

OpenLoops at 1-loop & 2-loops 

status and developments

Jonas M. Lindert

N3LO kick-off workshop 
4th August 2022

�⇤ ! `+`�

Natalie Schär

In collaboration with: F. Buccioni, J.-N. Lang, P. Maierhöfer, S. Pozzorini, H. Zhang, M. Zoller

1

OpenLoops

• OpenLoops is a numerical tool providing hard
scattering amplitudes to Monte Carlo
simulations.

• All components to NLO fully automated in
OpenLoops for QCD and EW corrections to
the SM.

[Schälicke, Gleisberg, Höche,
Schumann, Winter, Krauss, So�]

OpenLoops constructs helicity and color summed scattering probability densities
WLL =

q
h

q
col

-
M̄L(h)

-2 for L = 0, 1 and W0L =
q

h

q
col

2 Re
#

M̄L(h) M̄ú
0 (h)

$
for L = 1

from L-loop matrix elements M̄L.
Example:

W01 =
ÿ

h

ÿ

col

2Re
Ë ú

+ ...
È

Goals: ultimate for numerical stability for real-virtual applications,
automation at NNLO

1

Components to NLOCalculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram �:

M1,� =

w(1)
N1�1w(1)

N1

w(1)
1 w(1)

2

D(1)
0

D(1)
1

D(1)
2

D(1)
N1�1

q1

= C1,�¸˚˙˝
color

⁄
dq̄1

N (q1)

D(q̄1)¸˚˙˝
4-dim numerator,

(D-dim denominator)

= C1,�

ÿ

r

Nµ1···µr¸ ˚˙ ˝
tensor coe�cient

⁄
dq̄1

qµ1
1 · · · qµr

1
D(q̄1)

¸ ˚˙ ˝
tensor integral

Calculation decomposed into:
• Numerical construction of tensor coe�cient in 4-dim æ OpenLoops algorithm

[van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]

• Renormalization, restoration of (D-4)-dim numerator part æ rational counterterms
RM̄1,� = M1,� + M(CT)

0,1,� [Ossola, Papadopoulos, Pittau]

• Reduction and evaluation of tensor integrals æ On-the-fly reduction
[Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

2

OpenLoops Tree Level Algorithm: Example

w1

w2

w3

w4

w5

w6w7Âw8

M0

input: external wavefunctions
w1, w2, w3, w4, w5

w
“
6 =

$“

–—w
–
4 w

—
5

w
“
7 =

$“

–—w
–
3 w

—
6

Âw“
8 =

$“

–—w
–
1 w

—
2

M0 =
$

–—w
–
7 w

—
8

vertex,+ propagator,

universal process-independent
Feynman rule

3

OpenLoops Tree Level Algorithm: Example

w1

w2

w3

w4

w5

w6

w7Âw8

M0

Combine w4, w5 into subtree w6:

w
“
6 =

$“

–—w
–
4 w

—
5

w
“
7 =

$“

–—w
–
3 w

—
6

Âw“
8 =

$“

–—w
–
1 w

—
2

M0 =
$

–—w
–
7 w

—
8

$“

–— = vertex

,

+ propagator,
universal process-independent

Feynman rule

3

OpenLoops Tree Level Algorithm: Example

w1

w2

w3

w4

w5

w6

w7

Âw8

M0

Add next external leg:

w
“
6 =

$“

–—w
–
4 w

—
5

w
“
7 =

$“

–—w
–
3 w

—
6

Âw“
8 =

$“

–—w
–
1 w

—
2

M0 =
$

–—w
–
7 w

—
8

$“

–— = vertex

,

+ propagator,
universal process-independent

Feynman rule

3

OpenLoops Tree Level Algorithm: Example

w1

w2

w3

w4

w5

w6w7

Âw8

M0

same on the other side:

w
“
6 =

$“

–—w
–
4 w

—
5

w
“
7 =

$“

–—w
–
3 w

—
6

Âw“
8 =

$“

–—w
–
1 w

—
2

M0 =
$

–—w
–
7 w

—
8

$“

–— = vertex,

+ propagator,

universal process-independent
Feynman rule

3

OpenLoops Tree Level Algorithm: Example

w1

w2

w3

w4

w5

w6

w7Âw8

M0

combine to full diagram:

w
“
6 =

$“

–—w
–
4 w

—
5

w
“
7 =

$“

–—w
–
3 w

—
6

Âw“
8 =

$“

–—w
–
1 w

—
2

M0 =
$

–—w
–
7 w

—
8

$
–— =

vertex,+ propagator,

universal process-independent
Feynman rule

3

OpenLoops Tree Level Algorithm

Recursively construct subtrees starting from external wavefunctions:

w‡a
a (ka, ha) = �a wa

= �a

wb

wc

=
X ‡a

‡b‡c (kb, kc)

k2a ≠ m2a¸ ˚˙ ˝
model-dependent

w‡b
b (kb, hb) w‡c

c (kc , hc)¸ ˚˙ ˝
process-dependent

Then contract into full diagram:

M0,�(h) = wa wb = C0,� · w‡a
a (ka, ha) ”‡a‡b Âw‡b

b (kb, hb)

• diagrams constructed using universal Feynman rules

• identical subtrees are recycled in multiple tree and loop diagrams

4

One Loop Algorithm: Example

w5

w4

w1

w6

w2

w3

N

N1 N2 N3N4

External subtrees constructed in tree

level algorithm (together with tree

diagrams):

w2, w3 æ w6

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
—N

—0

N = Tr(N4
—N

—0
)

segment = loop vertex + loop

propagator + external subtree(s)

5

One Loop Algorithm: Example

w5

w4

w1

w6

w6

N

¿

w1 w6 w4 w5

N1 N2 N3N4

Open Loop:

Diagram factorizes into chain of

segments: N = S1 · · · SN

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
—N

—0

N = Tr(N4
—N

—0
)

segment = loop vertex + loop

propagator + external subtree(s)

5

One Loop Algorithm: Example

w5

w4

w1

w6

w6

N

¿

w1 w6 w4 w5

N1

N2 N3N4

Construct first segment S1 attaching

the external subtree w1.

N0 = 1
N1 = N0 · S1(w1)

N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
—N

—0

N = Tr(N4
—N

—0
)

segment = loop vertex + loop

propagator + external subtree(s)

5

One Loop Algorithm: Example

w5

w4

w1

w6

w6

N

¿

w1 w6 w4 w5

N1

N2

N3N4

Add second segment attaching the

subtree w6.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)

N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
—N

—0

N = Tr(N4
—N

—0
)

segment = loop vertex + loop

propagator + external subtree(s)

5

One Loop Algorithm: Example

w5

w4

w1

w6

w6

N

¿

w1 w6 w4 w5

N1 N2

N3

N4

Add third segment.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)

N4 = N3 · S4(w5)

=N4
—N

—0

N = Tr(N4
—N

—0
)

segment = loop vertex + loop

propagator + external subtree(s)

5

One Loop Algorithm: Example

w5

w4

w1

w6

w6

N

¿

w1 w6 w4 w5

N1 N2 N3

N4

Add last segment.

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)

=N4
—N

—0

N = Tr(N4
—N

—0
)

segment = loop vertex + loop

propagator + external subtree(s)

5

One Loop Algorithm: Example

w5

w4

w1

w6

w6

N

ø

w1 w6 w4 w5

N1 N2 N3

N4

Close the loop (contract open

Lorentz/spinor indices).

N0 = 1
N1 = N0 · S1(w1)
N2 = N1 · S2(w6)
N3 = N2 · S3(w4)
N4 = N3 · S4(w5)=N4

—N
—0

N = Tr(N4
—N

—0
)

segment = loop vertex + loop

propagator + external subtree(s)

5

OpenLoops One Loop Algorithm

One Loop Amplitude:

M1,� = C1,�
s

dq̄ Tr[N (q)]
D0D1···DN1≠1

=

wN�1wN

w1 w2

D0

D1

D2

DN�1

q

Diagram is cut open resulting in a chain, which factorizes into segments:

Nn(q) =
nr

a=1

Sa(q) =
�0

w1

D1

w2

D2

wn

Dn

�n

wn+1

Dn+1

wN�1

DN�1

wN

D0

�N

Chain is constructed recursively, recursion step: Nn = Nn≠1 · Sn.
Implemented at level of tensor coe�cients in N = Nµ1···µr qµ1

1 · · · qµr
1 .

Segment = vertex + propagator + subtree(s)

#
Sa(q)

$—a
—a≠1

=
�a�1

wa

ka

Da

�a
=

#
Y‡a + Z‡a,‹ q‹

$—a
—a≠1

w‡aa (ka)

Exploit factorization to construct 1l diagrams from universal process-independent
building blocks.

6

7

The Open Loops algorithm:
From tree recursion to loop diagrams

[F. Cascioli, P. Maierhöfer, S. Pozzorini; ‘12]

‣ Treat one-loop diagram as ordered set of sub-trees connected by
propagators 
 
 
 
 
 

‣ Build numerator recursively connecting subtrees along the loop keeping the q dependence

 
 

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In

OpenLoops • Philipp Maierhöfer IPPP Seminar

cut one loop propagator

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In

OpenLoops • Philipp Maierhöfer IPPP Seminar

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In

OpenLoops • Philipp Maierhöfer IPPP Seminar

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Numerator recursion

Connect sub-trees along the loop to build the numerator

β

α
In =

β

α

in

In−1 N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

For fixed loop momentum q, the numerator N (q) = Nα
α (q) can be

evaluated by a “conventional” tree generator and used as input for
OPP reduction. [Ossola, Papadopoulos, Pittau]

Done by “old” MadLoop (diagrammatic), or HELAC (current recursion).

By the nature of loop integrals, the functional dependence
on the loop momentum is needed. OPP reduction instead uses
expensive multiple evaluations of N (q) for loop momenta
which satisfy cut conditions Di = Dj = · · · = 0.

OpenLoops:
Nµ1...µr

r encodes the functional dependence on q:
N (q) =

∑

r Nµ1

r . . . qµr
qµ1...µr

OpenLoops • Philipp Maierhöfer IPPP Seminar

�11

OpenLoops recursion [Cascioli, Maierhöfer, S.P ’11]

Recursive merging of q-dependent trees

nX

r=0

N
�

µ1...µr ;↵(In) q
µ1

. . . q
µr =

in

i1

In

�

↵
=

in�1

i1

In�1

in

�

↵

Interaction terms depend only on Lint) automation!

� �

�
= Y

�

��
+ Z

�

⌫;��
q
⌫

Recursion for polynomial coe�cients) very high speed!

N
�

µ1...µr ;↵(In) =
h
Y

�

��
N

�

µ1...µr ;↵(In�1) + Z
�

µ1;��
N

�

µ2...µr ;↵(In�1)
i
w

�(in)

S. Pozzorini (Zurich University) Precision simulations DESY15 8 / 35

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.

OpenLoops • Philipp Maierhöfer IPPP Seminar

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.

OpenLoops • Philipp Maierhöfer IPPP Seminar

⇒ very fast!
7

8

Complicated diagrams require
only “last missing piece”

Illustration:

The (original) Open Loops algorithm:
recycle loop structures

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Sharing Loop Structures Between Diagrams

β

α

in-1in

In−2

β

α

in-1in

In−2

Open Loops Recycling:
Lower-point open-loops can be
shared between diagrams if the
cut is put appropriately.

⇒ Exploit the freedom of putting the cut and choosing the direction
⇒ to maximise recyclability. In particular, diagrams which are related
⇒ by pinching a loop propagator should be cut equally.

Example:

q

parent

q

child 1

q

child 2

OpenLoops • Philipp Maierhöfer IPPP Seminar

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

Sharing Loop Structures Between Diagrams

β

α

in-1in

In−2

β

α

in-1in

In−2

Open Loops Recycling:
Lower-point open-loops can be
shared between diagrams if the
cut is put appropriately.

⇒ Exploit the freedom of putting the cut and choosing the direction
⇒ to maximise recyclability. In particular, diagrams which are related
⇒ by pinching a loop propagator should be cut equally.

Example:

q

parent

q

child 1

q

child 2

OpenLoops • Philipp Maierhöfer IPPP Seminar

OpenLoops recycling:
Lower-point open-loops can be
shared between diagrams if
•cut is put appropriately
•direction chosen to maximise

recyclability

�128

9

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.

OpenLoops • Philipp Maierhöfer IPPP Seminar

‣ Tensorial coefficients can directly be contracted with Tensor Integrals  
 evaluated with COLLIER [Denner, Dittmaier, Hofer ; ‘16] 

‣ Fast evaluation of at multiple q-values allows for efficient  
 application of OPP reduction methods e.g. with CutTools [Ossola, Papadopolous, Pittau; ’07]

The (original) Open Loops algorithm:
one loop amplitudes
[F. Cascioli, P. Maierhöfer, S. Pozzorini; ‘12]

N (q) =
X

Nµ1...µrq
µ1 . . . qµr

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In

OpenLoops • Philipp Maierhöfer IPPP Seminar

=

Z
dDN (q)

D0D1 . . . Dn�1
=

RX

r=0

Nµ1...µr

Z
qµ1 . . . qµr

D0D1 . . . Dn�1| {z }
tensor integral

�139

Standard OpenLoops reduction
OpenLoops amplitude construction and reduction

N (q, h) =
Rÿ

r=0

Nµ1...µr (h) qµ1 . . . qµr

Drawback/bottlenecks

1 Large structure growth prior to reduction (due to high rank)
2 Evaluation for each helicity configuration h

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 8 /36

Example:

Complexity grows exponentially  
with tensor rank!

