V}_0$.
- Attach N⁽²⁾(q₂) segments to previously constructed object, sum helicities on-the-fly.

 $\mathcal{U}_{n}^{(123)} = \mathcal{U}_{(n-1)}^{(123)} \frac{S_{n}^{(2)}}{s_{n}}, \qquad \mathcal{U}_{0}^{(123)} = \mathcal{U}^{(13)} = \mathcal{U}^{(1)}(q_{1})\mathcal{N}^{(3)}(q_{3})\mathcal{V}_{1}(q_{1}, q_{2})\mathcal{V}_{0}(q_{1}, q_{2})$

- 1. Construct shortest chain $\mathcal{N}^{(3)}(q_3)$.
- Construct longest chain N⁽¹⁾(q₁) using U₀=2∑_{col} CM^{*}₀(h) as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal # helicities in U₀, sum helicities of ext. subtrees at each vertex. Large # of helicities summed in this step (one-loop complexity).
- 3. Attach $\mathcal{N}^{(1)}(q_1)$, $\mathcal{N}^{(3)}(q_3)$ first to \mathcal{V}_1 , then to \mathcal{V}_0 , sum helicities of $\mathcal{N}^{(3)}(q_3), \mathcal{V}_1, \mathcal{V}_0$.
- Attach N⁽²⁾(q₂) segments to previously constructed object, sum helicities on-the-fly.

Completely general and highly efficient algorithm. Fully implemented for QED and QCD corrections to the SM.

Numerical Stability

Validate and measure numerical stability of two-loop algorithm without computing tensor integrals using **pseudotree test**.

- Cut two propagators of two-loop diagram
- Insert random wavefunctions e1, e2, e3, e4 saturating indices
- Set q_1, q_2 to random constant values, contract tensor coefficients $\mathcal{N}_{\mu_1...\mu_r\nu_1...\nu_s}$ with fixed-value tensor integrand $\frac{q_1^{\mu_1}...q_1^{\mu_r}q_2^{\nu_1}...q_1^{\nu_s}}{\mathcal{D}(q_1,q_2)}$
- · Compare to computation with well-tested tree level algorithm

Typical accuracy around 10^{-15} in double (DP) and 10^{-30} in quad (QP) precision, always much better than 10^{-17} in QP \Rightarrow Establish QP as benchmark for DP

Numerical Stability: Irreducible Diagrams

Numerical stability of scattering probability density $W_{02}^{(2L,pr)}$ in double (pr=DP) vs quad (pr=QP) precision in pseudotree mode.

The plot shows the fraction of points with ${\cal A}_{\rm DP}>{\cal A}_{\rm min}$ for 10^5 uniform random points.

Excellent numerical stability. Essential for full calculation, tensor integrals will be main source of instabilities.

Efficiency: Irreducible Diagrams

Construction of tensor coefficients for QED, QCD and SM (NNLO QCD) processes

(single intel i7-6600U, 2.6 GHz, 16GB RAM, 1000 points)

Strong CPU performance, comparable to real-virtual corrections in OpenLoops.

One-loop rational terms

Amputated one-loop diagram γ :¹

The ε -dim numerator parts $\tilde{\mathcal{N}}(\bar{q}_1) = \bar{\mathcal{N}}(\bar{q}_1) - \mathcal{N}(q_1)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles

 \Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1,\gamma}$ [Ossola, Papadopoulos, Pittau]

Finite set of process-independent rational terms in renormalisable models.

¹Bar denotes quantities in D dimensions.

Two-loop rational terms

Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, Zoller]

$$\mathbf{R}\,\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\underbrace{\delta Z_{1,\gamma} + \delta \tilde{\mathbf{Z}}_{1,\gamma}}_{\text{subtract}} + \underbrace{\delta \mathcal{R}_{1,\gamma}}_{\text{restore}\,\bar{\mathcal{N}}\text{-terms}} \right) \cdot \mathcal{M}_{1,\Gamma/\gamma} + \left(\underbrace{\delta Z_{2,\Gamma}}_{\text{subtract remaining}} + \underbrace{\delta \mathcal{R}_{2,\Gamma}}_{\text{restore remaining}} \right)$$

Example:

