OpenLoops at I-loop \& 2-loops status and developments

Jonas M. Lindert

Natalie Schär

US

University of Sussex Facilities Council

In collaboration with: F. Buccioni, J.-N. Lang, P. Maierhöfer, S. Pozzorini, H. Zhang, M. Zoller

$$
\begin{gathered}
\text { N3LO } \gamma^{*} \rightarrow \ell^{+} \ell^{-} \text {kick-off workshop } \\
\text { 4th August } 2022
\end{gathered}
$$

OpenLoops

- OpenLoops is a numerical tool providing hard scattering amplitudes to Monte Carlo simulations.
- All components to NLO fully automated in OpenLoops for QCD and EW corrections to the SM.

[Schälicke, Gleisberg, Höche,
Schumann, Winter, Krauss, Soff]

OpenLoops constructs helicity and color summed scattering probability densities $\mathcal{W}_{L L}=\sum_{h} \sum_{c o l}\left|\overline{\mathcal{M}}_{L}(h)\right|^{2}$ for $L=0,1$ and $\mathcal{W}_{0 L}=\sum_{h} \sum_{\text {col }} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{L}(h) \overline{\mathcal{M}}_{0}^{*}(h)\right]$ for $L=1$ from L-loop matrix elements $\overline{\mathcal{M}}_{L}$.
Example:

$$
\mathcal{W}_{01}=\sum_{h} \sum_{\text {col }} 2 \operatorname{Re}\left[\bigcirc^{n}<\varepsilon^{*}+\ldots\right]
$$

Goals: ultimate for numerical stability for real-virtual applications, automation at NNLO

Components to NLOCalculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim \rightarrow OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
- Renormalization, restoration of (D-4)-dim numerator part \rightarrow rational counterterms $\mathbf{R} \overline{\mathcal{M}}_{1, \Gamma}=\mathcal{M}_{1, \Gamma}+\mathcal{M}_{0,1, \Gamma}^{(C T)}$ [Ossola, Papadopoulos, Pittau]
- Reduction and evaluation of tensor integrals \rightarrow On-the-fly reduction [Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

OpenLoops Tree Level Algorithm: Example

> input: external wavefunctions
> $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}$

OpenLoops Tree Level Algorithm: Example

Combine w_{4}, w_{5} into subtree w_{6} :

$$
w_{6}^{\gamma}=\left[-v^{\gamma}\right]_{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta}
$$

$\left[-v^{2}\right]_{\alpha \beta}^{\gamma}=$ vertex + propagator, universal process-independent Feynman rule

OpenLoops Tree Level Algorithm: Example

Add next external leg:

$$
\begin{aligned}
& w_{6}^{\gamma}=\left[v^{\gamma}\right]_{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta} \\
& w_{7}^{\gamma}=[\text { m }]_{\alpha \beta}^{\gamma} w_{3}^{\alpha} w_{6}^{\beta}
\end{aligned}
$$

$$
\begin{gathered}
{[\text { universal process-independent }} \\
\text { Feynman rule }
\end{gathered}
$$

OpenLoops Tree Level Algorithm: Example

same on the other side:

$$
\begin{aligned}
& w_{6}^{\gamma}=[\overbrace{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta} \\
& w_{7}^{\gamma}=[\text { u }]_{\alpha \beta}^{\gamma} w_{3}^{\alpha} w_{6}^{\beta} \\
& \widetilde{w}_{8}^{\gamma}=\left[\cdots \xi^{2}\right]_{\alpha \beta}^{\gamma} w_{1}^{\alpha} w_{2}^{\beta}
\end{aligned}
$$

[wo $\%]_{\alpha \beta}^{\gamma}=$ vertex, universal process-independent Feynman rule

OpenLoops Tree Level Algorithm: Example

combine to full diagram:

$$
\begin{aligned}
& w_{6}^{\gamma}=[\underbrace{\vartheta}]_{\alpha \beta}^{\gamma} w_{4}^{\alpha} w_{5}^{\beta} \\
& w_{7}^{\gamma}=[\text { w }]_{\alpha \beta}^{\gamma} w_{3}^{\alpha} w_{6}^{\beta} \\
& \widetilde{w}_{8}^{\gamma}=[\text { wig }]_{\alpha \beta}^{\gamma} w_{1}^{\alpha} w_{2}^{\beta} \\
& \mathcal{M}_{0}=[\text { ene }]_{\alpha \beta} w_{7}^{\alpha} w_{8}^{\beta}
\end{aligned}
$$

$$
\begin{gathered}
{[\text { une }]_{\alpha \beta}=} \\
\text { universal process-independent } \\
\text { Feynman rule }
\end{gathered}
$$

OpenLoops Tree Level Algorithm

Recursively construct subtrees starting from external wavefunctions:

$$
\begin{aligned}
w_{a}^{\sigma_{a}}\left(k_{a}, h_{a}\right) & =\underbrace{\frac{X_{\sigma_{b} \sigma_{c}}^{\sigma_{a}}\left(k_{b}, k_{c}\right)}{k_{a}^{2}-m_{a}^{2}}}_{\text {model-dependent }} \underbrace{w_{b}^{\sigma_{b}}\left(k_{b}, h_{b}\right) w_{c}^{\sigma_{c}}\left(k_{c}, h_{c}\right)}_{\text {process-dependent }}
\end{aligned}
$$

Then contract into full diagram:

$$
\mathcal{M}_{0, \Gamma}(h)=: w_{a}: w_{b}:=C_{0, \Gamma} \cdot w_{a}^{\sigma_{a}}\left(k_{a}, h_{a}\right) \delta_{\sigma_{a} \sigma_{b}} \widetilde{w}_{b}^{\sigma_{b}}\left(k_{b}, h_{b}\right)
$$