OpenLoops amplitude construction and reduction

N (q, h) =
Rÿ

r=0

Nµ1...µr (h) qµ1 . . . qµr

Drawback/bottlenecks

1 Large structure growth prior to reduction (due to high rank)
2 Evaluation for each helicity configuration h

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 8 /36

0 1 2 3 4 N�1 N
0

1

2

3

4

N�1

N

5

15

35

70

�
N+4

4

�
rank Ntcoeff

k 0 1 2 3 4 N�1 N
0

1

2

3

4

N�1

N

rank

k

(a) A posteriori reduction (b) On-the-fly reduction

Figure 6: Evolution of the tensor rank R and the number Ntcoe� (R) =
1

R+4

4

2
of open-loop

tensor coe�cients (right vertical axis) as a function of the number k of dressed segments during

the open-loop recursion. Each dressing step is assumed to increase the rank by one. The

original open-loop algorithm, where tensor reduction is applied a posteriori (left), is compared

to the on-the-fly reduction approach (right). The red diagonal lines illustrate the dressing steps

and the blue vertical lines the reduction steps.

4.1 On-the-fly integrand reduction

For the on-the-fly reduction of open-loop polynomials we are going to use the method of [2],

which permits to reduce rank-two monomials of the loop momentum through identities of the

form

qµq‹ = [Aµ‹
≠1 + Aµ‹

0 D0] +
S

UBµ‹
≠1,⁄ +

3ÿ

j=0

Bµ‹
j,⁄Dj

T

V q⁄. (78)

The rank-one polynomial on the rhs is a linear combination of four loop denominators,

D0, . . . , D3, and the corresponding tensor coe�cients, Aµ‹
j and Bµ‹

j,⁄, depend only on the three

external momenta p1, p2, p3. The coe�cients of loop denominators are labeled with indices

j = 0, . . . , 3, while j = ≠1 is used for the constant parts. Their explicit expressions are

presented in Section 5.2.

The identity (78) provides an exact reconstruction of qµq‹
in terms of four-dimensional loop

denominators, but can be easily generalised to D-dimensional denominators by replacing

Dj æ D̄j ≠ q̃2
for j = 0, 1, 2, 3 . (79)

Note that q̃2
contributions resulting from the terms Bµ‹

j,⁄Dj with j = 0, 1, 2, 3 must cancel among

each other in (78) since they generate rank-three terms of type q⁄ q̃2
that are not consistent

with the rank-two structure on the lhs. Thus the substitutions (79) generate only an extra

term ≠q̃2Aµ‹
0 on the rhs of (78).

18

Bottlenecks:
•Large growths of structures prior to reduction
•Evaluation of coefficients required for every helicity h

10

On-the-fly reduction
OpenLoops amplitude construction and reduction

N (q, h) =
Rÿ

r=0

Nµ1...µr (h) qµ1 . . . qµr

Drawback/bottlenecks

1 Large structure growth prior to reduction (due to high rank)
2 Evaluation for each helicity configuration h

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 8 /36

Example:

Complexity grows exponentially  
with tensor rank!

OpenLoops amplitude construction and reduction

N (q, h) =
Rÿ

r=0

Nµ1...µr (h) qµ1 . . . qµr

Drawback/bottlenecks

1 Large structure growth prior to reduction (due to high rank)
2 Evaluation for each helicity configuration h

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 8 /36

0 1 2 3 4 N�1 N
0

1

2

3

4

N�1

N

5

15

35

70

�
N+4

4

�
rank Ntcoeff

k 0 1 2 3 4 N�1 N
0

1

2

3

4

N�1

N

rank

k

(a) A posteriori reduction (b) On-the-fly reduction

Figure 6: Evolution of the tensor rank R and the number Ntcoe� (R) =
1

R+4

4

2
of open-loop

tensor coe�cients (right vertical axis) as a function of the number k of dressed segments during

the open-loop recursion. Each dressing step is assumed to increase the rank by one. The

original open-loop algorithm, where tensor reduction is applied a posteriori (left), is compared

to the on-the-fly reduction approach (right). The red diagonal lines illustrate the dressing steps

and the blue vertical lines the reduction steps.

4.1 On-the-fly integrand reduction

For the on-the-fly reduction of open-loop polynomials we are going to use the method of [2],

which permits to reduce rank-two monomials of the loop momentum through identities of the

form

qµq‹ = [Aµ‹
≠1 + Aµ‹

0 D0] +
S

UBµ‹
≠1,⁄ +

3ÿ

j=0

Bµ‹
j,⁄Dj

T

V q⁄. (78)

The rank-one polynomial on the rhs is a linear combination of four loop denominators,

D0, . . . , D3, and the corresponding tensor coe�cients, Aµ‹
j and Bµ‹

j,⁄, depend only on the three

external momenta p1, p2, p3. The coe�cients of loop denominators are labeled with indices

j = 0, . . . , 3, while j = ≠1 is used for the constant parts. Their explicit expressions are

presented in Section 5.2.

The identity (78) provides an exact reconstruction of qµq‹
in terms of four-dimensional loop

denominators, but can be easily generalised to D-dimensional denominators by replacing

Dj æ D̄j ≠ q̃2
for j = 0, 1, 2, 3 . (79)

Note that q̃2
contributions resulting from the terms Bµ‹

j,⁄Dj with j = 0, 1, 2, 3 must cancel among

each other in (78) since they generate rank-three terms of type q⁄ q̃2
that are not consistent

with the rank-two structure on the lhs. Thus the substitutions (79) generate only an extra

term ≠q̃2Aµ‹
0 on the rhs of (78).

18

Advantage of OFR:
•one algorithm for construction and reduction of amplitude  
(less reliance on external codes)

•unprecedented numerical stability (crucial for real-virtual applications)

OpenLoops2 amplitude construction and reduction

On-the-fly reduction step

V
µ‹qµq‹

D0 . . . DN≠1

= V
µ
≠1qµ + V≠1

D0 . . . DN≠1

+
3ÿ

i=0

V
µ
i qµ + Vi

D0 . . . /Di . . . DN≠1

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 11 /36

[Buccioni, Pozzorini, Zoller, ’17]

11

On-the-fly reductionOn-the-fly reduction

Use reduction identities valid at integrand level [del Aguila, Pittau ’05].

qµq‹ = Aµ‹
≠1 + Aµ‹

0 D0 +
A

Bµ‹
≠1,⁄ +

3ÿ

i=0

Bµ‹
i,⁄Di

B
q⁄, (˝)

Di = (q + pi)2
≠ m2

i

I Reduction identity follows from loop-momentum decomposition:

qµ =
4ÿ

i=1

cil
µ
i , li = li(p1, p2)

I Integrand identity ˝ requires another independent momentum p3

I Aµ‹
i , Bµ‹

i are constants depending on p1, p2, p3

I p1, p2, p3 can be chosen freely to cancel propagators Di

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 10 /36

[F. del Aguila and R. Pittau; ‘04]

• At each Open Loops step that gives rank=2 perform “on-the-fly” 2 -> 1 integrand-level reduction:

rank=2 rank=1

On-the-fly reduction

Use reduction identities valid at integrand level [del Aguila, Pittau ’05].

qµq‹ = Aµ‹
≠1 + Aµ‹

0 D0 +
A

Bµ‹
≠1,⁄ +

3ÿ

i=0

Bµ‹
i,⁄Di

B
q⁄, (˝)

Di = (q + pi)2
≠ m2

i

I Reduction identity follows from loop-momentum decomposition:

qµ =
4ÿ

i=1

cil
µ
i , li = li(p1, p2)

I Integrand identity ˝ requires another independent momentum p3

I Aµ‹
i , Bµ‹

i are constants depending on p1, p2, p3

I p1, p2, p3 can be chosen freely to cancel propagators Di

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 10 /36

•This reduction follows from decomposition:

reduction basis

• depend on , e.g.Aµ⌫
i , Bµ⌫

i li

where the quadratic terms (q · `i)(q · `j) with i, j = 3, 4 are reconstructed in terms of D0 and D3

using the auxiliary external momentum p3.
Combining (2.17)–(2.22) leads to the reduction identity (2.12) where the scalar tensors read

A
µ⌫
�1 = m

2
0A

µ⌫
0 , A

µ⌫
0 =

1

4�

✓
↵L

µ⌫
33 +

1

↵
L
µ⌫
44 � L

µ⌫
34

◆
, A

µ⌫
1,2,3 = 0, (2.23)

while for the rank-one B
µ⌫
j,� we have

B
µ⌫
�1,� =

3X

i=1

fi0B
µ⌫
i,�, B

µ⌫
0,� = �

3X

i=1

B
µ⌫
i,�, (2.24)

where

B
µ⌫
1,� =

1

4�2

"
⇠2

⇣
L
µ⌫
33 `4,� +

1

↵
L
µ⌫
44 `3,�

⌘
�

⇣
r
µ
2L

⌫
34,� + r

⌫
2L

µ
34,�

⌘#
+

1

�

⇣
r
µ
2 �

⌫
� �A

µ⌫
0 r2,�

⌘
, (2.25)

B
µ⌫
2,� = B

µ⌫
1,�

��
r1$r2

,

B
µ⌫
3,� = �

1

4�2
⇠3

✓
L
µ⌫
33 `4,� +

1

↵
L
µ⌫
44 `3,�

◆
, (2.26)

and we have introduced

L
µ⌫
33 = `

µ
3`

⌫
3 , L

µ⌫
44 = `

µ
4`

⌫
4 , L

µ⌫
34 = `

µ
3`

⌫
4 + `

µ
4`

⌫
3 , ↵ =

p3 · `4

p3 · `3
. (2.27)

and the dimensionless parameters

⇠1,2 = 2
p3 · r1,2

p3 · `3
⇠3 =

�

p3 · `3
(2.28)

Since `
⇤
4 = `3, ↵ is simply a unitary complex number, i.e. ↵ = ei'.

2.3.2 Rank 0, 1: OPP reduction

For the reduction of integrals with N � 5 and rank R 1 we apply the OPP reduction [?]. The
numerator of the integrals reads

N (q) = N0 +Nµq
µ
, (2.29)

and according to the OPP reduction formula, it can be reduced to a linear combination of scalar
boxes as follows,

Z
dD q̄

N (q)

D̄0D̄1 · · · D̄N�1
=

N�1X

i0<i1<i2<i3

Z
dDq̄

di0i1i2i3

D̄i0D̄i1D̄i2D̄i3
, (2.30)

where the coefficients di0i1i2i3 read

di0i1i2i3 =
1

2

⇥
Ri0i1i2i3(q

+
0) +Ri0i1i2i3(q

�
0)

⇤
, (2.31)

with q
±
0 representing the solutions of the quadruple-cut D̄i0 = D̄i1 = D̄i2 = D̄i3 = 0 and

Ri0i1i2i3(q) =
N (q)

N�1Q
i 6=i0,i1,i2,i3

D̄i

(2.32)

5

~Gram determinants!

We can choose this decomposition freely  
such that we can cancel propagators Di

•For N > 3 the reduction identify requires independent momenta.(p1, p2, p3)

12

On-the-fly reductionOn-the-fly reduction

Use reduction identities valid at integrand level [del Aguila, Pittau ’05].

qµq‹ = Aµ‹
≠1 + Aµ‹

0 D0 +
A

Bµ‹
≠1,⁄ +

3ÿ

i=0

Bµ‹
i,⁄Di

B
q⁄, (˝)

Di = (q + pi)2
≠ m2

i

I Reduction identity follows from loop-momentum decomposition:

qµ =
4ÿ

i=1

cil
µ
i , li = li(p1, p2)

I Integrand identity ˝ requires another independent momentum p3

I Aµ‹
i , Bµ‹

i are constants depending on p1, p2, p3

I p1, p2, p3 can be chosen freely to cancel propagators Di

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 10 /36

[F. del Aguila and R. Pittau; ‘04]

• At each Open Loops step that gives rank=2 perform “on-the-fly” 2 -> 1 integrand-level reduction:

rank=2 rank=1

On-the-fly reduction

Use reduction identities valid at integrand level [del Aguila, Pittau ’05].

qµq‹ = Aµ‹
≠1 + Aµ‹

0 D0 +
A

Bµ‹
≠1,⁄ +

3ÿ

i=0

Bµ‹
i,⁄Di

B
q⁄, (˝)

Di = (q + pi)2
≠ m2

i

I Reduction identity follows from loop-momentum decomposition:

qµ =
4ÿ

i=1

cil
µ
i , li = li(p1, p2)

I Integrand identity ˝ requires another independent momentum p3

I Aµ‹
i , Bµ‹

i are constants depending on p1, p2, p3

I p1, p2, p3 can be chosen freely to cancel propagators Di

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 10 /36

•This reduction follows from decomposition:

reduction basis

• depend on , e.g.Aµ⌫
i , Bµ⌫

i li

where the quadratic terms (q · `i)(q · `j) with i, j = 3, 4 are reconstructed in terms of D0 and D3

using the auxiliary external momentum p3.
Combining (2.17)–(2.22) leads to the reduction identity (2.12) where the scalar tensors read

A
µ⌫
�1 = m

2
0A

µ⌫
0 , A

µ⌫
0 =

1

4�

✓
↵L

µ⌫
33 +

1

↵
L
µ⌫
44 � L

µ⌫
34

◆
, A

µ⌫
1,2,3 = 0, (2.23)

while for the rank-one B
µ⌫
j,� we have

B
µ⌫
�1,� =

3X

i=1

fi0B
µ⌫
i,�, B

µ⌫
0,� = �

3X

i=1

B
µ⌫
i,�, (2.24)

where

B
µ⌫
1,� =

1

4�2

"
⇠2

⇣
L
µ⌫
33 `4,� +

1

↵
L
µ⌫
44 `3,�

⌘
�

⇣
r
µ
2L

⌫
34,� + r

⌫
2L

µ
34,�

⌘#
+

1

�

⇣
r
µ
2 �

⌫
� �A

µ⌫
0 r2,�

⌘
, (2.25)

B
µ⌫
2,� = B

µ⌫
1,�

��
r1$r2

,

B
µ⌫
3,� = �

1

4�2
⇠3

✓
L
µ⌫
33 `4,� +

1

↵
L
µ⌫
44 `3,�

◆
, (2.26)

and we have introduced

L
µ⌫
33 = `

µ
3`

⌫
3 , L

µ⌫
44 = `

µ
4`

⌫
4 , L

µ⌫
34 = `

µ
3`

⌫
4 + `

µ
4`

⌫
3 , ↵ =

p3 · `4

p3 · `3
. (2.27)

and the dimensionless parameters

⇠1,2 = 2
p3 · r1,2

p3 · `3
⇠3 =

�

p3 · `3
(2.28)

Since `
⇤
4 = `3, ↵ is simply a unitary complex number, i.e. ↵ = ei'.