- Divergences from subdiagrams γ and remaining local one subtracted by usual UV counterterms $\delta Z_{1,\gamma}, \delta Z_{2,\Gamma}$.
- Additional UV counterterm $\delta \tilde{Z}_{1,\gamma} \propto \frac{\tilde{q}_1^2}{\epsilon}$ for subdiagrams with mass dimension 2.
- $\delta \mathcal{R}_{2,\Gamma}$ is a two-loop rational term stemming from the interplay of $\tilde{\mathcal{N}}$ with UV poles.
- Finite set of process-independent rational terms of UV origin.
- Available for QED and QCD corrections to the SM. [Lang, Pozzorini, Zhang, Zoller, 2021]
- Rational terms of IR origin currently under investigation.

Status:

- Implementation of new tree (e.g.) and one-loop (e.g.)
 universal Feynman rules, complete
- Validation of new 1l tensor structures using pseudotree-test, complete
- Ongoing: Validation of implementation of two-loop rational terms by pole-cancellation check, computation of first full amplitudes for simple processes → require tensor integrals

Currently working on twored, small in-house tensor integral library for 2 and 3 point topologies with off-shell external legs and massless propagators.

Approach:

- Covariant decomposition: express tensor integrals in terms of scalar integrals and their coefficients.
- Reduce scalar integrals to master integrals using FIRE[Smirnov, Chukharev].
- Implement analytic master integrals from literature in twored.

New algorithm for two loop tensor coefficients:

- Fully general algorithm
- Excellent numerical stability
- Highly efficient, comparable to real virtual contribution
 - Exploit factorization for ideal order of building blocks.
 - Efficient treatment of helicities and ranks in loop momenta.
- Fully implemented for NNLO QED and QCD Corrections to SM

Current and future projects

- Implementation of two-loop UV and rational counterterms
- Tensor integrals (in-house framework and or external tool or mixture thereof)

Backup

On-The-Fly Helicity Summation at NLO

Final result:
$$W_{01} = \sum_{h} \sum_{col} 2 \operatorname{Re} \left[\bar{\mathcal{M}}_{1}(h) \bar{\mathcal{M}}_{0}^{*}(h) \right]$$

Instead of $\mathcal{N}(q, h) = \prod_{a} S_{a}(q, h)$, construct $\mathcal{U}(q) = \sum_{h} \left[2 \sum_{col} C \mathcal{M}_{0}^{*}(h) \right] \mathcal{N}(q, h)$

Perform on-the-fly helicity summation [Buccioni, Pozzorini, Zoller], for each diagram:

- Use Born-color interfernce u₀=2∑_{col} CM^{*}₀(h) as initial condition, begin the recursion with maximal helicities.
- Exploit factorization to sum helicities in each recursion step: $\sum_{h} \mathcal{U}_{0}(h) \mathcal{N}(q, h) = \sum_{h_{N}} \left[\cdots \sum_{h_{2}} \left[\sum_{h_{1}} \mathcal{U}_{0}(h_{1}, h_{2}, \ldots) \mathcal{S}_{1}(h_{1}) \right] \mathcal{S}_{2}(h_{2}) \cdots \right] \mathcal{S}_{N}(h_{N})$
- (in renormalizable theories) each segment:
 - increases rank by 1 (or 0)
 - decreases total helicities by a factor of # helicities of subtree in the segment

Minimal helicities with maximal rank, complexity is kept low in final recursion steps.

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of # helicities of wavefunction in the segment

helicities=32, rank=0

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of # helicities of wavefunction in the segment

helicities=16, rank=1
On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of # helicities of wavefunction in the segment

 \downarrow

helicities=4, rank=2

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of # helicities of wavefunction in the segment

helicities=2, rank=3

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of # helicities of wavefunction in the segment

helicities=1, rank=4

1. construct chains $\mathcal{N}^{(1)}(q_1)$, $\mathcal{N}^{(2)}(q_2)$, $\mathcal{N}^{(3)}(q_3)$ using one-loop algorithm.

$$\left[\mathcal{N}^{(1)}(q_1)\right]_{\beta_0^{(1)}}^{\beta_{N_1}^{(1)}} \left[\mathcal{N}^{(2)}(q_2)\right]_{\beta_0^{(2)}}^{\beta_{N_2}^{(2)}} \left[\mathcal{N}^{(3)}(q_3)\right]_{\beta_0^{(3)}}^{\beta_{N_2}^{(3)}}$$