- diagrams constructed using universal Feynman rules
- identical subtrees are recycled in multiple tree and loop diagrams

One Loop Algorithm: Example

External subtrees constructed in tree level algorithm (together with tree diagrams):
$w_{2}, w_{3} \rightarrow w_{6}$

One Loop Algorithm: Example

> Open Loop:

Diagram factorizes into chain of segments: $\mathcal{N}=S_{1} \cdots S_{N}$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Construct first segment S_{1} attaching the external subtree w_{1}.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Add second segment attaching the subtree w_{6}.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Add third segment.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right) \\
& \mathcal{N}_{3}=\mathcal{N}_{2} \cdot S_{3}\left(w_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree(s) }
\end{aligned}
$$

One Loop Algorithm: Example

Add last segment.

$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right) \\
& \mathcal{N}_{3}=\mathcal{N}_{2} \cdot S_{3}\left(w_{4}\right) \\
& \mathcal{N}_{4}=\mathcal{N}_{3} \cdot S_{4}\left(w_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { segment }=\text { loop vertex }+ \text { loop } \\
& \text { propagator }+ \text { external subtree }(\mathrm{s})
\end{aligned}
$$

One Loop Algorithm: Example

Close the loop (contract open

 Lorentz/spinor indices).$$
\begin{aligned}
& \mathcal{N}_{0}=\mathbb{1} \\
& \mathcal{N}_{1}=\mathcal{N}_{0} \cdot S_{1}\left(w_{1}\right) \\
& \mathcal{N}_{2}=\mathcal{N}_{1} \cdot S_{2}\left(w_{6}\right) \\
& \mathcal{N}_{3}=\mathcal{N}_{2} \cdot S_{3}\left(w_{4}\right) \\
& \mathcal{N}_{4}=\mathcal{N}_{3} \cdot S_{4}\left(w_{5}\right)=\mathcal{N}_{4}{ }_{\beta_{0}}^{\beta_{N}} \\
& \mathcal{N}=\operatorname{Tr}\left(\mathcal{N}_{4}{ }_{\beta_{0}}{ }^{\beta_{N}}\right)
\end{aligned}
$$

OpenLoops One Loop Algorithm

One Loop Amplitude:

$$
\mathcal{M}_{1, \Gamma}=c_{1, \Gamma} \int \mathrm{~d} \bar{q} \frac{\operatorname{Tr}[\mathcal{N}(q)]}{D_{0} D_{1} \cdots D_{N_{1}-1}}=
$$

Diagram is cut open resulting in a chain, which factorizes into segments:

Chain is constructed recursively, recursion step: $\mathcal{N}_{n}=\mathcal{N}_{n-1} \cdot S_{n}$.

Segment $=$ vertex + propagator + subtree (s)

$$
\left[S_{a}(q)\right]_{\beta_{a-1}}^{\beta_{a}}=\underbrace{\frac{w_{a}}{\downarrow_{a}}}_{\beta_{a-1}}{ }_{D_{a}}=\left[Y_{\sigma_{a}}+Z_{\sigma_{a}, \nu} q^{\nu}\right]_{\beta_{a-1}}^{\beta_{a}} w_{a}^{\sigma_{a}}\left(k_{a}\right)
$$

Exploit factorization to construct 11 diagrams from universal process-independent building blocks.

The Open Loops algorithm: From tree recursion to loop diagrams

Treat one-loop diagram as ordered set of sub-trees $\mathcal{I}_{n}=\left\{i_{1}, \ldots, i_{n}\right\}$ connected by propagators

- Build numerator recursively connecting subtrees along the loop keeping the q dependence

$$
\begin{gathered}
\mathcal{N}_{\alpha}^{\beta}\left(\mathcal{I}_{n} ; q\right)=X_{\gamma \delta}^{\beta}(q) \mathcal{N}_{\alpha}^{\gamma}\left(\mathcal{I}_{n-1} ; q\right) w^{\delta}\left(i_{n}\right) \\
X_{\gamma \delta}^{\beta}=Y_{\gamma \delta}^{\beta}+q^{\nu} Z_{\nu ; \gamma \delta}^{\beta}
\end{gathered}
$$

\Rightarrow very fast!

$$
\mathcal{N}_{\mu_{1} \ldots \mu_{r} ; \alpha}^{\beta}\left(\mathcal{I}_{n}\right)=\left[Y_{\gamma \delta}^{\beta} \mathcal{N}_{\mu_{1} \ldots \mu_{r} ; \alpha}^{\gamma}\left(\mathcal{I}_{n-1}\right)+Z_{\mu_{1} ; \gamma \delta}^{\beta} \mathcal{N}_{\mu_{2} \ldots \mu_{r} ; \alpha}^{\gamma}\left(\mathcal{I}_{n-1}\right)\right] w^{\delta}\left(i_{n}\right)
$$

The (original) Open Loops algorithm: recycle loop structures

OpenLoops recycling:
Lower-point open-loops can be shared between diagrams if

- cut is put appropriately
- direction chosen to maximise recyclability

Illustration:

child 1

child 2

Complicated diagrams require only "last missing piece"

The (original) Open Loops algorithm:

one loop amplitudes
[F. Cascioli, P. Maierhöfer, S. Pozzorini; 'I2]

- Tensorial coefficients $\mathcal{N}_{\mu_{1}, \ldots \mu_{r} ; \alpha}^{\alpha}$ can directly be contracted with Tensor Integrals evaluated with COLLIER [Denner, Dittmaier, Hofer; 'I 6]
- Fast evaluation of $\mathcal{N}(q)=\sum \mathcal{\mathcal { N } _ { 1 } \ldots \mu _ { r }} q^{\mu_{1}} \ldots q^{\mu_{r}}$ at multiple q-values allows for efficient application of OPP reduction methods e.g. with CutTools [Ossola, Papadopolous, Pittau; '07]

Standard OpenLoops reduction

Example:

Complexity grows exponential with tensor rank!