2.3.2 Rank 0, 1: OPP reduction

For the reduction of integrals with N � 5 and rank R 1 we apply the OPP reduction [?]. The
numerator of the integrals reads

N (q) = N0 +Nµq
µ
, (2.29)

and according to the OPP reduction formula, it can be reduced to a linear combination of scalar
boxes as follows,

Z
dD q̄

N (q)

D̄0D̄1 · · · D̄N�1
=

N�1X

i0<i1<i2<i3

Z
dDq̄

di0i1i2i3

D̄i0D̄i1D̄i2D̄i3
, (2.30)

where the coefficients di0i1i2i3 read

di0i1i2i3 =
1

2

⇥
Ri0i1i2i3(q

+
0) +Ri0i1i2i3(q

�
0)

⇤
, (2.31)

with q
±
0 representing the solutions of the quadruple-cut D̄i0 = D̄i1 = D̄i2 = D̄i3 = 0 and

Ri0i1i2i3(q) =
N (q)

N�1Q
i 6=i0,i1,i2,i3

D̄i

(2.32)

5

~Gram determinants!

We can choose this decomposition freely  
such that we can cancel propagators Di

•For N > 3 the reduction identify requires independent momenta.(p1, p2, p3)

On-the-fly reduction
OpenLoops amplitude construction and reduction

N (q, h) =
Rÿ

r=0

Nµ1...µr (h) qµ1 . . . qµr

Drawback/bottlenecks

1 Large structure growth prior to reduction (due to high rank)
2 Evaluation for each helicity configuration h

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 8 /36

Example:

4 pinched topologies  
generated per reduction step

OpenLoops2 amplitude construction and reduction

On-the-fly reduction step

V
µ‹qµq‹

D0 . . . DN≠1

= V
µ
≠1qµ + V≠1

D0 . . . DN≠1

+
3ÿ

i=0

V
µ
i qµ + Vi

D0 . . . /Di . . . DN≠1

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 11 /36

OpenLoops2 amplitude construction and reduction

On-the-fly reduction step

V
µ‹qµq‹

D0 . . . DN≠1

= V
µ
≠1qµ + V≠1

D0 . . . DN≠1

+
3ÿ

i=0

V
µ
i qµ + Vi

D0 . . . /Di . . . DN≠1

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 11 /36

Huge proliferation of terms!

OpenLoops2 amplitude construction and reduction

On-the-fly reduction step

V
µ‹qµq‹

D0 . . . DN≠1

= V
µ
≠1qµ + V≠1

D0 . . . DN≠1

+
3ÿ

i=0

V
µ
i qµ + Vi

D0 . . . /Di . . . DN≠1

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 11 /36

OpenLoops2 amplitude construction and reduction

On-the-fly reduction step

V
µ‹qµq‹

D0 . . . DN≠1

= V
µ
≠1qµ + V≠1

D0 . . . DN≠1

+
3ÿ

i=0

V
µ
i qµ + Vi

D0 . . . /Di . . . DN≠1

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 11 /36

OFR

OFR

Solution: merging (+ OF helicity summation)

Similar CPU performance as  
standard OpenLoops

14

15

On-the-fly reduction: stabilityNative implementation of the on-the-fly reduction
Case study gg æ tt̄gg

I Sample of 106 hard events: pT > 50 GeV, �Rij >= 0.5
I Mqp CutTools

I A = |Mqp ≠ Mdp|

|Mqp + Mdp|

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 13 /36

Sample of 106 hard events

Mqp via OL1 with CutTools
→Huge numerical instabilities in naive OFR implementation

In particular, for the most complex and time consuming processes the new on-the-fly approach yields
speed-up factors between two and three.

5.2 Numerical stability

As discussed in Section 2.7, the stability of one-loop amplitudes in exceptional phase-space regions is
of crucial importance for challenging multi-particle and multi-scale NLO calculations, as well as for
NNLO applications. In the following we present OpenLoops 2 stability benchmarks for NLO QCD
and NLO EW virtual corrections. The level of numerical stability is quantified by comparing output
in double (dp) or hybrid (hp) precision (Wdp/hp

01
) against quadruple-precision (qp) benchmarks (Wqp

01
).

The latter are obtained using OpenLoops 2 in combination with the OneLOop library for scalar
integrals. More precisely, we define the numerical instability of a certain result W

X

01
as

AX = log10

����
W

X

01
� W

qp
01

W
qp
01

���� , (5.1)

which corresponds, up to a minus sign, to the number of stable digits. For the case of qp benchmark
results (X = qp) the accuracy estimate (5.1) corresponds to the result of a so-called rescaling test,
see Section 2.7.1(iii).
The numerical stability of OpenLoops 2 in the hard regions is illustrated in Fig. 5 for two non-
trivial 2 ! 4 processes at NLO QCD and NLO EW. The plots correspond to 106 homogeneously
distributed Rambo points at

p
s = 1TeV with pi,T > 50GeV and �Rij > 0.5 for all massless

final-state particles. As demonstrated by the reference qp curve, running OpenLoops 2 in pure
qp makes it possible to produce one-loop results with up to 32 stable digits. Such high-precision
qp benchmarks can be obtained as a by-product of the hybrid-precision system and allow one to
quantify the level of stability with better than 16-digit resolution in the full phase space. The results
of OpenLoops 1 with CutTools in dp illustrate the impact of Gram-determinant instabilities,
which result in a probability of one percent of finding less than two stable digits in gg ! tt̄gg.38

Using Collier reduces this probability by 3–4 orders of magnitudes, while OpenLoops 2 with
one-the-fly reduction and hp-system leads to a further dramatic suppression of instabilities by four
orders of magnitude, which corresponds to five extra stable digits. The effect of hybrid-precision
alone corresponds to about two digits or, equivalently, a factor 100 suppression of the tail. The EW
corrections to ūu ! e+e�µ+µ� feature a qualitatively similar behaviour but a generally lower level
of instability, which is most likely a consequence of the lower tensor rank.

Example stability benchmarks relevant for 2 ! 2 calculations at NNLO are shown in Fig. 6 for the
case of the real-virtual QCD corrections to tt̄ and W+W� hadron production. The instability A

is estimated using a sequence of gg ! tt̄g and uū ! W+W�g samples with increasing degree of
softness and collinearity, defined as

⇠soft =
Ej

Q
, ⇠coll = ✓2

ij . (5.2)

Here Q denotes the center-of-mass energy, Ej is the energy of the soft particle, and ✓ij is the
angle of a certain collinear branching. The parameters ⇠soft/coll are defined in such a way that the
denominators of soft and collinear enhanced propagators scale like (pi + pj)2 / ⇠soft/coll Q

2. In
practice, starting from a sample of 104 hard 2 ! 2 events with Q = 1TeV, we have supplemented
each event by an additional soft or collinear emission with ⇠soft/coll = 10�1, 10�2, . . . , 10�9.
In Fig. 6 the average level of instability and its spread are plotted versus ⇠coll in gg ! tt̄ and ⇠soft

in uū ! W+W�g. The stability of qp benchmarks is again very high in the whole phase space. In
the deep IR regions numerical instabilities grow at a speed that depends on the process, the type of
region (soft/collinear), and the employed method. For initial-state collinear radiation in gg ! tt̄g,

38In the tail of the CutTools curve (not shown) numerical instabilities can reach and largely exceed O(1010).

52

15

16

Sources of numerical instabilities in OFR
Sources of numerical instability in OFR

The on-the-fly reduction su�ers from Gram determinant instabilities

qµq‹ = Aµ‹ + Bµ‹
⁄ q⁄

Aµ‹
i = 1

�12

aµ‹
i ,

Bµ‹
i,⁄ = 1

�2

12

1
Ô

�123

b(1),µ‹
i,⁄ + 1

�12

b(2),µ‹
i,⁄ ,

Instabilities for
I �12 = (p1 · p2)2

≠ p2

1
p2

2
æ 0

I Ô
�123 ≥ p3 · l3/4(p1, p2) æ 0

Rank-2 GD correlation

I Severe numerical instabilities as �12 æ 0
I Instabilities propagate Ai/Bi ◊ Ai/Bi ◊ ... ≥ �≠k

12 and amplify
I Moderate values of 1 ∫

�12

Q2 ∫ 0 lead to numerical instabilities

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 16 /36

Sources of numerical instability in OFR
The on-the-fly reduction su�ers from Gram determinant instabilities

qµq‹ = Aµ‹ + Bµ‹
⁄ q⁄

Aµ‹
i = 1

�12

aµ‹
i ,

Bµ‹
i,⁄ = 1

�2

12

1
Ô

�123

b(1),µ‹
i,⁄ + 1

�12

b(2),µ‹
i,⁄ ,

Instabilities for
I �12 = (p1 · p2)2

≠ p2

1
p2

2
æ 0

I Ô
�123 ≥ p3 · l3/4(p1, p2) æ 0

Rank-2 GD correlation

I Severe numerical instabilities as �12 æ 0
I Instabilities propagate Ai/Bi ◊ Ai/Bi ◊ ... ≥ �≠k

12 and amplify
I Moderate values of 1 ∫

�12

Q2 ∫ 0 lead to numerical instabilities

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 16 /36

→Clear correlation between severe  
 numerical instabilities and
→Instabilities propagate through the reduction 
 and amplify

�12 ! 0

16

17

Solutions to numerical instabilities in OFR

1. Use freedom of choice of OFR basis for such that .  
 This corresponds to permutation of propagators.

N � 4 �i1i2 ! max

On-the-fly solution to (single) rank-2 GD instabilities
[Buccioni, Pozzorini, Zoller ’17]

I Use freedom of on-the-fly reduction, choose i1, i2 such that
≥ �i1i2

maximal. Corresponds to propagator permutation

V
µ‹qµq‹

D0D1D2D3 . . .
æ

V
µ‹qµq‹

D0Di1
Di2

Di3
. . .

, i1, i2, i3 œ [1, 2, 3]

∆ Avoids small rank-2 GD up to triangle reduction X
II Only t-channel topology introduces numerical instabilities

(hard region)

p2 � p1

p1

�p2

I p2

i < 0
I (p1 ≠ p2)2 = 0

I Analytic solution instead of on-the-fly reduction
I Perform expansions in �12

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 17 /36

→Avoids small rank=2 Gram-determinant instabilities down to N=3

1. For N=3 and hard kinematics: Gram determinant instabilities arise only in t-channel topologies

On-the-fly solution to (single) rank-2 GD instabilities
[Buccioni, Pozzorini, Zoller ’17]

I Use freedom of on-the-fly reduction, choose i1, i2 such that
≥ �i1i2

maximal. Corresponds to propagator permutation

V
µ‹qµq‹

D0D1D2D3 . . .
æ

V
µ‹qµq‹

D0Di1
Di2

Di3
. . .

, i1, i2, i3 œ [1, 2, 3]

∆ Avoids small rank-2 GD up to triangle reduction X
II Only t-channel topology introduces numerical instabilities

(hard region)

p2 � p1

p1

�p2

I p2

i < 0
I (p1 ≠ p2)2 = 0

I Analytic solution instead of on-the-fly reduction
I Perform expansions in �12

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 17 /36

�12 ! 0 for p21 ! p22

→Can be avoided using analytical reduction to MI plus expansions in �12
17

18

Solutions to numerical instabilities in OFR
32

on-the-fly

�15 �10 �5 0 5 10

accuracy A

105

1010

1015

1020

1025

1030

� Q
4 1
2
/�

� 2 m
in

analytic + perm

�15 �10 �5 0 5 10

accuracy A

105

1010

1015

1020

1025

1030

�
� m

in

analytic + perm + exp

�15 �10 �5 0 5 10

accuracy A

105

1010

1015

1020

1025

1030

�
� m

in

100

101

102

103

Fig. 15 Correlation between the instability A of OpenLoops 2 in double precision and the largest (Q4/∆)2 in the event, where
∆ is any rank-two Gram determinant and Q2 is the maximum scale in the corresponding Gram matrix. See (141). Probability
densities correspond to 106 events. Unstable results without special treatment of Gram determinants (left) are stabilised using
the permutation trick (139) for box reduction and analytic expressions for triangle reduction (middle) plus Gram-determinant
expansions for ” < ”thr (right).

probability of finding less than four correct digits can
exceed 10≠3 in 2 æ 3 and 10≠2 in 2 æ 4 processes,
while the fraction of fully unstable points with A Ø 0
can reach 10≠3 in 2 æ 4 processes. Switching to Open-

Loops 1+Collier we find that, depending on the pro-
cess, the probability of finding only a few correct digits
goes down by one to three orders of magnitude, while
in eight samples of 106 points we do not find a single
result with A > 0.14

Using OpenLoops 2 can lead to a further significant
stability improvement. This is especially evident for
2 æ 3 processes, where the stability of the on-the-
fly reduction in OpenLoops 2 is remarkably close to
the quad-precision benchmarks and even superior than
quad precision for the case of tt̄g production. When
quad precision is su�ciently accurate to resolve the in-
stabilities of OpenLoops 2 we observe improvements
of one–two orders of magnitude with respect to Open-

Loops 1+Collier. In the case of 2 æ 4 processes,
depending on the process and the considered number
of digits, OpenLoops 2 can perform somewhat better
or slightly worse than OpenLoops 1+Collier, like in
the case of ud̄ æ W+ggg or uū æ W+W≠gg, respec-
tively. However, both approaches guarantee excellent
numerical stability.