- 1. construct chains $\mathcal{N}^{(1)}(q_1), \mathcal{N}^{(2)}(q_2), \mathcal{N}^{(3)}(q_3)$ using one-loop algorithm.
- 2. combine with vertex V_1 , closing indices $\beta_{N_1}^{(1)}, \beta_{N_2}^{(2)}, \beta_{N_3}^{(3)}$

$$\left[\mathcal{N}^{(1)}(q_1) \right]_{\beta_0^{(1)}}^{\beta_{N_1}^{(1)}} \left[\mathcal{N}^{(2)}(q_2) \right]_{\beta_0^{(2)}}^{\beta_{N_2}^{(2)}} \left[\mathcal{N}^{(3)}(q_3) \right]_{\beta_0^{(3)}}^{\beta_{N_3}^{(3)}} \left[\mathcal{V}_1(q_1, q_2) \right]_{\beta_{N_1}^{(1)} \beta_{N_2}^{(2)} \beta_{N_2}^{(3)}}$$

- 1. construct chains $\mathcal{N}^{(1)}(q_1), \mathcal{N}^{(2)}(q_2), \mathcal{N}^{(3)}(q_3)$ using one-loop algorithm.
- 2. combine with vertex V_1 , closing indices $\beta_{N_1}^{(1)}, \beta_{N_2}^{(2)}, \beta_{N_3}^{(3)}$
- 3. combine with vertex \mathcal{V}_0 , closing indices $\beta_0^{(1)}, \beta_0^{(2)}, \beta_0^{(3)}$

$$\left[\mathcal{N}^{(1)}(\mathbf{q}_{1}) \right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}} \left[\mathcal{N}^{(2)}(\mathbf{q}_{2}) \right]_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}} \left[\mathcal{N}^{(3)}(\mathbf{q}_{3}) \right]_{\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}} \left[\mathcal{V}_{1}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{N_{3}}^{(1)}\beta_{N_{2}}^{(2)}\beta_{N_{3}}^{(3)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(2)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(1)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(3)}}^{\beta_{0}^{(3)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(3)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(1)}\beta_{0}^{(2)}\beta_{0}^{(2)}\beta_{0}^{(3)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(3)}\beta_{0}^{(3)}} \left[\mathcal{V}_{0}(\mathbf{q}_{1},\mathbf{q}_{2}) \right]_{\beta_{0}^{(3)}\beta_{0}^{$$

- 1. construct chains $\mathcal{N}^{(1)}(q_1), \mathcal{N}^{(2)}(q_2), \mathcal{N}^{(3)}(q_3)$ using one-loop algorithm.
- 2. combine with vertex V_1 , closing indices $\beta_{N_1}^{(1)}, \beta_{N_2}^{(2)}, \beta_{N_3}^{(3)}$
- 3. combine with vertex \mathcal{V}_0 , closing indices $\beta_0^{(1)}, \beta_0^{(2)}, \beta_0^{(3)}$
- 4. multiply Born-color interference, sum over helicities, map momenta

$$\sum_{h} \mathcal{U}_{0}(h) \left[\mathcal{N}^{(1)}(q_{1}, h) \right] \left[\mathcal{N}^{(2)}(q_{2}, h) \right] \left[\mathcal{N}^{(3)}(q_{3}, h) \right] \left[\mathcal{V}_{1}(q_{1}, q_{2}, h) \right] \left[\mathcal{V}_{0}(q_{1}, q_{2}, h) \right] \Big|_{q_{3} \rightarrow -(q_{1}+q_{2})}$$

$$\sum_{h} \mathcal{U}_{0}(h) \left[\mathcal{N}^{(1)}(q_{1}, h) \right] \left[\mathcal{N}^{(2)}(q_{2}, h) \right] \left[\mathcal{N}^{(3)}(q_{3}, h) \right] \left[\mathcal{V}_{1}(q_{1}, q_{2}, h) \right] \left[\mathcal{V}_{0}(q_{1}, q_{2}, h) \right] \Big|_{q_{3} \rightarrow -(q_{1}+q_{2})}$$