Bottlenecks:

- Large growths of structures prior to reduction
-Evaluation of coefficients required for every helicity h

On-the-fly reduction

[Buccioni, Pozzorini, Zoller, 'I7]

Example:

Complexity grows exponential with tensor rank!

Advantage of OFR:

- one algorithm for construction and reduction of amplitude (less reliance on external codes)
- unprecedented numerical stability (crucial for real-virtual applications)

On-the-fly reduction

- At each Open Loops step that gives rank=2 perform "on-the-fly" 2 -> | integrand-level reduction:

$$
\begin{aligned}
\text { rank }=2 & \longrightarrow \text { rank=। } \\
q^{\mu} q^{\nu} & =A_{-1}^{\mu \nu}+A_{0}^{\mu \nu} D_{0}+\left(B_{-1, \lambda}^{\mu \nu}+\sum_{i=0}^{3} B_{i, \lambda}^{\mu \nu} D_{i}\right) q^{\lambda}, \\
D_{i} & =\left(q+p_{i}\right)^{2}-m_{i}^{2}
\end{aligned}
$$

-For $\mathrm{N}>3$ the reduction identify requires $\left(p_{1}, p_{2}, p_{3}\right)$ independent momenta.
-This reduction follows from decomposition:

$$
q^{\mu}=\sum_{i=1}^{4} c_{i} l_{i}^{\mu}, \quad l_{i}=l_{i}\left(p_{1}, p_{2}\right)
$$

We can choose this decomposition freely

$$
\text { such that we can cancel propagators } D_{i}
$$

reduction basis

- $A_{i}^{\mu \nu}, B_{i}^{\mu \nu}$ depend on l_{i}, e.g. $\quad B_{1, \lambda}^{\mu \nu}=\frac{1}{4 \gamma^{2}}\left[\xi_{2}\left(L_{33}^{\mu \nu} \ell_{4, \lambda}+\frac{1}{\alpha} L_{44}^{\mu \nu} \ell_{3, \lambda}\right)-\left(r_{2}^{\mu} L_{34, \lambda}^{\nu}+r_{2}^{\nu} L_{34, \lambda}^{\mu}\right)\right]+\frac{1}{\gamma}\left(r_{2}^{\mu} \delta_{\lambda}^{\nu}-A_{0}^{\mu \nu} r_{2, \lambda}\right)$
$\longleftarrow \sim$ Gram determinants!

On-the-fly reduction

- At each Open Loops step that gives rank=2 perform "on-the-fly" 2 -> | integrand-level reduction:

$$
\begin{aligned}
\text { rank }=2 & \longrightarrow \text { rank=। } \\
q^{\mu} q^{\nu} & =A_{-1}^{\mu \nu}+A_{0}^{\mu \nu} D_{0}+\left(B_{-1, \lambda}^{\mu \nu}+\sum_{i=0}^{3} B_{i, \lambda}^{\mu \nu} D_{i}\right) q^{\lambda}, \\
D_{i} & =\left(q+p_{i}\right)^{2}-m_{i}^{2}
\end{aligned}
$$

-For $\mathrm{N}>3$ the reduction identify requires $\left(p_{1}, p_{2}, p_{3}\right)$ independent momenta.
-This reduction follows from decomposition:

$$
q^{\mu}=\sum_{i=1}^{4} c_{i} l_{i}^{\mu}, \quad l_{i}=l_{i}\left(p_{1}, p_{2}\right)
$$

We can choose this decomposition freely

$$
\text { such that we can cancel propagators } D_{i}
$$

reduction basis

- $A_{i}^{\mu \nu}, B_{i}^{\mu \nu}$ depend on $l_{i, \text { e.g. }} \quad B_{1, \lambda}^{\mu \nu}=\frac{1}{4 \gamma^{2}}\left[\xi_{2}\left(L_{33}^{\mu \nu} \ell_{4, \lambda}+\frac{1}{\alpha} L_{44}^{\mu \nu} \ell_{3, \lambda}\right)-\left(r_{2}^{\mu} L_{34, \lambda}^{\nu}+r_{2}^{\nu} L_{34, \lambda}^{\mu}\right)\right]+\frac{1}{\gamma}\left(r_{2}^{\mu} \delta_{\lambda}^{\nu}-A_{0}^{\mu \nu} r_{2, \lambda}\right)$乙~Gram determinants!

On-the-fly reduction

On-the-fly reduction: stability

$\mathcal{A}_{X}=\log _{10}\left|\frac{\mathcal{W}_{01}^{X}-\mathcal{W}_{01}^{\mathrm{qp}}}{\mathcal{W}_{01}^{\mathrm{qp}}}\right|$
\rightarrow Huge numerical instabilities in naive OFR implementation
$\mathcal{M}_{\text {qp }}$ via OLI with CutTools

Sources of numerical instabilities in OFR

$$
\begin{aligned}
q^{\mu} q^{\nu} & =A^{\mu \nu}+B_{\lambda}^{\mu \nu} q^{\lambda} \\
A_{i}^{\mu \nu} & =\frac{1}{\Delta_{12}^{\mu \nu}} a_{i}^{\mu}, \\
B_{i, \lambda}^{\mu \nu} & =\frac{1}{\Delta_{12}^{2}} \frac{1}{\sqrt{\Delta_{123}}} b_{i, \lambda}^{(1), \mu \nu}+\frac{1}{\Delta_{12}} b_{i, \lambda}^{(2), \mu \nu}
\end{aligned}
$$