7 Conclusions and Outlook

We have presented a new approach for the automated
calculation of scattering amplitudes at one loop. This
14As discussed above, due to the insu�cient quality of quad-
precision benchmarks, instability estimates in the tail of gg æ
tt̄gg are not significant.

new technique is based on the open-loop approach,
where cut-open loop integrands are factored into a
product of loop-momentum dependent segments that
are combined through recursive tensorial multiplica-
tions.

The key idea behind the new method is that various
operations, which are typically done at the level of full
Feynman diagrams or amplitudes, can be performed
on-the-fly during the open-loop recursion, i.e. after the
multiplication of each loop segment. Since it exploits
the factorised structure of open loops in a systematic
way, this on-the-fly approach can reduce the complexity
of certain operations in a very significant way.

We have first applied the on-the-fly method to helicity
summations and to the merging of topologically equiv-
alent open loops, finding speed-up factors of up to two
or three as compared to the original open-loop algo-
rithm. Moreover, using the integrand reduction method
by del Aguila and Pittau, we have introduced an on-
the-fly technique for the reduction of open loops. With
this approach, the construction of loop amplitudes and
their reduction are interleaved step by step within a sin-
gle numerical recursion. In this way, objects with tensor
rank higher than two are avoided throughout, and the
complexity of the calculations is reduced in a very dras-
tic way. The proliferation of pinched subtopologies that
emerge from the reduction is avoided by absorbing them
on-the-fly into topologically equivalent open loops.

The employed integrand reduction method su�ers from
severe numerical instabilities that are dominated by
kinematic regions with small rank-two Gram determi-
nants ∆ and scale like 1/∆2. In the reduction of N -point
objects with N Ø 4, we have shown that ∆-instabilities

→ No rank=2 Gram determinant instabilities!

18

19

Numerical stability with OFR

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 18 /36

→ For remaining instabilities: use qp
‣This also requires true qp benchmark: remove any dp “noise” (inputs, phase-space,…)
‣Any-order expansions such that rescaling test is reliable

19

20

Numerical stability with OFRConclusion rank-2 GD instabilities
Before

After

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 21 /36

→ True qp benchmark
 based on OFR

20

21

Local estimate of numerical stability

•For each step in the OL+OFR construction we construct and propagate an error estimate

Local error sources

‣ Reduction basis 
→ Estimated via rank=3 Gram determinant  
(no rank=2 Gram determinant instabilities remaining!) 

‣ Reduction steps 
→ Estimated via reduction coefficients  

‣ Scalar integrals 
→ Estimated using Collier 
(via mod. Cayley determinant)  

Beyond rank-2 GD instabilities

The local error estimation and propagation

I Each step in the OL2 algorithm has an (inherited) error

Local error sources

I Reduction steps
Estimated via reduction coe�cients

II Scalar integrals
Estimated using Collier

(via mod. Cayley determinant)

III Reduction basis
Estimated via rank 3 Gram
determinant

∆ Propagate and combine to construct
global error estimation E

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 22 /36

propagated to global error estimate
21

22

Hybrid precision
Hybrid precision mode in OpenLoops 2

Upgrade of dp objects to qp only triggered in a few final steps, while the bulk of the calculation is in dp

dressing
reduction

double precision
quadruple precision

• CPU cost O(1%) of full qp calculation
• Excellent numerical stability at only O(10%) additional cost wrt pure dp

17

•Trigger qp only where locally necessary, e.g.

→ CPU cost: O(1%) of full qp evaluation
→ for hard kinematics: excellent numerical stability at only O(10%) cost with respect to pure dp

22

23

Hybrid precision performanceNumerical stability improvements for hard kinematics (NLO QCD)
Probability to encounter an event with accuracy Amin or less for a 2 æ 4 process (

Ô
ŝ = 1 TeV, 106 events)

�32 �28 �24 �20 �16 �12 �8 �4 0

accuracy Amin

10�6

10�5

10�4

10�3

10�2

10�1

100

fr
ac

ti
on

of
ev

en
ts

gg � tt̄gg at O(�5
s)

OL1+CutTools dp

OL1+Collier dp

OL2 dp

OL2 hp 8 digits

OL2 hp 11 digits

OL2 qp

OL1+CutTools: 1% of points highly unstable æ OL1+Collier: O(10
3
) improvement

OL2 dp: extra O(10) improvement and 2–3 times faster
OL2 hp: extra O(100) improvement w.r.t. dp (always Ø 7 digits) with +8% CPU time
OL2 qp: always 17–32 digits with 80 times more CPU time than in dp

18

gg æ tt̄gg@O(–5

s
)

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 25 /36

dp hp=8 hp=11

24

Hybrid precision performance
Numerical stability improvements for hard kinematics (NLO EW)

Probability to encounter an event with accuracy Amin or less for a 2 æ 4 process (
Ô

ŝ = 1 TeV, 106 events)

�32 �28 �24 �20 �16 �12 �8 �4 0

accuracy Amin

10�6

10�5

10�4

10�3

10�2

10�1

100
fr

ac
ti
on

of
ev

en
ts

ūu � e+e�µ+µ� at O(�5)

OL1+CutTools dp

OL1+Collier dp

OL2 dp

OL2 hp 8 digits

OL2 hp 11 digits

OL2 qp

Similar improvements for a wide range of tested processes
with NLO QCD and NLO EW corrections
as well as in hard, soft and collinear phase-space regions

19

25

Numerical instabilities in the IR
New sources of instabilities in IR regions

Frequent appearance of double

small rank 2 GD instabilities
�ij ¥ 0, �kl ¥ 0

IR kinematics/computation

invariants

≥
1

(p + k)2 ≠ m2
= 1

2p · k
Unstable triangle reductions

I IR t-channel (p2 ≠ p1)2
¥ 0

p2 � p1

p1

�p2

I IR triangles �12 ¥ 0
p1

p2

Cancellations: virtual CT R2

I Gluon self-energy

¸ ˚˙ ˝
≥

M2

t
p4

+ ¸ ˚˙ ˝
≥

M2

t
p4

!

Ã
1
p2

I Quark 2-point CT dressing

≥ (/p + /k)3

New triggers/features encoded in hp_mode=2.

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 26 /36

•Frequent appearance of double  
small rank 2 GD instabilities

→ change of basis is futile

•IR kinematics

New sources of instabilities in IR regions

Frequent appearance of double

small rank 2 GD instabilities
�ij ¥ 0, �kl ¥ 0

IR kinematics/computation

invariants

≥
1

(p + k)2 ≠ m2
= 1

2p · k
Unstable triangle reductions

I IR t-channel (p2 ≠ p1)2
¥ 0

p2 � p1

p1

�p2

I IR triangles �12 ¥ 0
p1

p2

Cancellations: virtual CT R2

I Gluon self-energy

¸ ˚˙ ˝
≥

M2

t
p4

+ ¸ ˚˙ ˝
≥

M2

t
p4

!

Ã
1
p2

I Quark 2-point CT dressing

≥ (/p + /k)3

New triggers/features encoded in hp_mode=2.

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 26 /36

→ ensure stable invariants

•Unstable triangle reductions

New sources of instabilities in IR regions

Frequent appearance of double

small rank 2 GD instabilities
�ij ¥ 0, �kl ¥ 0

IR kinematics/computation

invariants

≥
1

(p + k)2 ≠ m2
= 1

2p · k
Unstable triangle reductions

I IR t-channel (p2 ≠ p1)2
¥ 0

p2 � p1

p1

�p2

I IR triangles �12 ¥ 0
p1

p2

Cancellations: virtual CT R2

I Gluon self-energy

¸ ˚˙ ˝
≥

M2

t
p4

+ ¸ ˚˙ ˝
≥

M2

t
p4

!

Ã
1
p2

I Quark 2-point CT dressing

≥ (/p + /k)3

New triggers/features encoded in hp_mode=2.

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 26 /36

•Cancellations: virtual + CT

New sources of instabilities in IR regions

Frequent appearance of double

small rank 2 GD instabilities
�ij ¥ 0, �kl ¥ 0

IR kinematics/computation

invariants

≥
1

(p + k)2 ≠ m2
= 1

2p · k
Unstable triangle reductions

I IR t-channel (p2 ≠ p1)2
¥ 0

p2 � p1

p1

�p2

I IR triangles �12 ¥ 0
p1

p2

Cancellations: virtual CT R2

I Gluon self-energy

¸ ˚˙ ˝
≥

M2

t
p4

+ ¸ ˚˙ ˝
≥

M2

t
p4

!

Ã
1
p2

I Quark 2-point CT dressing

≥ (/p + /k)3

New triggers/features encoded in hp_mode=2.

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 26 /36

→ allow for analytical cancelation: reorganise contributions

→ IR features and dedicated IR qp triggers via hp_mode=2
๏currently only fully consistent for NLO QCD
๏extension to NLO QED trivial

26

840�4�8�12�16�20�24�28�32�36

accuracy A

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

� c
ol

l

intial-state collinear radiation in gg ! tt̄g at O(�4
s)

OL1+CutTools dp

OL1+Collier dp

OL2 hp mode 2

OL2 qp

840�4�8�12�16�20�24�28�32�36

accuracy A

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

� s
of

t

soft radiation in uū ! W+W�g at O(�2�2
s)

OL1+CutTools dp

OL1+Collier dp

OL2 hp mode 2

OL2 qp

Figure 6: Relative numerical accuracy A for gg ! tt̄g (upper plot) and uū ! W+W�g (lower
plot) at NLO QCD versus the degree of collinear (⇠coll) or soft singularity (⇠soft) as
defined in (5.2). For each value of ⇠coll/soft the numerical accuracy is estimated with a
sample of 104 randomly distributed underlying 2 ! 2 hard events. The plotted central
points and variation bands correspond, respectively, to the average and 99.9% confidence
interval of A. Quad-precision benchmarks (blue) are compared to OpenLoops 2 with
additional hybrid-precision improvements for IR regions (hp_mode=2, red) and also to
OpenLoops 1 with Collier (yellow) or CutTools (turquoise) in dp.

54

Numerical stability in the IR

IR phase-space point generation and performance

The soft and collinear events generated from hard underlying events

›soft = Esoft/Q

›coll = arccos
3

pi · pj

|pi||pj |

42

I Esoft: energy of a soft particle
I Q: the center of mass energy
I pi, pj : spacial momenta of collinear particles

The performance ranges between (preliminary)
I t = thp_mode=1

thp_mode=0
¥ 1.5 ≠ 2.5

I t = thp_mode=2
thp_mode=0

¥ 3. ≠ 7.

for › values between 10≠3 and 10≠9.

Jean-Nicolas Lang, UZH
The OpenLoops2 algorithm Stability Benchmarks 33 /36

27

New: On-The-fly TEnsor Reduction (OTTER)

2 Tensor reduction algorithm

General description of the tensor-reduction algorithm for TIs (Nothing new, recap of On-The-Fly
reduction)

2.1 Tensor integral definition

T
µ1···µr
N =

Z
dD q̄

q
µ1 · · · q

µr

D̄0D̄1 · · · D̄N�1
, (2.1)

T
n0 ... n3
N =

Z
dD q̄

q
n0
0 · · · q

n3
3

D̄0D̄1 · · · D̄N�1
(2.2)

2.2 Reduction basis

q
µ =

4X

i=1

ci`
µ
i , (2.3)

`
2
i = 0, `1,2 · `3,4 = 0. (2.4)

`
µ
1 = p

µ
1 � ↵1p

µ
2 , `

µ
2 = p

µ
2 � ↵2p

µ
1 . (2.5)

In order to fulfil the requirement that `
2
1,2 = 0 the coefficients ↵1,2 in (2.5) read

↵i =
p
2
i

(p1 · p2)±
p
�12

, (2.6)

where �12 is related to the determinant of the Gram matrix, the entries of which are given by
Gmn = (pm · pn), via

�12 = � det (pm · pn) , with m,n 2 {1, 2}, (2.7)

which explicitly reads,

�12 = (p1 · p2)
2
� p

2
1p

2
2 . (2.8)

The vectors `3,4 lie in the plane orthogonal to p1, p2 and they can be taken as [?],

`
µ
3 = v̄(`1)�

µ

✓
1� �

5

2

◆
u(`2), `

µ
4 = v̄(`2)�

µ

✓
1� �

5

2

◆
u(`1), (2.9)

where u and v̄ are massless spinors. This definition of `3,4 implies `
⇤
3 = e

i�
`4.