- 1. construct chains $\mathcal{N}^{(1)}(q_1), \mathcal{N}^{(2)}(q_2), \mathcal{N}^{(3)}(q_3)$ using one-loop algorithm
- 2. combine with vertex V_1 , closing indices $\beta_{N_1}^{(1)}, \beta_{N_2}^{(2)}, \beta_{N_3}^{(3)}$
- 3. combine with vertex \mathcal{V}_0 , closing indices $\beta_0^{(1)}, \beta_0^{(2)}, \beta_0^{(3)}$
- 4. sum over helicities, map momenta, multiply Born-color interference

Observations:

- complexitiy of each step depends on ranks in q₁, q₂ and helicities
- step 2, 3 are performed for 6, 3 open spinor/Lorentz indices
- step 2, 3 are performed at maximal ranks
- all steps are performed for all helicities

Very inefficient: most expensive steps performed for maximal number of components and helicities.

Helicity Bookkeeping

For a set of particles $\mathcal{E} = \{1, 2, \dots, N\}$ the helicity configurations are identified as:

$$\lambda_{p} = \begin{cases} 1,3 & \text{ for fermions with helicity } s = -1/2, 1/2 \\ 1,2,3 & \text{ for gauge bosons with } s = -1,0,1 & \forall \ p \in \mathcal{E} \\ 0 & \text{ for scalars with } s = 0 \text{ or unpolarized particles} \end{cases}$$

Each particle is assigned a base 4 helicity label

$$\bar{h}_{p} = \lambda_{p} \, 4^{p-1},$$

which can be used to define a similar numbering scheme for a set of particles:

 $\mathcal{E}_a = \{p_{a_1}, \dots, p_{a_n}\}$ has the helicity label,

$$h_a = \sum_{p \in \mathcal{E}_a} \bar{h}_p.$$

Merging

Example:

- After one dressing step subsequent dressing steps are identical.
- Topology (scalar propagators) is identical for both diagrams.
- Diagrams can be merged.

For diagrams A,B with identical segments after n dressing steps (exploit factorization):

$$\mathcal{U}_{A,B} = \mathcal{U}_0 Ir(N_{A,B}) = \text{numerator} \cdot \text{Born} \cdot \text{color}$$
$$\mathcal{U}_A + \mathcal{U}_B = (\mathcal{U}_{n,A} \cdot S_{n+1} \cdots S_N) + (\mathcal{U}_{n,B} \cdot S_{n+1} \cdots S_N)$$
$$= (\mathcal{U}_{n,A} + \mathcal{U}_{n,B}) \cdot S_{n+1} \cdots S_N$$

Only perform dressing steps $n\!+\!1$ to N once.

Highly efficient way of dressing a large number of diagrams for complicated processes.

One-loop rational terms

Amputated one-loop diagram γ (1PI)

$$\bar{\mathcal{M}}_{1,\gamma} = \underbrace{C_{1,\gamma}}_{\text{color factor}} \int \mathrm{d}\bar{q}_1 \frac{\mathcal{N}(q_1) + \tilde{\mathcal{N}}(\bar{q}_1)}{\mathcal{D}(\bar{q}_1)} = \underbrace{D_{1,\gamma}}_{D_1} \Rightarrow \delta \mathcal{R}_{1,\gamma} = C_{1,\gamma} \int \mathrm{d}\bar{q}_1 \frac{\tilde{\mathcal{N}}(\bar{q}_1)}{\mathcal{D}(\bar{q}_1)}$$

The ε -dim numerator parts $\tilde{\mathcal{N}}(\bar{q}_1) = \bar{\mathcal{N}}(\bar{q}_1) - \mathcal{N}(q_1)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles \Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1,\gamma}$ [Ossola, Papadopoulos, Pittau]

$$\Rightarrow \qquad \underbrace{\mathsf{R}\,\bar{\mathcal{M}}_{1,\gamma}}_{D-\mathsf{dim, renormalised}} = \underbrace{\mathcal{M}_{1,\gamma}}_{4-\mathsf{dim numerator}} + \underbrace{\delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}}_{\mathsf{UV and rational counterterm}}$$