\rightarrow Clear correlation between severe numerical instabilities and $\Delta_{12} \rightarrow 0$
\rightarrow Instabilities propagate through the reduction and amplify

Solutions to numerical instabilities in OFR

1. Use freedom of choice of OFR basis for $N \geq 4$ such that $\Delta_{i_{1} i_{2}} \rightarrow$ max. This corresponds to permutation of propagators.

$$
\frac{\mathcal{V}^{\mu \nu} q_{\mu} q_{\nu}}{D_{0} D_{1} D_{2} D_{3} \ldots} \rightarrow \frac{\mathcal{V}^{\mu \nu} q_{\mu} q_{\nu}}{D_{0} D_{i_{1}} D_{i_{2}} D_{i_{3}} \ldots}, \quad i_{1}, i_{2}, i_{3} \in[1,2,3]
$$

\rightarrow Avoids small rank=2 Gram-determinant instabilities down to $\mathrm{N}=3$
I. For $\mathrm{N}=3$ and hard kinematics: Gram determinant instabilities arise only in t -channel topologies

$$
\Delta_{12} \rightarrow 0 \text { for } p_{1}^{2} \rightarrow p_{2}^{2}
$$

\rightarrow Can be avoided using analytical reduction to Ml plus expansions in Δ_{12}

Solutions to numerical instabilities in OFR

\rightarrow No rank=2 Gram determinant instabilities!

Numerical stability with OFR

\rightarrow For remaining instabilities: use qp
-This also requires true qp benchmark: remove any dp "noise" (inputs, phase-space,...)

- Any-order expansions such that rescaling test is reliable

Numerical stability with OFR

Local estimate of numerical stability

-For each step in the OL+OFR construction we construct and propagate an error estimate

Local error sources
$\left(D_{1}, D_{2}, D_{3}\right)$-permutation

- Reduction basis
\rightarrow Estimated via rank=3 Gram determinant
(no rank=2 Gram determinant instabilities remaining!)
- Reduction steps
\rightarrow Estimated via reduction coefficients
- Scalar integrals
\rightarrow Estimated using Collier
(via mod. Cayley determinant)

Hybrid precision

- Trigger qp only where locally necessary, e.g.

\rightarrow CPU cost: $\mathrm{O}(\mathrm{I} \%)$ of full qp evaluation
\rightarrow for hard kinematics: excellent numerical stability at only $\mathrm{O}(\mathrm{I} 0 \%)$ cost with respect to pure dp

Hybrid precision performance

accuracy \mathcal{A}

accuracy \mathcal{A}

accuracy \mathcal{A}

Hybrid precision performance

Numerical instabilities in the IR

- Frequent appearance of double small rank 2 GD instabilities

$$
\Delta_{i j} \approx 0, \quad \Delta_{k l} \approx 0
$$

\rightarrow change of basis is futile

- Unstable triangle reductions
- IR t-channel $\left(p_{2}-p_{1}\right)^{2} \approx 0$

- IR triangles $\Delta_{12} \approx 0$
- IR kinematics
$\bullet \xrightarrow{\boldsymbol{5}} \sim \frac{1}{(p+k)^{2}-m^{2}}=\frac{1}{2 p \cdot k}$
\rightarrow ensure stable invariants
- Cancellations: virtual + CT
- Gluon self-energy

\rightarrow allow for analytical cancelation: reorganise contributions
$\rightarrow \mathbb{R}$ features and dedicated IR qp triggers via hp_mode=2
ocurrently only fully consistent for NLO QCD
oextension to NLO QED trivial

Numerical stability in the IR

$$
\begin{aligned}
& \xi_{\mathrm{soft}}=E_{\mathrm{soft}} / Q \\
& \xi_{\mathrm{coll}}=\arccos \left(\frac{\boldsymbol{p}_{i} \cdot \boldsymbol{p}_{j}}{\left|\boldsymbol{p}_{i}\right|\left|\boldsymbol{p}_{j}\right|}\right)^{2}
\end{aligned}
$$

New: On-The-fly TEnsor Reduction (OTTER)

- Perform OFR directly at the level of tensor integrals

$$
T_{N}^{\mu_{1} \cdots \mu_{r}}=\int \mathrm{d}^{D} \bar{q} \frac{q^{\mu_{1}} \cdots q^{\mu_{r}}}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{N-1}}
$$

\rightarrow targeted stability improvements as in OFR: change of basis, expansions, hp, ...
\rightarrow Most important advantages:

1. for the first time OFR including hp for loop ${ }^{2}$ processes (game-changer for loop-induced processes)
2. $\mathrm{qp} / \mathrm{dp}$ can be restricted to tensor integrals. Coefficients can be determined in dp only

New: On-The-fly TEnsor Reduction (OTTER)

Details of OTTER reduction strategy:

- $N>4$
- rank=2...N: dAP
- rank=0,l: OPP
- $N=4$
- rank=2,3,4: dAP
- rank=1:special case
- $N=3$
rank $=1,2,3$: dAP or PV
$N=2$
- rank=1,2: PV

Implementation:
I. determination of reduction dependences: top-down (large N to small N)
2. evaluation of tensor integrals: bottom-up (small N to large N)

OTTER performance

OTTER performance

\rightarrow stability of scalar integrals becomes relevant

OTTER performance

OTTER performance: RRV to $\gamma^{*} \rightarrow e^{+} e^{-}$

CPU performance for ee~aaa at NLO QED:

```
OL+OFR dp OL+OFR qp
    4.4 ms 125ms
OL+Otter dp OL+Otter qp (full)}\quad\mathrm{ OL+Otter qp (only Tl)
    4.0 ms 78ms
    47ms
```