A useful identity is

� ⌘ 2(`1 · `2) = �
1

2
(`3 · `4). (2.10)

The factor � is directly related to the Gram determinant via

� =
4�12

(p1 · p2)±
p
�12

, (2.11)

and these two parameters play a critical role for the stability of the reduction.

3

•Perform OFR directly at the level of tensor integrals

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

OpenLoops recursion

Start from N β
α (In; q) = Xβ

γδ(q) N γ
α (In−1; q) w δ(in)

and disentangle the loop momentum q from the coefficients

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , Xβ

γδ = Y β
γδ + qνZβ

ν;γδ

Leads to the recursion formula for “open loops” polynomials N β
µ1...µr ;α:

N β
µ1...µr ;α(In) =

[

Y β
γδ N

γ
µ1...µr ;α(In−1) + Zβ

µ1;γδ
N γ

µ2...µr ;α(In−1)
]

w δ(in)

Numerical implementation requires only universal building blocks,
derived from the Feynman rules of the theory.

Naturally works with both, tensor integrals and OPP

Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Fast evaluations of N (q) → input for OPP reduction.

OpenLoops • Philipp Maierhöfer IPPP Seminar

‣ Tensorial coefficients can directly be contracted with Tensor Integrals  
 evaluated with COLLIER [Denner, Dittmaier, Hofer ; ‘16] 

‣ Fast evaluation of at multiple q-values allows for efficient  
 application of OPP reduction methods e.g. with CutTools [Ossola, Papadopolous, Pittau; ’07]

The (original) Open Loops algorithm:
one loop amplitudes
[F. Cascioli, P. Maierhöfer, S. Pozzorini; ‘12]

N (q) =
X

Nµ1...µrq
µ1 . . . qµr

The OpenLoops algorithm NNLO Applications: real-virtual corrections Electroweak Corrections

From tree recursion to loop diagrams

Recursive construction of tree wave functions

Starting from external legs, connect wave functions wα with vertices and
propagators to recursively build “sub-trees”. Wave functions of sub-trees
are 4-tuples of complex numbers (for the spinor/Lorentz index).

i =
j

k
wβ(i) =

Xβ
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted Xβ
γδ describes the interaction of i , j , k

Loop diagrams

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in},
connected by loop propagators.

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In

OpenLoops • Philipp Maierhöfer IPPP Seminar

=

Z
dDN (q)

D0D1 . . . Dn�1
=

RX

r=0

Nµ1...µr

Z
qµ1 . . . qµr

D0D1 . . . Dn�1| {z }
tensor integral

�13

→ targeted stability improvements as in OFR: change of basis, expansions, hp, …
→ Most important advantages:

1. for the first time OFR including hp for loop2 processes (game-changer for loop-induced processes)
2. qp/dp can be restricted to tensor integrals. Coefficients can be determined in dp only

28

New: On-The-fly TEnsor Reduction (OTTER)

Details of OTTER reduction strategy: 

•N >4
- rank=2…N: dAP
- rank=0,1: OPP

•N=4
- rank=2,3,4: dAP
- rank=1: special case

•N=3
- rank=1,2,3: dAP or PV

N=2
- rank=1,2: PV

Implementation:

1. determination of reduction dependences:  
top-down (large N to small N)

2. evaluation of tensor integrals:  
bottom-up (small N to large N)

29

OTTER performance

kinematical regions, which are numerically challenging. In Fig. 1 we illustrate as a benchmark
the stability of the critical gg ! Hgg and gg ! Hggg amplitudes subject to single soft or collinear
radiation. The degree of softness and collinearity are defined as

⇠soft = Esoft/
p
s, ⇠coll = ✓2

ij
, (2.4)

where Esoft is the energy of the soft particle, and ✓ij denotes the angle of the collinear branching.
The numerical stability is defined as

A = log10

⇣
W �W

(0)

W(0)

⌘
, (2.5)

where W denotes the one-loop-squared matrix element, W(0) is the benchmark result, and A cor-
responds to the number of stable digits up to a minus sign. As can be seen from these plots, the
numerical accuracy remains very high all the way down to the deep infrared regime.

Figure 1: Stability plots in IR regions for one-loop-squared matrix elements in gg ! Hgg and
gg ! Hggg versus the degree of collinear ⇠coll or soft ⇠soft singularity obtained with OpenLoops2.2.
For each value of ⇠soft/coll, the numerical accuracy is calculated with a sample of 10

3 randomly
distributed infrared events. Unstable points are detected by a rescaling test and rescued if the
relative accuracy of 10�6 is not reached. The rescue step reevaluates the tensor integrals to quad
precision. The accuracy of the so-obtained value is determined by comparing it to a quadruple
precision benchmark whose accuracy is also assessed by a rescaling test. The plotted central points
and variation bands correspond, respectively, to the average and 100% confidence interval of A.

Numerical performance In Table 1 we present results for the average evaluation time of samples
of random phase-space points using various different modes/versions of OpenLoops. In particular,
here certain parts of the amplitude are evaluated in double or in quadruple precision, or a realistic
error estimate of the amplitudes is performed. In summary, performance is greatly improved in
OpenLoops2.2 which in particular makes a tensor integral based rescaling test cheap. Moreover,
since OpenLoops2.2 operates also in quadruple precision with very high numerical efficiency,
numerically unstable points can be rescued in a reliable way, which has largely been prohibitive for
loop-squared amplitudes in OpenLoops2. In fact, OpenLoops2.2 allows for rescue of unstable
points in a new hybrid mode, where only the tensor integrals are evaluated in higher numerical
precision resulting in a 8-fold and 3-fold increase in runtime compared to pure double precision
for gg ! Hgg and gg ! Hggg respectively, compared to a roughly 80-fold increase in runtime
for full quadruple precision. In practice, and as used for the present computation of this paper in
OpenLoops2.2 a combination of pure double precision with this new hybrid mode is used. Based
on a pure double precision evaluation the stability for every phase-space point is estimated based
on a rescaling test of only the tensor integrals. Then, only for critical points the tensor integrals
are reevaluated in quadruple precision based on the hybrid mode.

– 5 –

kinematical regions, which are numerically challenging. In Fig. 1 we illustrate as a benchmark
the stability of the critical gg ! Hgg and gg ! Hggg amplitudes subject to single soft or collinear
radiation. The degree of softness and collinearity are defined as

⇠soft = Esoft/
p
s, ⇠coll = ✓2

ij
, (2.4)

where Esoft is the energy of the soft particle, and ✓ij denotes the angle of the collinear branching.
The numerical stability is defined as

A = log10

⇣
W �W

(0)

W(0)

⌘
, (2.5)

where W denotes the one-loop-squared matrix element, W(0) is the benchmark result, and A cor-
responds to the number of stable digits up to a minus sign. As can be seen from these plots, the
numerical accuracy remains very high all the way down to the deep infrared regime.

Figure 1: Stability plots in IR regions for one-loop-squared matrix elements in gg ! Hgg and
gg ! Hggg versus the degree of collinear ⇠coll or soft ⇠soft singularity obtained with OpenLoops2.2.
For each value of ⇠soft/coll, the numerical accuracy is calculated with a sample of 10

3 randomly
distributed infrared events. Unstable points are detected by a rescaling test and rescued if the
relative accuracy of 10�6 is not reached. The rescue step reevaluates the tensor integrals to quad
precision. The accuracy of the so-obtained value is determined by comparing it to a quadruple
precision benchmark whose accuracy is also assessed by a rescaling test. The plotted central points
and variation bands correspond, respectively, to the average and 100% confidence interval of A.

Numerical performance In Table 1 we present results for the average evaluation time of samples
of random phase-space points using various different modes/versions of OpenLoops. In particular,
here certain parts of the amplitude are evaluated in double or in quadruple precision, or a realistic
error estimate of the amplitudes is performed. In summary, performance is greatly improved in
OpenLoops2.2 which in particular makes a tensor integral based rescaling test cheap. Moreover,
since OpenLoops2.2 operates also in quadruple precision with very high numerical efficiency,
numerically unstable points can be rescued in a reliable way, which has largely been prohibitive for
loop-squared amplitudes in OpenLoops2. In fact, OpenLoops2.2 allows for rescue of unstable
points in a new hybrid mode, where only the tensor integrals are evaluated in higher numerical
precision resulting in a 8-fold and 3-fold increase in runtime compared to pure double precision
for gg ! Hgg and gg ! Hggg respectively, compared to a roughly 80-fold increase in runtime
for full quadruple precision. In practice, and as used for the present computation of this paper in
OpenLoops2.2 a combination of pure double precision with this new hybrid mode is used. Based
on a pure double precision evaluation the stability for every phase-space point is estimated based
on a rescaling test of only the tensor integrals. Then, only for critical points the tensor integrals
are reevaluated in quadruple precision based on the hybrid mode.

– 5 –

Mode gg ! Hgg (time/psp) gg ! Hggg (time/psp)
OL2.1+Collier DP 13ms 0.56s
OL2.1+Collier DP + error estimation 19ms 0.89s
OL2.1+CutTools QP 43000ms 2300s
OL2.2+Otter DP 8.9ms 0.29s
OL2.2+Otter DP + error estimation 11ms 0.32s
OL2.2+Otter DP+QP tensor integrals 68ms 0.87s
OL2.2+Otter QP 740ms 23s

Table 1: Runtimes for loop-squared amplitudes for gg ! Hgg and gg ! Hggg in OpenLoops.
All numbers have been produced on an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz. The first three
rows correspond to the modes so far available in OpenLoops2 [85]. These employ double precision
evaluation with Collier (first and second row), where in the second row tensor integrals are
computed twice using the COLI and DD branches of Collier in order to obtain an error estimate.
The third row employs CutTools and the entire amplitude is evaluated in quadruple precision.
For the amplitudes at hand the resulting runtimes in quadruple precision are prohibitive to be used
as rescue system. The lower four rows represent evaluation based on the new Otter method in
OpenLoops2.2. In this case the error estimation is performed via a rescaling test where all tensor
integrals are recomputed with rescaled kinematics. The sixth row corresponds to a new hybrid
mode where only the tensor integrals are evaluated in quadruple precision, and everything else in
double precision. The last row shows the performance for a full quadruple precision evaluation
within OpenLoops2.2.

2.3 Two-loop contributions: SecDec-3

For pp ! H + j production, we evaluate the two-loop virtual contributions with exact top-quark
mass dependence as presented in Refs. [25, 28]. Briefly, the two-loop amplitudes, which depend
on four mass scales (the Mandelstam invariants s and t as well as the two masses mt and mh),
are expressed in terms of a basis of master integrals using the program Reduze2 [92]. In order to
obtain the integral reduction in a reasonable time and to reduce the size of the resulting amplitude,
the ratio of the Higgs boson mass to the top-quark mass is fixed according to m2

H
/m2

t
= 12/23. The

master integrals are then sector decomposed using the program SecDec-3 [34, 35] and numerically
integrated on Graphics Processing Unit (GPUs) using the Quasi-Monte Carlo method [93, 94]. To
improve the stability of the amplitude we select a quasi-finite basis of master integrals as outlined
in Ref. [28], this differs from the basis originally used in Ref. [25]. We observe that the new choice of
master integrals also significantly reduces the complexity of the coefficients of the master integrals
appearing in the amplitude and thus the size of the code.

The results presented here are produced using a total of 6497 phase-space points for the two-
loop virtual contribution. In Ref [25], a fraction of the phase-space points were distributed such
that they provide a good estimate of the total cross section (assuming a jet cut of pT,j > 30GeV)
and additional phase-space points were generated to sample the tail of the pT,H distribution. We
reuse these existing phase-space points and also compute an additional 1007 points to populate the
large invariant mass region mHj for pT,j > 300GeV.

3 Numerical results

3.1 Setup

As an extension of the study of Higgs plus one jet production at NLO [25], we adopt the same input
parameters and numerical setup in the current calculation. To quantify the impact of increasing

– 6 –

30

OTTER performance

→ stability of scalar integrals becomes relevant

Preliminary

31

OTTER performance

Preliminary

33

OTTER performance: RRV to �⇤ ! e+e�

CPU performance for ee~aaa at NLO QED:

OL+OFR dp OL+OFR qp

125ms

OL+Otter dp OL+Otter qp (full)

78ms4.0 ms

4.4 ms

OL+Otter qp (only TI)

47ms

‣ OpenLoops provides very fast and stable one-loop amplitudes in the
SM at NLO QCD, NLO EW and NLO QED up to high multiplicities

‣ Systematic stability improvements thanks to OFR techniques

‣ New/upcoming: On-The-fly TEnsor Reduction (OTTER)

‣OL+OTTER: new standard for one-loop real-virtual applications 

Conclusions: real-virtual stability

calculatemeasure calculate

34

Automation at NNLO

The public OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller] already delivers some
components to NNLO:

tree

W00 =
ÿ

h,col

--- + ...

2

¸ ˚˙ ˝
available

virtual real

W01 =
ÿ

h,col

2Re

Ë ú
+ ...

È
, W(1)

00 =
ÿ

h,col

--- + ...

2

¸ ˚˙ ˝
available

real virtual double virtual double real loop squared

W(1)
01 =

ÿ

h,col

2Re

Ë ú
+ ...

È

¸ ˚˙ ˝
available

, W02 =
ÿ

h,col

2Re

Ë ú
+ ...

È

¸ ˚˙ ˝
new

, W(2)
00 =

ÿ

h,col

--- + ...

2

¸ ˚˙ ˝
available

, W11 =
ÿ

h,col

--- + ...