Generic one-loop diagram Γ factorises into 1PI subdiagram γ and external subtrees w_i (4-dim):

$$\bar{\mathcal{M}}_{1,\Gamma} = \left[\bar{\mathcal{M}}_{1,\gamma} \right]^{\sigma_1 \dots \sigma_N} \prod_{i=1}^N [w_i]_{\sigma_i} \Rightarrow \left| \mathbf{R} \, \bar{\mathcal{M}}_{1,\Gamma} = \mathcal{M}_{1,\Gamma} + \left(\delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \prod_{\substack{i=1 \\ \text{tree diagram}}}^N w_i \right|$$

Finite set of process-independent rational terms in renormalisable models computed from UV divergent vertex functions

Status of two-loop rational terms

Renormalised *D*-dim amplitudes can be computed from amplitudes with 4-dim numerators and a finite set of universal UV and rational counterterms inserted lower-loop amplitudes

$$\mathbf{R}\,\tilde{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \cdot \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta \mathcal{R}_{2,\Gamma} \right)$$

Status of two-loop rational terms

- General method for the computation of rational counterterms of UV origin from simple tadpole integrals in any renormalisable model [Pozzorini, Zhang, Zoller,2020]
- Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, Zoller, 2020]
- Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, Zoller, 2021]
- Full set of two-loop rational terms computed for
 - QED with full dependence on the gauge parameter [Pozzorini, Zhang, Zoller, 2020]
 - SU(N) and U(1) in any renormalisation scheme [Lang, Pozzorini, Zhang, Zoller, 2020]
 - QED and QCD corrections to the full SM [Lang, Pozzorini, Zhang, Zoller, 2021]
- Rational terms of IR origin currently under investigation

Explicit dressing steps

Triple vertex loop segment:

$$\left[S_{a}^{(i)}(q_{i},h_{a}^{(i)})\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} = \underbrace{\left\{\left[Y_{a}^{\sigma}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} + \left[Z_{ia,\nu}^{\sigma}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}}q_{i}^{\nu}\right\} w_{a\sigma}^{(i)}(k_{ia},h_{a}^{(i)})$$

Quartic vertex segments:

$$\left[S_{a}^{(i)}(q_{i},h_{a}^{(i)})\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} = \sum_{k_{a} \atop \beta_{a}^{(i)} \atop \beta_{a}^{(i)} \atop \beta_{a}^{(i)} = k_{a} \atop \beta_{a}^{(i)} = \left[Y_{ia}^{\sigma_{1}\sigma_{2}}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} w_{a_{1}\sigma_{1}}^{(i)}(k_{ia_{1}},h_{a_{1}}^{(i)}) w_{a_{2}\sigma_{2}}^{(i)}(k_{ia_{2}},h_{a}^{(i)})$$

with $h_a^{(i)} = h_{a_1}^{(i)} + h_{a_2}^{(i)}$ and $k_{ia} = k_{ia_1} + k_{ia_2}$. Dressing step for a segment with a triple vertex:

$$\begin{split} \left[\mathcal{N}_{n;\,\mu_{1}...\mu_{r}}^{(1)}(\hat{h}_{n}^{(1)}) \right]_{\beta_{0}^{(1)}}^{\beta_{n}^{(1)}} &= \left\{ \left[\mathcal{N}_{n-1;\,\mu_{1}...\mu_{r}}^{(1)}(\hat{h}_{n-1}^{(1)}) \right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}} \left[Y_{1n}^{\sigma} \right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}} \\ &+ \left[\mathcal{N}_{n-1;\,\mu_{2}...\mu_{r}}^{(1)}(\hat{h}_{n-1}^{(1)}) \right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}} \left[Z_{1n,\mu_{1}}^{\sigma} \right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}} \right\} w_{n\sigma}^{(1)}(k_{n},h_{n}^{(1)}). \end{split}$$