Conclusions: real-virtual stability

- OpenLoops provides very fast and stable one-loop amplitudes in the SM at NLO QCD, NLO EW and NLO QED up to high multiplicities
- Systematic stability improvements thanks to OFR techniques
- New/upcoming: On-The-fly TEnsor Reduction (OTTER)
- OL+OTTER: new standard for one-loop real-virtual applications

Automation at NNLO

The public OpenLoops [Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller] already delivers some components to NNLO:

- OpenLoops is already being used in NNLO calculations in particular for the real virtual components in e.g. MATRIX [Grazzini, Kallweit, Wiesemann], NNLOJET [Gehrmann-De Ridder, Gehrmann, Glover, Huss, Walker], McMule [Banerjee, Engel, Signer, Ulrich].
- NNLO in OpenLoops: require double virtual

Components to NLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim \rightarrow OpenLoops algorithm [van Hameren; Cascioli, Maierhöfer, Pozzorini; Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller]
- Renormalization, restoration of (D-4)-dim numerator part \rightarrow rational counterterms $\mathbf{R} \overline{\mathcal{M}}_{1, \Gamma}=\mathcal{M}_{1, \Gamma}+\mathcal{M}_{0,1, \Gamma}^{(C T)}$ [Ossola, Papadopoulos, Pittau]
- Reduction and evaluation of tensor integrals \rightarrow On-the-fly reduction [Buccioni, Pozzorini, Zoller], Collier [Denner, Dittmaier, Hofer], OneLoop [van Hameren]

Components to NNLO Calculations

Final result in D-dimensions, numerical tools: construct numerator in 4-dimensions. For one diagram Γ :

Calculation decomposed into:

- Numerical construction of tensor coefficient in 4-dim \rightarrow this talk, complete
- Renormalization, restoration of (D-4)-dim numerator part \rightarrow rational counterterms $\mathrm{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\mathcal{M}_{1,1, \Gamma}^{(\mathrm{CT})}+\mathcal{M}_{0,2, \Gamma}^{(\mathrm{CT})} \quad$ [Lang, Pozzorini, Zhang, Zoller], implementation ongoing
- Reduction and evaluation of tensor integrals \rightarrow todo

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible (D^{-}) and reducible (
Exploit numerator factorization:

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible ($D^{-<}$) and reducible (∞, ∞) diagrams.

Exploit numerator factorization:

1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.

$$
\mathcal{N}_{n}^{(1)}=\mathcal{N}_{n-1}^{(1)} s_{n}^{(1)}, \quad \mathcal{N}_{0}^{(1)}=\mathbb{1}, \quad\left[\mathcal{M}^{(1)}\right]^{\alpha_{1}}=\int \mathrm{d} \bar{q}_{1} \frac{\operatorname{Tr}\left[\mathcal{N}_{N_{1}}^{(1)}\left(q_{1}\right)\right]^{\alpha_{1}}}{\mathcal{D}^{(1)}\left(\bar{q}_{1}\right)}
$$

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible ($\mathbb{D}^{-<}$) and reducible ($\infty^{-\infty}, \infty$) diagrams.

Exploit numerator factorization:

1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.
2. Connect bridge using tree algorithm
\rightarrow treat first loop as external "subtree".

$$
P_{n}=P_{n-1} S_{n}^{(B)}\left(w_{n}^{(B)}\right), \quad w_{0}^{(B)}=\left[\mathcal{M}^{(1)}\right]^{\alpha_{1}}, \quad P_{-1}=\mathbb{1}
$$

Two Loop Algorithm: Reducible Diagrams

Distinguish irreducible (D^{-}) and reducible (

Exploit numerator factorization:

1. Construct chain 1 using extension of one-loop algorithm, perform first loop integration.
2. Connect bridge using tree algorithm
\rightarrow treat first loop as external "subtree".
3. Construct chain 2 using extension of one-loop algorithm
\rightarrow treat first loop + bridge as external "subtree".

$$
\mathcal{N}_{n}^{(2)}=\mathcal{N}_{n-1} S_{n}^{(2)}\left(w_{n}^{(2)}\right), \quad w_{1}^{(2)}=\left[\mathcal{M}^{(1)}\right]^{\alpha_{1}} P_{\alpha_{1} \alpha_{2}}, \quad \mathcal{N}_{0}^{(2)}=\mathbb{1}
$$

Two Loop Algorithm: Irreducible Diagrams

Two-loop numerator factorizes:

$$
\begin{gathered}
\mathcal{N}\left(q_{1}, q_{2}\right)=\left.\mathcal{N}^{(1)}\left(q_{1}\right) \mathcal{N}^{(2)}\left(q_{2}\right) \mathcal{N}^{(3)}\left(q_{3}\right) \nu_{0}\left(q 1, q_{2}\right) \nu_{1}(q 1, q 2)\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)} \\
\mathcal{N}^{(i)}\left(q_{i}\right)=s_{0}^{(i)}\left(q_{i}\right) s_{1}^{(i)}\left(q_{i}\right) \cdots s_{N_{i}-1}^{(i)}\left(q_{i}\right)
\end{gathered}
$$

Building blocks $\mathcal{K}_{\mathbf{n}}$ for algorithm:

- $\mathcal{N}^{(1)}, \mathcal{N}^{(2)}, \mathcal{N}^{(3)} 3$ chains
- $s_{a}^{(1)}, s_{a}^{(2)}, s_{a}^{(3)}$ their segments
- ν_{0}, ν_{1} vertices connecting chains
- $u_{0}=2 \sum_{\text {col }} \subset \mathcal{M}_{0}^{*}$ Born and color
\Rightarrow Construct Born-loop interference recursively from building blocks:

$$
\mathcal{U}_{n}=\mathcal{U}_{n-1} \mathcal{K}_{n}, \quad \mathcal{K}_{n} \in\left\{\mathcal{U}_{0}, \mathcal{N}^{(i)}, s_{a}^{(i)}, \mathcal{V}_{j}\right\}
$$

Factorization results in freedom of choice for two-loop algorithm.