2

¸ ˚˙ ˝
available

• OpenLoops is already being used in NNLO calculations in particular for the real
virtual components in e.g. MATRIX [Grazzini, Kallweit, Wiesemann], NNLOJET [Gehrmann-De

Ridder, Gehrmann, Glover, Huss, Walker], McMule [Banerjee, Engel, Signer, Ulrich].

• NNLO in OpenLoops: require double virtual

35

Components to NLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram �:

M1,� =

w(1)
N1�1w(1)

N1

w(1)
1 w(1)

2

D(1)
0

D(1)
1

D(1)
2

D(1)
N1�1

q1

= C1,�¸˚˙˝
color

⁄
dq̄1

N (q1)

D(q̄1)¸˚˙˝
4-dim numerator,

(D-dim denominator)

= C1,�

ÿ

r

Nµ1···µr¸ ˚˙ ˝
tensor coe�cient

⁄
dq̄1

qµ1
1 · · · qµr

1
D(q̄1)

¸ ˚˙ ˝
tensor integral

Calculation decomposed into:
• Numerical construction of tensor coe�cient in 4-dim æ OpenLoops algorithm

[van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]

• Renormalization, restoration of (D-4)-dim numerator part æ rational counterterms
RM̄1,� = M1,� + M(CT)

0,1,� [Ossola, Papadopoulos, Pittau]

• Reduction and evaluation of tensor integrals æ On-the-fly reduction
[Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

36

Components to NNLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions.
For one diagram �:

M2,� =

w(1)
1

w(1)
2

w(1)
N1�1

D(1)
0

D(1)
1

D(1)
N1�1

w(3)
1

w(3)
N3�1

D(3)
0

D(3)
N3�1

w(2)
1

w(2)
2

w(2)
N2�1

D(2)
0

D(2)
1

D(2)
N2�1

V0

V1

q1 q2

q3

= C2,�¸˚˙˝
color

⁄
dq̄1

⁄
dq̄2

N (q1, q2)

D(q̄1, q̄2)¸ ˚˙ ˝
4-dim numerator,

(D-dim denominator)

= C2,�

ÿ

r,s

Nµ1···µr ‹1···‹s¸ ˚˙ ˝
tensor coe�cient

⁄
dq̄1

⁄
dq̄2

qµ1
1 · · · qµr

1 q‹1
2 · · · q‹s

2
D(q̄1, q̄2)

¸ ˚˙ ˝
tensor integral

Calculation decomposed into:
• Numerical construction of tensor coe�cient in 4-dim æ this talk, complete
• Renormalization, restoration of (D-4)-dim numerator part æ rational counterterms

RM̄2,� = M2,� + M(CT)
1,1,� + M(CT)

0,2,� [Lang, Pozzorini, Zhang, Zoller], implementation ongoing
• Reduction and evaluation of tensor integrals æ todo

36

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible
! "

and reducible
!

,
"

diagrams.

Exploit numerator factorization:

N (q1, q2) =

w(1)
1

w(1)
N1�1

D(1)
0

D(1)
1

D(1)
N1�1

q1

P

w(2)
N2

w(2)
2

D(2)
N2�1

D(2)
1

D(2)
0

q2

=
#

N (1)(q1)
$–1

¸ ˚˙ ˝
chain 1

P–1–2¸˚˙˝
bridge

#
N (2)(q2)

$–2

¸ ˚˙ ˝
chain 2

1. Construct chain 1 using extension of one-loop algorithm, perform first

loop integration.

2. Connect bridge using tree algorithm

æ treat first loop as external "subtree".

3. Construct chain 2 using extension of one-loop algorithm

æ treat first loop + bridge as external "subtree".

37

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible
! "

and reducible
!

,
"

diagrams.

Exploit numerator factorization:

N (q1, q2) =

w(1)
1

w(1)
N1�1

D(1)
0

D(1)
1

D(1)
N1�1

q1

P

w(2)
N2

w(2)
2

D(2)
N2�1

D(2)
1

D(2)
0

q2

=
#

N (1)(q1)
$–1

¸ ˚˙ ˝
chain 1

P–1–2¸˚˙˝
bridge

#
N (2)(q2)

$–2

¸ ˚˙ ˝
chain 2

1. Construct chain 1 using extension of one-loop algorithm, perform first

loop integration.

2. Connect bridge using tree algorithm

æ treat first loop as external "subtree".

3. Construct chain 2 using extension of one-loop algorithm

æ treat first loop + bridge as external "subtree".

N (1)
n = N (1)

n≠1S(1)
n , N (1)

0 = 1,

#
M(1)

$–1 =
s

dq̄1
Tr
#

N (1)
N1

(q1)
$–1

D(1)(q̄1)

37

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible
! "

and reducible
!

,
"

diagrams.

Exploit numerator factorization:

N (q1, q2) =

w(1)
1

w(1)
N1�1

D(1)
0

D(1)
1

D(1)
N1�1

q1

P

w(2)
N2

w(2)
2

D(2)
N2�1

D(2)
1

D(2)
0

q2

=
#

N (1)(q1)
$–1

¸ ˚˙ ˝
chain 1

P–1–2¸˚˙˝
bridge

#
N (2)(q2)

$–2

¸ ˚˙ ˝
chain 2

1. Construct chain 1 using extension of one-loop algorithm, perform first

loop integration.

2. Connect bridge using tree algorithm

æ treat first loop as external "subtree".

3. Construct chain 2 using extension of one-loop algorithm

æ treat first loop + bridge as external "subtree".

Pn = Pn≠1S(B)
n (w(B)

n), w(B)
0 =

#
M(1)

$–1
, P≠1 = 1

37

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible
! "

and reducible
!

,
"

diagrams.

Exploit numerator factorization:

N (q1, q2) =

w(1)
1

w(1)
N1�1

D(1)
0

D(1)
1

D(1)
N1�1

q1

P

w(2)
N2

w(2)
2

D(2)
N2�1

D(2)
1

D(2)
0

q2

=
#

N (1)(q1)
$–1

¸ ˚˙ ˝
chain 1

P–1–2¸˚˙˝
bridge

#
N (2)(q2)

$–2

¸ ˚˙ ˝
chain 2

1. Construct chain 1 using extension of one-loop algorithm, perform first

loop integration.

2. Connect bridge using tree algorithm

æ treat first loop as external "subtree".

3. Construct chain 2 using extension of one-loop algorithm

æ treat first loop + bridge as external "subtree".

N (2)
n = Nn≠1S(2)

n (w(2)
n), w(2)

1 =
#

M(1)
$–1 P–1–2 , N (2)

0 = 1

37

Two Loop Algorithm: Irreducible Diagrams

Two-loop numerator factorizes:
N (q1, q2) = N (1)(q1) N (2)(q2) N (3)(q3) V0(q1, q2) V1(q1, q2)

-
q3æ≠(q1+q2)

N (i)(qi) = S(i)
0 (qi) S(i)

1 (qi) · · · S(i)
Ni ≠1(qi)

q1 q2

q3

V0

V1

Building blocks Kn for algorithm:

• N (1), N (2), N (3) 3 chains
• S(1)

a , S(2)
a , S(3)

a their segments
• V0, V1 vertices connecting chains
• U0 = 2

q
col

CMú
0 Born and color

∆ Construct Born-loop interference recursively from building blocks:
Un = Un≠1Kn, Kn œ {U0, N (i), S(i)

a , Vj }

Factorization results in freedom of choice for two-loop algorithm.
• CPU cost ≥ # multiplications
• determine most e�cient variant through cost simulation

38

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64# active helicities in U(1)
1 =32# active helicities in U(1)
2 =16# active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

N (3)
n (q3) = N (3)

n≠1S(3)
n , N (3)

0 = 1

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64# active helicities in U(1)
1 =32# active helicities in U(1)
2 =16# active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

U(1)
n = U(1)

n≠1S(1)
n , U(1)

0 = 2
q

col
CMú

0

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64

active helicities in U(1)
1 =32# active helicities in U(1)
2 =16# active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex.

Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

U(1)
n (hn+1, hn+2, . . .) =

q
hn

U(1)
n≠1(hn, hn+1, hn+2 . . .)S(1)

n (hn), U(1)
0 = U(1)

0 (h1, h2, . . . , hN1+N2+N3)

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64

active helicities in U(1)
1 =32

active helicities in U(1)
2 =16# active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex.

Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

U(1)
n (hn+1, hn+2, . . .) =

q
hn

U(1)
n≠1(hn, hn+1, hn+2 . . .)S(1)

n (hn), U(1)
0 = U(1)

0 (h1, h2, . . . , hN1+N2+N3)

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64# active helicities in U(1)
1 =32

active helicities in U(1)
2 =16

active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex.

Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

U(1)
n (hn+1, hn+2, . . .) =

q
hn

U(1)
n≠1(hn, hn+1, hn+2 . . .)S(1)

n (hn), U(1)
0 = U(1)

0 (h1, h2, . . . , hN1+N2+N3)

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64# active helicities in U(1)
1 =32# active helicities in U(1)
2 =16

active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

U(1)
n (hn+1, hn+2, . . .) =

q
hn

U(1)
n≠1(hn, hn+1, hn+2 . . .)S(1)

n (hn), U(1)
0 = U(1)

0 (h1, h2, . . . , hN1+N2+N3)

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64# active helicities in U(1)
1 =32# active helicities in U(1)
2 =16# active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

V0

V1

q3=
�q1�q2

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

[U(13)]
—

(2)
N2

—
(2)
0

= [U(1)]
—

(1)
N1

—
(1)
0

[N (3)]
—

(3)
N3

—
(3)
0

#
V0(q1, q2)

$—
(1)
0 —

(2)
0 —

(3)
0

#
V1(q1, q2)

$
—

(1)
N1

—
(2)
N2

—
(3)
N3

--
q3æ≠(q1+q2)

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64# active helicities in U(1)
1 =32# active helicities in U(1)
2 =16# active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

V0

V1

q3=
�q1�q2

V0

V1

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

U(123)
n = U(123)

(n≠1)
S(2)

n , U(123)
0 = U(13) = U(1)(q1)N (3)(q3)V1(q1, q2)V0(q1, q2)

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Two Loop Algorithm: Irreducible Diagrams

active helicities in U(1)
0 =64# active helicities in U(1)
1 =32# active helicities in U(1)
2 =16# active helicities in U(1)
3 =8

=8

◊2

◊2

◊2

V0

V1

q3=
�q1�q2

V0

V1

1. Construct shortest chain N (3)(q3).

2. Construct longest chain N (1)(q1) using U0=2
q

colCMú
0 (h) as the initial condition.

Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]:
Begin with maximal # helicities in U0, sum helicities of ext. subtrees at each
vertex. Large # of helicities summed in this step (one-loop complexity).

3. Attach N (1)(q1), N (3)(q3) first to V1, then to V0, sum helicities of N (3)(q3),V1, V0.

4. Attach N (2)(q2) segments to previously constructed object, sum helicities
on-the-fly.

Completely general and highly e�cient algorithm.
Fully implemented for QED and QCD corrections to the SM.

39

Numerical Stability

Validate and measure numerical stability of two-loop algorithm without computing
tensor integrals using pseudotree test.

e1e2
e3 e4

D(1)
0

D(3)
0

D(2)
0

V0

V1

q1 q2

q3

• Cut two propagators of two-loop diagram
• Insert random wavefunctions e1, e2, e3, e4 saturating indices
• Set q1, q2 to random constant values, contract tensor coe�cients

Nµ1...µr ‹1...‹s with fixed-value tensor integrand qµ1
1 ···qµr

1 q‹1
2 ···q‹s

1
D(q1,q2)

• Compare to computation with well-tested tree level algorithm

Typical accuracy around 10≠15 in double (DP) and 10≠30 in quad (QP) precision,
always much better than 10≠17 in QP ∆ Establish QP as benchmark for DP

40

Numerical Stability: Irreducible Diagrams

Numerical stability of scattering probability density W
(2L,pr)
02 in double (pr=DP) vs

quad (pr=QP) precision in pseudotree mode.

ADP = log10

3
|W(2L,DP)

02 ≠W(2L,QP)
02 |

Min(|W(2L,DP)
02 |,|W(2L,QP)

02 |)

4

Process: gg æ t̄t

�12�13�14�15�16�17
accuracy Amin

10�4

10�3

10�2

10�1

100

fr
ac

ti
on

of
p
oi

nt
s

Process: dd̄ æ uūg

�11�12�13�14�15�16�17
accuracy Amin

10�4

10�3

10�2

10�1

100

fr
ac

ti
on

of
p
oi

nt
s

The plot shows the fraction of points with ADP > Amin for 105 uniform random points.

Excellent numerical stability. Essential for full calculation, tensor integrals will be
main source of instabilities.

41

E�ciency: Irreducible Diagrams

Construction of tensor coe�cients for QED, QCD and SM (NNLO QCD) processes
(single intel i7-6600U, 2.6 GHz, 16GB RAM, 1000 points)

101

102

103

104

ti
m

e/
p
oi

nt
t V

V
[m

s]

e+e� � e+e�

e+e� � e+e��

gg � uū

dd̄ � uū

dd̄ � uūg

uū � tt̄g

gg � tt̄

gg � tt̄g

ud̄ � W+gg

uū � W+W �g

uū � tt̄H

gg � tt̄H

gg � gg

gg � ggg

linear fit

2
4
6
8

t V
V
/t

fu
ll

R
V

average

102 103 104 105

Ndiags

6
8

10
12

t V
V
/t

R
V

• 2 æ 2 process: 10-300ms/psp

• 2 æ 3 process: 65-9200ms/psp

Runtime Ã # diagrams
time/psp/diagram ≥ 150 µs

Constant ratios between NNLO
double virtual (VV) and
real-virtual (RV):

tVV
tfull
RV

¥ 4 ± 1 (full RV)

tVV
tRV

¥ 9 ± 3 (tensor coe�cients)

Strong CPU performance, comparable to real-virtual corrections in OpenLoops.