Processes considered in performance tests

corrections	process type	massless fermions	massive fermions	process
QED	$2 \rightarrow 2$	е	-	$e^+e^- ightarrow e^+e^-$
	$2 \rightarrow 3$	е	_	$e^+e^- ightarrow e^+e^-\gamma$
QCD	$2 \rightarrow 2$	и	_	gg ightarrow u ar u
		и, d	_	$dar{d} ightarrow uar{u}$
		и	_	gg ightarrow gg
		и	t	$uar{u} o tar{t}g$
		и	t	$gg ightarrow t ar{t}$
		и	t	$gg ightarrow t ar{t} g$
	2 ightarrow 3	u, d	_	$dar{d} ightarrow uar{u}g$
		и	_	gg ightarrow ggg
		и, d	—	$uar{d} o W^+ gg$
		и, d	—	$u ar{u} ightarrow W^+ W^- g$
		и	t	$uar{u} ightarrow tar{t}H$
		и	t	$gg ightarrow t ar{t} H$

	virtual–virtual	real–virtual [MB]		
hard process	segment-by-segment	diagram-by-diagram	coefficients	full
$e^+e^- ightarrow e^+e^-$	18	8	6	23
$e^+e^- ightarrow e^+e^-\gamma$	154	25	22	54
$gg ightarrow u ar{u}$	75	31	10	26
$gg ightarrow tar{t}$	94	35	15	34
$gg ightarrow t ar{t} g$	2000	441	152	213
$u ar d o W^+ g g$	563	143	54	90
$u ar u o W^+ W^- g$	264	67	36	67
$uar{u} ightarrow tar{t}H$	82	28	14	40
$gg ightarrow t ar{t} H$	604	145	50	90
$uar{u} ightarrow tar{t}g$	323	83	41	74
gg ightarrow gg	271	94	41	55
$d\bar{d} ightarrow u\bar{u}$	18	10	9	20
$d\bar{d} ightarrow u\bar{u}g$	288	85	39	68
gg ightarrow ggg	6299	1597	623	683

Renormalized two-loop diagram Γ (assuming off-shell external legs):

(from arxiv:2007.03713v2)

 $\mathbf{\tilde{R}}\mathcal{\tilde{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta \mathcal{\tilde{Z}}_{1,\gamma} + \delta \mathcal{\tilde{Z}}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta \mathcal{Z}_{2,\Gamma} + \delta \mathcal{R}_{2,\Gamma} \right)$

Renormalized two-loop diagram Γ (assuming off-shell external legs): $\mathbf{R}\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta R_{1,\gamma} \right) \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma} \right)$

In terms of ϵ :

$$\mathcal{M}_{2,\Gamma} = \frac{1}{\epsilon^2} M_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} M_{2,\Gamma}^{(1)} + M_{2,\Gamma}^{(0)} + \epsilon M_{2,\Gamma}^{(-1)} + \mathcal{O}(\epsilon)$$
$$\mathcal{M}_{1,\Gamma/\gamma} = \frac{1}{\epsilon} M_{1,\Gamma/\gamma}^{(1)} + M_{1,\Gamma/\gamma}^{(0)} + \epsilon M_{1,\Gamma/\gamma}^{(-1)} + \mathcal{O}(\epsilon^2)$$
$$\left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta R_{1,\gamma}\right) = \frac{1}{\epsilon} Z_{1,\gamma}^{(1)} + Z_{1,\gamma}^{(0)}$$
$$\left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma}\right) = \frac{1}{\epsilon^2} Z_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} Z_{2,\Gamma}^{(1)} + Z_{2,\Gamma}^{(0)}$$

Renormalized two-loop diagram Γ (assuming off-shell external legs): $\mathbf{R}\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta R_{1,\gamma} \right) \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma} \right)$

In terms of ϵ :

$$\mathcal{M}_{2,\Gamma} = \frac{1}{\epsilon^2} M_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} M_{2,\Gamma}^{(1)} + M_{2,\Gamma}^{(0)} + \epsilon M_{2,\Gamma}^{(-1)} + \mathcal{O}(\epsilon)$$
$$\mathcal{M}_{1,\Gamma/\gamma} = \frac{1}{\epsilon} M_{1,\Gamma/\gamma}^{(1)} + M_{1,\Gamma/\gamma}^{(0)} + \epsilon M_{1,\Gamma/\gamma}^{(-1)} + \mathcal{O}(\epsilon^2)$$
$$\left(\delta Z_{1,\gamma} + \delta \overline{Z}_{1,\gamma} + \delta R_{1,\gamma}\right) = \frac{1}{\epsilon} Z_{1,\gamma}^{(1)} + Z_{1,\gamma}^{(0)}$$
$$\left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma}\right) = \frac{1}{\epsilon^2} Z_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} Z_{2,\Gamma}^{(1)} + Z_{2,\Gamma}^{(0)}$$

then poles should cancel:

• $\frac{1}{\epsilon} Z_{2,\Gamma}^{(1)} + \frac{1}{\epsilon} \sum_{\gamma} \left(Z_{1,\gamma}^{(1)} \mathcal{M}_{1,\Gamma/\gamma}^{(0)} + Z_{1,\gamma}^{(0)} \mathcal{M}_{1,\Gamma/\gamma}^{(1)} \right) + \frac{1}{\epsilon} \mathcal{M}_{2,\Gamma}^{(1)}$

Renormalized two-loop diagram Γ (assuming off-shell external legs): $\mathbf{R}\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta R_{1,\gamma} \right) \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma} \right)$

In terms of ϵ :

$$\mathcal{M}_{2,\Gamma} = \frac{1}{\epsilon^2} \mathcal{M}_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} \mathcal{M}_{2,\Gamma}^{(1)} + \mathcal{M}_{2,\Gamma}^{(0)} + \epsilon \mathcal{M}_{2,\Gamma}^{(-1)} + \mathcal{O}(\epsilon)$$
$$\mathcal{M}_{1,\Gamma/\gamma} = \frac{1}{\epsilon} \mathcal{M}_{1,\Gamma/\gamma}^{(1)} + \mathcal{M}_{1,\Gamma/\gamma}^{(0)} + \epsilon \mathcal{M}_{1,\Gamma/\gamma}^{(-1)} + \mathcal{O}(\epsilon^2)$$
$$\left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta R_{1,\gamma}\right) = \frac{1}{\epsilon} Z_{1,\gamma}^{(1)} + Z_{1,\gamma}^{(0)}$$
$$\left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma}\right) = \frac{1}{\epsilon^2} Z_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} Z_{2,\Gamma}^{(1)} + Z_{2,\Gamma}^{(0)}$$

then poles should cancel:

- $\frac{1}{\epsilon} Z_{2,\Gamma}^{(1)} + \frac{1}{\epsilon} \sum_{\gamma} \left(Z_{1,\gamma}^{(1)} M_{1,\Gamma/\gamma}^{(0)} + Z_{1,\gamma}^{(0)} M_{1,\Gamma/\gamma}^{(1)} \right) + \frac{1}{\epsilon} M_{2,\Gamma}^{(1)}$
- $\frac{1}{\epsilon^2} M_{2,\Gamma}^{(2)} + \frac{1}{\epsilon^2} \sum_{\gamma} Z_{1,\gamma}^{(1)} M_{1,\Gamma/\gamma}^{(1)} + \frac{1}{\epsilon^2} Z_{2,\Gamma}^{(2)}$

Renormalized two-loop diagram Γ (assuming off-shell external legs): $\mathbf{R}\bar{\mathcal{M}}_{2,\Gamma} = \mathcal{M}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta R_{1,\gamma} \right) \mathcal{M}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma} \right)$

In terms of ϵ :

$$\mathcal{M}_{2,\Gamma} = \frac{1}{\epsilon^2} M_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} M_{2,\Gamma}^{(1)} + M_{2,\Gamma}^{(0)} + \epsilon M_{2,\Gamma}^{(-1)} + \mathcal{O}(\epsilon)$$
$$\mathcal{M}_{1,\Gamma/\gamma} = \frac{1}{\epsilon} M_{1,\Gamma/\gamma}^{(1)} + M_{1,\Gamma/\gamma}^{(0)} + \epsilon M_{1,\Gamma/\gamma}^{(-1)} + \mathcal{O}(\epsilon^2)$$
$$\left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta R_{1,\gamma}\right) = \frac{1}{\epsilon} Z_{1,\gamma}^{(1)} + Z_{1,\gamma}^{(0)}$$
$$\left(\delta Z_{2,\Gamma} + \delta R_{2,\Gamma}\right) = \frac{1}{\epsilon^2} Z_{2,\Gamma}^{(2)} + \frac{1}{\epsilon} Z_{2,\Gamma}^{(1)} + Z_{2,\Gamma}^{(0)}$$

then poles should cancel:

- $\frac{1}{\epsilon} Z_{2,\Gamma}^{(1)} + \frac{1}{\epsilon} \sum_{\gamma} \left(Z_{1,\gamma}^{(1)} \mathcal{M}_{1,\Gamma/\gamma}^{(0)} + Z_{1,\gamma}^{(0)} \mathcal{M}_{1,\Gamma/\gamma}^{(1)} \right) + \frac{1}{\epsilon} \mathcal{M}_{2,\Gamma}^{(1)}$
- $\frac{1}{\epsilon^2} M_{2,\Gamma}^{(2)} + \frac{1}{\epsilon^2} \sum_{\gamma} Z_{1,\gamma}^{(1)} M_{1,\Gamma/\gamma}^{(1)} + \frac{1}{\epsilon^2} Z_{2,\Gamma}^{(2)}$

This would validate $\delta R_{2,\Gamma}$ (contains $\frac{1}{\epsilon}$ pole) as well as implementation of $\delta \tilde{Z}_{1,\gamma}$, $\delta Z_{2,\Gamma}$

Example (from arXiv:2001.11388v3) :

where k=1,2 is the loop order.

For NNLO need to implement:

- universal Feynman rules for new tensor structures
- new rational counterterms

For NNLO need:

- 1| TI for
 - 11 diagrams with ct insertions: up to O(ε), new topolgies due to squared propagator,
 α^{μ1} urg^μr

e.g.
$$\int d\bar{q}_1 \frac{q_1^{\mu_1} \cdots q_1^{\mu_r}}{\bar{D}_0 \bar{D}_0 \bar{D}_1 \bar{D}_2} = I^{\mu_1 \cdots \mu_r}$$

- VV reducible, V, RV, L2: exists
- 2| T|

• VV irreducible:

$$\int \mathrm{d}\bar{q}_1 \int \mathrm{d}\bar{q}_2 \frac{q_1^{\mu_1} \cdots q_1^{\mu_r} q_2^{\nu_1} \cdots q_2^{\nu_s}}{\mathcal{D}^{(1)}(\bar{q}_1) \mathcal{D}^{(2)}(\bar{q}_2) \mathcal{D}^{(3)}(\bar{q}_3)} \Big|_{q_3 \to -(q_1+q_2)} = I^{\mu_1 \cdots \mu_r \nu_1 \cdots \nu_s}$$

Implementation of Renormalization, Rational Terms

for NNLO need the following UV rational/counterterms:

- 1l ct in 0l diagrams (ct and tensor structures exist) renormalization of:
 - Il diagrams (V, RV, L2): روم در exists
 - reducible 2I diagrams (VV): Sand, new
- Il ct in 1l diagrams (ct exist, new tensor structures→ implemented and tested with pseudotree test) renormalization of:
 - irreduclible 2l diagrams (VV): K, new
 - reducible 2I diagrams (VV): , new
- 2l ct in 0l diagrams (new ct, tensor structures exists) renormalization of:
 - irreducible 2l diagrams (VV): روم (new)

Currently working on interfacing and extending twored:

an in-house tensor integral library for 2 and 3 point topologies (possibly extend to 4 point) with off-shell external legs and massless propagators.

Approach:

For a given topology with tensor integral $I^{\mu_1\cdots\mu_r}$

- covariant decomposition: I^{μ1···μr} = T^{μ1···μr}_i · C_i, generate all possible tensor structures T^{μ1···μr} from ext. momenta metric tensors
- express coefficients in terms of scalar integrals C_i using projectors $P_{\mu_1\cdots\mu_r}$, $C_i = (P_{j,\mu_1\cdots\mu_r}T_i^{\mu_1\cdots\mu_r})^{-1}P_{j,\mu_1\cdots\mu_r}I^{\mu_1\cdots\mu_r}$
- reduce scalar integrals to master integrals G_k using FIRE $C_i = \alpha_{ik} G_k \Rightarrow I^{\mu_1 \cdots \mu_r} = T_i^{\mu_1 \cdots \mu_r} \cdot \alpha_{ik} \cdot G_k$