- CPU cost ~ \# multiplications
- determine most efficient variant through cost simulation

Two Loop Algorithm: Irreducible Diagrams

6 8 6 8 8

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.

$$
\mathcal{N}_{n}^{(3)}\left(q_{3}\right)=\mathcal{N}_{n-1}^{(3)} S_{n}^{(3)}, \quad \mathcal{N}_{0}^{(3)}=\mathbb{1}
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \mathcal{C} \mathcal{M}_{0}^{*}(h)$ as the initial condition.

$$
\mathcal{U}_{n}^{(1)}=\mathcal{U}_{n-1}^{(1)} s_{n}^{(1)}, \quad \mathcal{U}_{0}^{(1)}=2 \sum_{c o l} C \mathcal{M}_{0}^{*}
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{0}^{(1)}=64$
6
6
En
6
6

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex.

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right)
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{1}^{(1)}=32$

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{\text {col }} C \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex.

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right.
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{2}^{(1)}=16$
6
E
En
6
6

$$
=8 \times 2
$$

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex.

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right)
$$

Two Loop Algorithm: Irreducible Diagrams

\# active helicities in $\mathcal{U}_{3}^{(1)}=8$

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{\text {col }} C \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).

$$
\mathcal{U}_{n}^{(1)}\left(h_{n+1}, h_{n+2}, \ldots\right)=\sum_{h_{n}} \mathcal{U}_{n-1}^{(1)}\left(h_{n}, h_{n+1}, h_{n+2} \ldots\right) S_{n}^{(1)}\left(h_{n}\right), \quad \mathcal{U}_{0}^{(1)}=\mathcal{U}_{0}^{(1)}\left(h_{1}, h_{2}, \ldots, h_{\left.N_{1}+N_{2}+N_{3}\right)}\right)
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{\text {col }} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).
3. Attach $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ first to ν_{1}, then to ν_{0}, sum helicities of $\mathcal{N}^{(3)}\left(q_{3}\right), \nu_{1}, \nu_{0}$.

$$
\left.\left[\mathcal{U}^{(13)]}{ }_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}=\left[\mathcal{U}^{(1)}\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(3)}{ }_{\beta_{0}^{(3)}}^{\substack{(3)}}\left[\nu_{0}^{((q 1)}, q 2\right)\right]^{(1)}\right]_{0}^{(1)} \beta_{0}^{(2)} \beta_{0}^{(3)}\left[\nu_{1}(q 1, q 2)\right]_{\beta_{N_{1}}^{(1)} \beta_{N_{2}}^{(2)} \beta_{N_{3}}^{(3)}}\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).
3. Attach $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ first to ν_{1}, then to ν_{0}, sum helicities of $\mathcal{N}^{(3)}\left(q_{3}\right), \nu_{1}, \nu_{0}$.
4. Attach $\mathcal{N}^{(2)}\left(q_{2}\right)$ segments to previously constructed object, sum helicities on-the-fly.

$$
\mathcal{U}_{n}^{(123)}=\mathcal{U}_{(n-1)}^{(123)} s_{n}^{(2)}, \quad \mathcal{U}_{0}^{(123)}=\mathcal{U}^{(13)}=\mathcal{U}^{(1)}\left(q_{1}\right) \mathcal{N}^{(3)}\left(q_{3}\right) \mathcal{V}_{1}(q 1, q 2) \mathcal{V}_{0}(q 1, q 2)
$$

Two Loop Algorithm: Irreducible Diagrams

1. Construct shortest chain $\mathcal{N}^{(3)}\left(q_{3}\right)$.
2. Construct longest chain $\mathcal{N}^{(1)}\left(q_{1}\right)$ using $\mathcal{U}_{0}=2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)$ as the initial condition. Perform on-the-fly helicity summation of ext. subtrees [Buccioni, Pozzorini, Zoller]: Begin with maximal \# helicities in \mathcal{U}_{0}, sum helicities of ext. subtrees at each vertex. Large \# of helicities summed in this step (one-loop complexity).
3. Attach $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ first to ν_{1}, then to ν_{0}, sum helicities of $\mathcal{N}^{(3)}\left(q_{3}\right), \nu_{1}, \nu_{0}$.
4. Attach $\mathcal{N}^{(2)}\left(q_{2}\right)$ segments to previously constructed object, sum helicities on-the-fly.

Completely general and highly efficient algorithm. Fully implemented for QED and QCD corrections to the SM.

Numerical Stability

Validate and measure numerical stability of two-loop algorithm without computing tensor integrals using pseudotree test.