42

One-loop rational terms

Amputated one-loop diagram “:1

M̄1,“ = C1,“

⁄
dq̄1

N̄ (q1)
D(q̄1)

= C1,“

⁄
dq̄1

4-dim˙ ˝¸ ˚
N (q1) +

(D-4)-dim˙ ˝¸ ˚
Ñ (q̄1)

D(q̄1)
= D0

D1

D2

DN�1

q1

∆ ”R1,“ = C1,“

⁄
dq̄1

Ñ (q̄1)
D(q̄1)

The Á-dim numerator parts Ñ (q̄1) = N̄ (q̄1) ≠ N (q1) contribute only via interaction
with 1

Á UV poles
∆ Can be restored through rational counterterm ”R1,“ [Ossola, Papadopoulos, Pittau]

R M̄1,“¸ ˚˙ ˝
D≠dim, renormalised

= M1,“¸˚˙˝
4≠dim numerator

+ ”Z1,“ + ”R1,“¸ ˚˙ ˝
UV and rational counterterm

Finite set of process-independent rational terms in renormalisable models.

1Bar denotes quantities in D dimensions.

43

Two-loop rational terms
Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, Zoller]

R M̄2,� = M2,� +
q
“

1
”Z1,“ + ”Z̃1,“¸ ˚˙ ˝

subtract
subdivergences

+ ”R1,“¸ ˚˙ ˝
restore Ñ -terms

from subdiagrams

2
· M1,�/“ +

1
”Z2,�¸˚˙˝

subtract remaining
local divergence

+ ”R2,�¸ ˚˙ ˝
restore remaining

Ñ -term

2

Example:

R M̄2,� =

C
+

!
”Z1,“ + ”Z̃1,“ + ”R1,“

"
+

!
”Z2,� + ”R2,�

"
D

4-dim
numerators

• Divergences from subdiagrams “ and remaining local one subtracted by usual UV
counterterms ”Z1,“ , ”Z2,�.

• Additional UV counterterm ”Z̃1,“ Ã
q̃1

2

Á for subdiagrams with mass dimension 2.

• ”R2,� is a two-loop rational term stemming from the interplay of Ñ with UV poles.

• Finite set of process-independent rational terms of UV origin.

• Available for QED and QCD corrections to the SM. [Lang, Pozzorini, Zhang, Zoller,2021]

• Rational terms of IR origin currently under investigation.

44

https://arxiv.org/abs/2107.10288

Implementation of Renormalization, Rational Terms at NNLO

Status:
• Implementation of new tree (e.g.) and one-loop (e.g.)

universal Feynman rules, complete
• Validation of new 1l tensor structures using pseudotree-test, complete
• Ongoing: Validation of implementation of two-loop rational terms by

pole-cancellation check, computation of first full amplitudes for simple
processes æ require tensor integrals

Currently working on twored, small in-house tensor integral library for 2

and 3 point topologies with o�-shell external legs and massless propagators.

Approach:
• Covariant decomposition: express tensor integrals in terms of scalar

integrals and their coe�cients.

• Reduce scalar integrals to master integrals using FIRE[Smirnov, Chukharev].

• Implement analytic master integrals from literature in twored.

45

Summary

New algorithm for two loop tensor coe�cients:

• Fully general algorithm

• Excellent numerical stability

• Highly e�cient, comparable to real virtual contribution

• Exploit factorization for ideal order of building blocks.

• E�cient treatment of helicities and ranks in loop momenta.

• Fully implemented for NNLO QED and QCD Corrections to SM

Current and future projects

• Implementation of two-loop UV and rational counterterms

• Tensor integrals (in-house framework and or external tool or mixture

thereof)

46

Backup

46

On-The-Fly Helicity Summation at NLO

Final result: W01 =
q

h

q
col

2 Re
#

M̄1(h) M̄ú
0 (h)

$

Instead of N (q, h) =
r

a

Sa(q, h), construct U(q) =
q

h

#
2
q

col
CMú

0 (h)
$

N (q, h)

Perform on-the-fly helicity summation [Buccioni, Pozzorini, Zoller], for each diagram:

• Use Born-color interfernce U0=2
q

colCMú
0 (h) as initial condition,

begin the recursion with maximal helicities.

• Exploit factorization to sum helicities in each recursion step:q
h

U0(h) N (q, h) =
q

hN

Ë
· · ·

q
h2

Ëq
h1

U0(h1, h2, ...)S1(h1)

È
S2(h2) · · ·

È
SN (hN)

• (in renormalizable theories) each segment:

• increases rank by 1 (or 0)

• decreases total helicities by a factor of # helicities of subtree in the

segment

Minimal helicities with maximal rank, complexity is kept low in final
recursion steps.

On-The-Fly Helicity Summation: Example

w5

w4

w1

w6

¿

w1 w6 w4 w5

2◊ 2◊ 2◊ 2◊ 2 = #h

N1 N2 N3N4

In each recursion step:
• increase rank by 1
• decrease total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=32,
rank=0

On-The-Fly Helicity Summation: Example

w5

w4

w1

w6

¿

w1 w6 w4 w5

2◊

2◊ 2◊ 2◊ 2 = #h

N1

N2 N3N4

In each recursion step:
• increase rank by 1
• decrease total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=16,
rank=1

On-The-Fly Helicity Summation: Example

w5

w4

w1

w6

¿

w1 w6 w4 w5

2◊ 2◊ 2◊

2◊ 2 = #h

N1

N2

N3N4

In each recursion step:
• increase rank by 1
• decrease total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=4,
rank=2

On-The-Fly Helicity Summation: Example

w5

w4

w1

w6

¿

w1 w6 w4 w5

2◊ 2◊ 2◊ 2◊

2 = #h

N1 N2

N3

N4

In each recursion step:
• increase rank by 1
• decrease total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=2,
rank=3

On-The-Fly Helicity Summation: Example

w5

w4

w1

w6

¿

w1 w6 w4 w5

2◊ 2◊ 2◊ 2◊ 2 = #h

N1 N2 N3

N4

In each recursion step:
• increase rank by 1
• decrease total helicities by a

factor of # helicities of
wavefunction in the segment

helicities=1,
rank=4

Two Loop Algorithm: Naive Approach

1. construct chains N (1)(q1), N (2)(q2), N (3)(q3) using one-loop algorithm.

2. combine with vertex V1, closing indices —(1)
N1

,—(2)
N2

,—(3)
N3

3. combine with vertex V0, closing indices —(1)
0 ,—(2)

0 ,—(3)
0

4. multiply Born-color interference, sum over helicities, map momenta

#
N (1)(q1)

$ —
(1)
N1

—
(1)
0

#
N (2)(q2)

$ —
(2)
N2

—
(2)
0

#
N (3)(q3)

$ —
(3)
N3

—
(3)
0

#
V1(q1, q2)

$
—

(1)
N1

—
(2)
N2

—
(3)
N3

#
V0(q1, q2)

$—
(1)
0 —

(2)
0 —

(3)
0

Two Loop Algorithm: Naive Approach

V1

1. construct chains N (1)(q1), N (2)(q2), N (3)(q3) using one-loop algorithm.

2. combine with vertex V1, closing indices —(1)
N1

,—(2)
N2

,—(3)
N3

3. combine with vertex V0, closing indices —(1)
0 ,—(2)

0 ,—(3)
0

4. multiply Born-color interference, sum over helicities, map momenta

#
N (1)(q1)

$ —
(1)
N1

—
(1)
0

#
N (2)(q2)

$ —
(2)
N2

—
(2)
0

#
N (3)(q3)

$ —
(3)
N3

—
(3)
0

#
V1(q1, q2)

$
—

(1)
N1

—
(2)
N2

—
(3)
N3

#
V0(q1, q2)

$—
(1)
0 —

(2)
0 —

(3)
0

Two Loop Algorithm: Naive Approach

V1

V0

V1

1. construct chains N (1)(q1), N (2)(q2), N (3)(q3) using one-loop algorithm.

2. combine with vertex V1, closing indices —(1)
N1

,—(2)
N2

,—(3)
N3

3. combine with vertex V0, closing indices —(1)
0 ,—(2)

0 ,—(3)
0

4. multiply Born-color interference, sum over helicities, map momenta

#
N (1)(q1)

$ —
(1)
N1

—
(1)
0

#
N (2)(q2)

$ —
(2)
N2

—
(2)
0

#
N (3)(q3)

$ —
(3)
N3

—
(3)
0

#
V1(q1, q2)

$
—

(1)
N1

—
(2)
N2

—
(3)
N3

#
V0(q1, q2)

$—
(1)
0 —

(2)
0 —

(3)
0

Two Loop Algorithm: Naive Approach

V1

V0

V1

1. construct chains N (1)(q1), N (2)(q2), N (3)(q3) using one-loop algorithm.

2. combine with vertex V1, closing indices —(1)
N1

,—(2)
N2

,—(3)
N3

3. combine with vertex V0, closing indices —(1)
0 ,—(2)

0 ,—(3)
0

4. multiply Born-color interference, sum over helicities, map momenta

q
h

U0(h)
#

N (1)(q1, h)
$#

N (2)(q2, h)
$#

N (3)(q3, h)
$#

V1(q1, q2, h)
$#

V0(q1, q2, h)
$--

q3æ≠(q1+q2)

Two Loop Algorithm: Observations and Challenges

q
h

U0(h)
#

N (1)(q1, h)
$#

N (2)(q2, h)
$#

N (3)(q3, h)
$#

V1(q1, q2, h)
$#

V0(q1, q2, h)
$--

q3æ≠(q1+q2)

1. construct chains N (1)(q1), N (2)(q2), N (3)(q3) using one-loop algorithm

2. combine with vertex V1, closing indices —(1)
N1

,—(2)
N2

,—(3)
N3

3. combine with vertex V0, closing indices —(1)
0 ,—(2)

0 ,—(3)
0

4. sum over helicities, map momenta, multiply Born-color interference
Observations:

• complexitiy of each step depends on ranks in q1, q2 and helicities

• step 2, 3 are performed for 6, 3 open spinor/Lorentz indices

• step 2, 3 are performed at maximal ranks

• all steps are performed for all helicities
Very ine�cient: most expensive steps performed for maximal number of

components and helicities.

Helicity Bookkeeping

For a set of particles E = {1, 2, . . . , N} the helicity configurations are
identified as:

⁄p =

Y
__]

__[

1, 3 for fermions with helicity s = ≠1/2, 1/2
1, 2, 3 for gauge bosons with s = ≠1, 0, 1
0 for scalars with s = 0 or unpolarized particles

’ p œ E

Each particle is assigned a base 4 helicity label

h̄p = ⁄p 4p≠1,

which can be used to define a similar numbering scheme for a set of
particles:
Ea = {pa1 , . . . , pan } has the helicity label,

ha =
ÿ

pœEa

h̄p.

Merging

Example:
• After one dressing step subsequent

dressing steps are identical.

• Topology (scalar propagators) is
identical for both diagrams.

• Diagrams can be merged.

For diagrams A,B with identical
segments after n dressing steps (exploit
factorization):

UA,B = U0Tr(NA,B) = numerator · Born · color

UA + UB = (Un,A · Sn+1 · · · SN) + (Un,B · Sn+1 · · · SN)

= (Un,A + Un,B) · Sn+1 · · · SN

Only perform dressing steps n+1 to N
once.

Highly e�cient way of dressing a large
number of diagrams for complicated
processes.

One-loop rational terms

Amputated one-loop diagram “ (1PI)

M̄1,“ = C1,“¸˚˙˝
color factor

⁄
dq̄1

N (q1) + Ñ (q̄1)
D(q̄1)

= D0

D1

D2

DN�1

q1 ∆ ”R1,“ = C1,“

⁄
dq̄1

Ñ (q̄1)
D(q̄1)

The Á-dim numerator parts Ñ (q̄1) = N̄ (q̄1) ≠ N (q1) contribute only via interaction with 1
Á UV

poles ∆ Can be restored through rational counterterm ”R1,“ [Ossola, Papadopoulos, Pittau]

∆
R M̄1,“¸ ˚˙ ˝

D≠dim, renormalised

= M1,“¸˚˙˝
4≠dim numerator

+ ”Z1,“ + ”R1,“¸ ˚˙ ˝
UV and rational counterterm

Generic one-loop diagram � factorises into 1PI subdiagram “ and external subtrees wi (4-dim):

M̄1,� =
wN�1wN

w1 w2

=
Ë

M̄1,“

È‡1...‡N
NŸ

i=1

[wi]‡i
∆

R M̄1,� = M1,� +
!