- Cut two propagators of two-loop diagram
- Insert random wavefunctions $e_{1}, e_{2}, e_{3}, e_{4}$ saturating indices
- Set q_{1}, q_{2} to random constant values, contract tensor coefficients $\mathcal{N}_{\mu_{1} \ldots \mu_{r} \nu_{1} \ldots \nu_{s}}$ with fixed-value tensor integrand $\frac{q_{1}^{\mu_{1}} \ldots q_{1}^{\mu_{r}} q_{2}^{\nu_{1}} \ldots q_{1}^{\nu_{s}}}{\mathcal{D}\left(q_{1}, q_{2}\right)}$
- Compare to computation with well-tested tree level algorithm

Typical accuracy around 10^{-15} in double (DP) and 10^{-30} in quad (QP) precision, always much better than 10^{-17} in QP \Rightarrow Establish QP as benchmark for DP

Numerical Stability: Irreducible Diagrams

Numerical stability of scattering probability density $\mathcal{W}_{02}^{(2 L, p r)}$ in double ($\mathrm{pr}=\mathrm{DP}$) vs quad ($\mathrm{pr}=\mathrm{QP}$) precision in pseudotree mode.

$$
\mathcal{A}_{\mathrm{DP}}=\log _{10}\left(\frac{\left|\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{DP})}-\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{QP})}\right|}{\operatorname{Min}\left(\left|\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{DP})}\right|,\left|\mathcal{W}_{02}^{(2 \mathrm{~L}, \mathrm{QP})}\right|\right)}\right)
$$

The plot shows the fraction of points with $\mathcal{A}_{\mathrm{DP}}>\mathcal{A}_{\text {min }}$ for 10^{5} uniform random points.
Excellent numerical stability. Essential for full calculation, tensor integrals will be main source of instabilities.

Efficiency: Irreducible Diagrams

Construction of tensor coefficients for QED, QCD and SM (NNLO QCD) processes
(single intel i7-6600U, 2.6 GHz, 16GB RAM, 1000 points)

Strong CPU performance, comparable to real-virtual corrections in OpenLoops.

One-loop rational terms

Amputated one-loop diagram γ : ${ }^{1}$

$$
\begin{gathered}
\overline{\mathcal{M}}_{1, \gamma}=C_{1, \gamma} \int \mathrm{~d} \bar{q}_{1} \frac{\overline{\mathcal{N}}\left(q_{1}\right)}{\overline{\mathcal{D}}\left(\bar{q}_{1}\right)}=C_{1, \gamma} \int \mathrm{~d} \bar{q}_{1} \frac{\overbrace{\mathcal{N}\left(q_{1}\right)}^{4-\mathrm{dim}}+\overbrace{\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}^{\mathcal{D}\left(\bar{q}_{1}\right)}}{(\mathrm{D}-4) \text {-dim }}=\underbrace{D_{p_{1-1}}}_{D_{D_{1}}\left(q_{1}\right.} \\
\Rightarrow \delta \mathcal{R}_{1, \gamma}=C_{1, \gamma} \int \mathrm{~d} \bar{q}_{1} \frac{\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}{\mathcal{D}\left(\bar{q}_{1}\right)}
\end{gathered}
$$

The ε-dim numerator parts $\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)=\overline{\mathcal{N}}\left(\bar{q}_{1}\right)-\mathcal{N}\left(q_{1}\right)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles
\Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1, \gamma}$ [Ossola, Papadopoulos, Pittau]

Finite set of process-independent rational terms in renormalisable models.
${ }^{1}$ Bar denotes quantities in D dimensions.

Two-loop rational terms

Renormalised D-dim amplitudes from amplitudes with 4-dim numerator [Pozzorini, Zhang, Zoller]
$\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}(\underbrace{\delta \mathcal{Z}_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}}_{\begin{array}{c}\text { subtract } \\ \text { subdivergences }\end{array}}+\underbrace{\delta \mathcal{R}_{1, \gamma}}_{\begin{array}{c}\text { restore } \tilde{\mathcal{N}} \text {-terms } \\ \text { from subdiagrams }\end{array}}) \cdot \mathcal{M}_{1, \Gamma / \gamma}+(\underbrace{\delta Z_{2, \Gamma}}_{\begin{array}{c}\text { subtract remaining } \\ \text { local divergence }\end{array}}+\underbrace{\delta \mathcal{R}_{2, \Gamma}}_{\begin{array}{c}\text { restore remaining } \\ \tilde{\mathcal{N}} \text {-term }\end{array}})$

Example:

$\left.\left.\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\left[m<\hat{\xi}+\cdots \mathcal{S}_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right)+\cdots \mathcal{Q}_{2, \Gamma}+\delta \mathcal{R}_{2, \Gamma}\right)\right]_{\text {4-dim }}$ numerators

- Divergences from subdiagrams γ and remaining local one subtracted by usual UV counterterms $\delta Z_{1, \gamma}, \delta Z_{2, \Gamma}$.
- Additional UV counterterm $\delta \tilde{Z}_{1, \gamma} \propto \frac{{\tilde{q_{1}}}^{2}}{\varepsilon}$ for subdiagrams with mass dimension 2.
- $\delta \mathcal{R}_{2, \Gamma}$ is a two-loop rational term stemming from the interplay of $\tilde{\mathcal{N}}$ with UV poles.
- Finite set of process-independent rational terms of UV origin.
- Available for QED and QCD corrections to the SM. [Lang, Pozzorini, Zhang, Zoller, 2021]
- Rational terms of IR origin currently under investigation.

Implementation of Renormalization, Rational Terms at NNLO

Status:

 universal Feynman rules, complete

- Validation of new 11 tensor structures using pseudotree-test, complete
- Ongoing: Validation of implementation of two-loop rational terms by pole-cancellation check, computation of first full amplitudes for simple processes \rightarrow require tensor integrals

Currently working on twored, small in-house tensor integral library for 2 and 3 point topologies with off-shell external legs and massless propagators.

Approach:

- Covariant decomposition: express tensor integrals in terms of scalar integrals and their coefficients.
- Reduce scalar integrals to master integrals using FIRE [Smirnov, Chukharev].
- Implement analytic master integrals from literature in twored.