”Z1,“ + ”R1,“

" NŸ

i=1

wi

¸ ˚˙ ˝
tree diagram

Finite set of process-independent rational terms in renormalisable models
computed from UV divergent vertex functions

Status of two-loop rational terms
Renormalised D-dim amplitudes can be computed from amplitudes with 4-dim numerators and a
finite set of universal UV and rational counterterms inserted lower-loop amplitudes

R M̄2,� = M2,� +
ÿ

“

1
”Z1,“ + ”Z̃1,“ + ”R1,“

2
· M1,�/“ +

1
”Z2,� + ”R2,�

2

Status of two-loop rational terms

• General method for the computation of rational counterterms of UV origin from simple
tadpole integrals in any renormalisable model [Pozzorini, Zhang, Zoller,2020]

• Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, Zoller,2020]

• Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, Zoller,2021]

• Full set of two-loop rational terms computed for

• QED with full dependence on the gauge parameter [Pozzorini, Zhang, Zoller,2020]

• SU(N) and U(1) in any renormalisation scheme [Lang, Pozzorini, Zhang, Zoller,2020]

• QED and QCD corrections to the full SM [Lang, Pozzorini, Zhang, Zoller,2021]

• Rational terms of IR origin currently under investigation

https://arxiv.org/abs/2001.11388
https://arxiv.org/abs/2007.03713
https://arxiv.org/abs/2107.10288
https://arxiv.org/abs/2001.11388
https://arxiv.org/abs/2007.03713
https://arxiv.org/abs/2107.10288

Explicit dressing steps

Triple vertex loop segment:

Ë
S

(i)
a (qi , h

(i)
a)

È—(i)
a

—(i)
a≠1

=
�

(i)
a�1

w(i)
a

kia

�(i)
a

=
IË

Y
‡
ia

È—(i)
a

—(i)
a≠1

+
Ë
Z

‡
ia,‹

È—(i)
a

—(i)
a≠1

q
‹
i

J
w

(i)
a‡ (kia, h

(i)
a)

Quartic vertex segments:

Ë
S

(i)
a (qi , h

(i)
a)

È—(i)
a

—(i)
a≠1

=
�

(i)
a�1

w(i)
a1

w(i)
a2

kia1
kia2

�(i)
a

=
Ë
Y

‡1‡2
ia

È—(i)
a

—(i)
a≠1

w
(i)
a1‡1(kia1 , h

(i)
a1) w

(i)
a2‡2(kia2 , h

(i)
a2)

with h
(i)
a = h

(i)
a1 + h

(i)
a2 and kia = kia1 + kia2 .

Dressing step for a segment with a triple vertex:

Ë
N (1)

n; µ1...µr (ĥ(1)
n)

È—(1)
n

—(1)
0

=
IË

N (1)
n≠1; µ1...µr (ĥ

(1)
n≠1)

È—(1)
n≠1

—(1)
0

Ë
Y

‡
1n

È—(1)
n

—(1)
n≠1

+
Ë
N (1)

n≠1; µ2...µr (ĥ
(1)
n≠1)

È—(1)
n≠1

—(1)
0

Ë
Z

‡
1n,µ1

È—(1)
n

—(1)
n≠1

J
w

(1)
n‡ (kn, h

(1)
n).

Processes considered in performance tests

corrections process type massless fermions massive fermions process
QED 2 æ 2 e ≠ e

+
e

≠ æ e
+

e
≠

2 æ 3 e ≠ e
+

e
≠ æ e

+
e

≠“

QCD 2 æ 2 u ≠ gg æ uū

u, d ≠ dd̄ æ uū

u ≠ gg æ gg

u t uū æ tt̄g

u t gg æ tt̄

u t gg æ tt̄g

2 æ 3 u, d ≠ dd̄ æ uūg

u ≠ gg æ ggg

u, d ≠ ud̄ æ W
+

gg

u, d ≠ uū æ W
+

W
≠

g

u t uū æ tt̄H

u t gg æ tt̄H

Memory usage of the two-loop algorithm

virtual–virtual memory [MB] real–virtual [MB]
hard process segment-by-segment diagram-by-diagram coe�cients full
e

+
e

≠ æ e
+

e
≠ 18 8 6 23

e
+

e
≠ æ e

+
e

≠“ 154 25 22 54
gg æ uū 75 31 10 26
gg æ tt̄ 94 35 15 34
gg æ tt̄g 2000 441 152 213
ud̄ æ W

+
gg 563 143 54 90

uū æ W
+

W
≠

g 264 67 36 67
uū æ tt̄H 82 28 14 40
gg æ tt̄H 604 145 50 90
uū æ tt̄g 323 83 41 74
gg æ gg 271 94 41 55
dd̄ æ uū 18 10 9 20
dd̄ æ uūg 288 85 39 68
gg æ ggg 6299 1597 623 683

Pole Cancellation Check

Renormalized two-loop diagram � (assuming o�-shell external legs):

R
5 6

= + +

(from arxiv:2007.03713v2)
RM̄2,� = M2,� +

q
“

!
”Z1,“ + ”Z̃1,“ + ”R1,“

"
M1,�/“ +

!
”Z2,� + ”R2,�

"

In terms of ‘:
M2,� = 1

‘2 M(2)
2,� + 1

‘
M(1)

2,� + M(0)
2,� + ‘M(≠1)

2,� + O(‘)

M1,�/“ = 1
‘

M(1)
1,�/“

+ M(0)
1,�/“

+ ‘M(≠1)
1,�/“

+ O(‘2)
!

”Z1,“ + ”Z̃1,“ + ”R1,“

"
= 1

‘
Z (1)

1,“ + Z (0)
1,“

!
”Z2,� + ”R2,�

"
= 1

‘2 Z (2)
2,� + 1

‘
Z (1)

2,� + Z (0)
2,�

then poles should cancel:

• 1
‘ Z (1)

2,� + 1
‘

q
“

1
Z (1)

1,“M(0)
1,�/“

+ Z (0)
1,“M(1)

1,�/“

2
+ 1

‘ M(1)
2,�

• 1
‘2 M(2)

2,� + 1
‘2

q
“

Z (1)
1,“M(1)

1,�/“
+ 1

‘2 Z (2)
2,�

Pole Cancellation Check

Renormalized two-loop diagram � (assuming o�-shell external legs):
RM̄2,� = M2,� +

q
“

!
”Z1,“ + ”Z̃1,“ + ”R1,“

"
M1,�/“ +

!
”Z2,� + ”R2,�

"

In terms of ‘:
M2,� = 1

‘2 M(2)
2,� + 1

‘
M(1)

2,� + M(0)
2,� + ‘M(≠1)

2,� + O(‘)

M1,�/“ = 1
‘

M(1)
1,�/“

+ M(0)
1,�/“

+ ‘M(≠1)
1,�/“

+ O(‘2)
!

”Z1,“ + ”Z̃1,“ + ”R1,“

"
= 1

‘
Z (1)

1,“ + Z (0)
1,“

!
”Z2,� + ”R2,�

"
= 1

‘2 Z (2)
2,� + 1

‘
Z (1)

2,� + Z (0)
2,�

then poles should cancel:

• 1
‘ Z (1)

2,� + 1
‘

q
“

1
Z (1)

1,“M(0)
1,�/“

+ Z (0)
1,“M(1)

1,�/“

2
+ 1

‘ M(1)
2,�

• 1
‘2 M(2)

2,� + 1
‘2

q
“

Z (1)
1,“M(1)

1,�/“
+ 1

‘2 Z (2)
2,�

Pole Cancellation Check

Renormalized two-loop diagram � (assuming o�-shell external legs):
RM̄2,� = M2,� +

q
“

!
”Z1,“ + ”Z̃1,“ + ”R1,“

"
M1,�/“ +

!
”Z2,� + ”R2,�

"

In terms of ‘:
M2,� = 1

‘2 M(2)
2,� + 1

‘
M(1)

2,� + M(0)
2,� + ‘M(≠1)

2,� + O(‘)

M1,�/“ = 1
‘

M(1)
1,�/“

+ M(0)
1,�/“

+ ‘M(≠1)
1,�/“

+ O(‘2)
!

”Z1,“ + ”Z̃1,“ + ”R1,“

"
= 1

‘
Z (1)

1,“ + Z (0)
1,“

!
”Z2,� + ”R2,�

"
= 1

‘2 Z (2)
2,� + 1

‘
Z (1)

2,� + Z (0)
2,�

then poles should cancel:

• 1
‘ Z (1)

2,� + 1
‘

q
“

1
Z (1)

1,“M(0)
1,�/“

+ Z (0)
1,“M(1)

1,�/“

2
+ 1

‘ M(1)
2,�

• 1
‘2 M(2)

2,� + 1
‘2

q
“

Z (1)
1,“M(1)

1,�/“
+ 1

‘2 Z (2)
2,�

Pole Cancellation Check

Renormalized two-loop diagram � (assuming o�-shell external legs):
RM̄2,� = M2,� +

q
“

!
”Z1,“ + ”Z̃1,“ + ”R1,“

"
M1,�/“ +

!
”Z2,� + ”R2,�

"

In terms of ‘:
M2,� = 1

‘2 M(2)
2,� + 1

‘
M(1)

2,� + M(0)
2,� + ‘M(≠1)

2,� + O(‘)

M1,�/“ = 1
‘

M(1)
1,�/“

+ M(0)
1,�/“

+ ‘M(≠1)
1,�/“

+ O(‘2)
!

”Z1,“ + ”Z̃1,“ + ”R1,“

"
= 1

‘
Z (1)

1,“ + Z (0)
1,“

!
”Z2,� + ”R2,�

"
= 1

‘2 Z (2)
2,� + 1

‘
Z (1)

2,� + Z (0)
2,�

then poles should cancel:

• 1
‘ Z (1)

2,� + 1
‘

q
“

1
Z (1)

1,“M(0)
1,�/“

+ Z (0)
1,“M(1)

1,�/“

2
+ 1

‘ M(1)
2,�

• 1
‘2 M(2)

2,� + 1
‘2

q
“

Z (1)
1,“M(1)

1,�/“
+ 1

‘2 Z (2)
2,�

Pole Cancellation Check

Renormalized two-loop diagram � (assuming o�-shell external legs):
RM̄2,� = M2,� +

q
“

!
”Z1,“ + ”Z̃1,“ + ”R1,“

"
M1,�/“ +

!
”Z2,� + ”R2,�

"

In terms of ‘:
M2,� = 1

‘2 M(2)
2,� + 1

‘
M(1)

2,� + M(0)
2,� + ‘M(≠1)

2,� + O(‘)

M1,�/“ = 1
‘

M(1)
1,�/“

+ M(0)
1,�/“

+ ‘M(≠1)
1,�/“

+ O(‘2)
!

”Z1,“ + ”Z̃1,“ + ”R1,“

"
= 1

‘
Z (1)

1,“ + Z (0)
1,“

!
”Z2,� + ”R2,�

"
= 1

‘2 Z (2)
2,� + 1

‘
Z (1)

2,� + Z (0)
2,�

then poles should cancel:

• 1
‘ Z (1)

2,� + 1
‘

q
“

1
Z (1)

1,“M(0)
1,�/“

+ Z (0)
1,“M(1)

1,�/“

2
+ 1

‘ M(1)
2,�

• 1
‘2 M(2)

2,� + 1
‘2

q
“

Z (1)
1,“M(1)

1,�/“
+ 1

‘2 Z (2)
2,�

This would validate ”R2,� (contains 1
‘ pole) as well as implementation of ”Z̃1,“ , ”Z2,�

Implementation of Renormalization, Rational Terms

Example (from arXiv:2001.11388v3) :

≥ ie2
(gµ‹gfl‡

+ gµflg‹‡
+ gµ‡g‹fl

)¸ ˚˙ ˝
tensor structure

2ÿ

k=1

1
–
4fi

2k
”R(s)

k,4“¸ ˚˙ ˝
rational

counterterms

where k=1,2 is the loop order.

For NNLO need to implement:

• universal Feynman rules for new tensor structures

• new rational counterterms

Tensor Integrals

For NNLO need:

• 1l TI for

• 1l diagrams with ct insertions: up to O(‘), new topolgies due to

squared propagator,

e.g.

D0

D0

D1

D2

=
s

dq̄1
qµ1

1 ···qµr
1

D̄0D̄0D̄1D̄2
= Iµ1···µr

• VV reducible, V, RV, L2: exists

• 2l TI

• VV irreducible:s
dq̄1

s
dq̄2

qµ1
1 ···qµr

1 q‹1
2 ···q‹s

2
D(1)(q̄1) D(2)(q̄2) D(3)(q̄3)

q3æ≠(q1+q2)

= Iµ1···µr ‹1···‹s

Implementation of Renormalization, Rational Terms

for NNLO need the following UV rational/counterterms:

• 1l ct in 0l diagrams (ct and tensor structures exist)

renormalization of:

• 1l diagrams (V, RV, L2): , exists

• reducible 2l diagrams (VV): , new

• 1l ct in 1l diagrams (ct exist, new tensor structuresæ implemented and

tested with pseudotree test)

renormalization of:

• irreduclible 2l diagrams (VV): , new

• reducible 2l diagrams (VV): , new

• 2l ct in 0l diagrams (new ct, tensor structures exists)

renormalization of:

• irreducible 2l diagrams (VV): , (new)

Tensor Integrals

Currently working on interfacing and extending twored:

an in-house tensor integral library for 2 and 3 point topologies (possibly extend

to 4 point) with o�-shell external legs and massless propagators.

Approach:
For a given topology with tensor integral Iµ1···µr

• covariant decomposition: Iµ1···µr = T µ1···µr
i · Ci , generate all possible

tensor structures T µ1···µr from ext. momenta metric tensors

• express coe�cients in terms of scalar integrals Ci using projectors Pµ1···µr ,

Ci = (Pj,µ1···µr T µ1···µr
i)

≠1Pj,µ1···µr Iµ1···µr

• reduce scalar integrals to master integrals Gk using FIRE

Ci = –ikGk ∆ Iµ1···µr = T µ1···µr
i · –ik · Gk