Summary

New algorithm for two loop tensor coefficients:

- Fully general algorithm
- Excellent numerical stability
- Highly efficient, comparable to real virtual contribution
- Exploit factorization for ideal order of building blocks.
- Efficient treatment of helicities and ranks in loop momenta.
- Fully implemented for NNLO QED and QCD Corrections to SM

Current and future projects

- Implementation of two-loop UV and rational counterterms
- Tensor integrals (in-house framework and or external tool or mixture thereof)

Backup

On-The-Fly Helicity Summation at NLO

Final result: $\mathcal{W}_{01}=\sum_{h} \sum_{\text {col }} 2 \operatorname{Re}\left[\overline{\mathcal{M}}_{1}(h) \overline{\mathcal{M}}_{0}^{*}(h)\right]$
Instead of $\mathcal{N}(q, h)=\prod s_{\mathcal{A}(q, h)}$, construct $\mathcal{U}(q)=\sum_{h}\left[2 \sum_{c o l} \subset \mathcal{M}_{0}^{*}(h)\right] \mathcal{N}(q, h)$
Perform on-the-fly helicity summation [Buccioni, Pozzorini, Zoller], for each diagram:

- Use Born-color interfernce $\mathcal{U}_{0}=2 \sum_{\text {col }} \mathcal{C} \mathcal{M}_{0}^{*}(h)$ as initial condition, begin the recursion with maximal helicities.
- Exploit factorization to sum helicities in each recursion step:

$$
\sum_{h} u_{0}(h) \mathcal{N}(q, h)=\sum_{h_{N}}\left[\cdots \sum_{h_{2}}\left[\sum_{h_{1}} u_{0}\left(h_{1}, h_{2}, \ldots\right) s_{1}\left(h_{1}\right)\right] s_{2}\left(h_{2}\right) \cdots\right] s_{N}\left(h_{N}\right)
$$

- (in renormalizable theories) each segment:
- increases rank by 1 (or 0)
- decreases total helicities by a factor of \# helicities of subtree in the segment

Minimal helicities with maximal rank, complexity is kept low in final recursion steps.

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment
$2 \times 2 \times 2 \times 2 \times \quad 2=\# h$

helicities $=32$,
rank=0

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment
helicities $=16$,
rank=1

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment

helicities $=4$,
rank=2

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment

helicities $=2$,
rank=3

On-The-Fly Helicity Summation: Example

In each recursion step:

- increase rank by 1
- decrease total helicities by a factor of \# helicities of wavefunction in the segment

helicities $=1$,
rank=4

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.

$$
\left[\mathcal{N}^{(1)}\left(q_{1}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(2)}\left(q_{2}\right)\right]_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}\left[\mathcal{N}^{(3)}\left(q_{3}\right)\right]_{\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}}
$$

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.
2. combine with vertex \mathcal{V}_{1}, closing indices $\beta_{N_{1}}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$

$$
\left[\mathcal{N}^{(1)}\left(q_{1}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(2)}\left(q_{2}\right)\right]_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}\left[\mathcal{N}^{(3)}\left(q_{3}\right)\right]_{\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}}\left[\nu_{1}\left(q 1, q_{2}\right)\right]_{\beta_{N_{1}}^{(1)} \beta_{N_{2}}^{(2)} \beta_{N_{3}}^{(3)}}
$$

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.
2. combine with vertex \mathcal{V}_{1}, closing indices $\beta_{N_{1}}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$
3. combine with vertex \mathcal{V}_{0}, closing indices $\beta_{0}^{(1)}, \beta_{0}^{(2)}, \beta_{0}^{(3)}$

$$
\left[\mathcal{N}^{(1)}\left(q_{1}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{N_{1}}^{(1)}}\left[\mathcal{N}^{(2)}\left(q_{2}\right)\right]_{\beta_{0}^{(2)}}^{\beta_{N_{2}}^{(2)}}\left[\mathcal{N}^{(3)}\left(q_{3}\right)\right]_{\beta_{0}^{(3)}}^{\beta_{N_{3}}^{(3)}}\left[\mathcal{V}_{1}\left(q 1, q_{2}\right)\right]_{\beta_{N_{1}}^{(1)} \beta_{N_{2}}^{(2)} \beta_{N_{3}}^{(3)}}\left[\mathcal{V}_{0}\left(q 1, q_{2}\right)\right]_{0}^{\beta_{0}^{(1)} \beta_{0}^{(2)} \beta_{0}^{(3)}}
$$

Two Loop Algorithm: Naive Approach

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm.
2. combine with vertex \mathcal{V}_{1}, closing indices $\beta_{N_{1},}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$
3. combine with vertex \mathcal{V}_{0}, closing indices $\beta_{0}^{(1)}, \beta_{0}^{(2)}, \beta_{0}^{(3)}$
4. multiply Born-color interference, sum over helicities, map momenta

$$
\left.\sum_{h} \mathcal{U}_{0}(h)\left[\mathcal{N}^{(1)}\left(q_{1}, h\right)\right]\left[\mathcal{N}^{(2)}\left(q_{2}, h\right)\right]\left[\mathcal{N}^{(3)}\left(q_{3}, h\right)\right]\left[\nu_{1}(q 1, q 2, h)\right]\left[\nu_{0}(q 1, q 2, h)\right]\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

Two Loop Algorithm: Observations and Challenges

$$
\left.\sum_{h} U_{0}(h)\left[\mathcal{N}^{(1)}\left(q_{1}, h\right)\right]\left[\mathcal{N}^{(2)}\left(q_{2}, h\right)\right]\left[\mathcal{N}^{(3)}\left(q_{3}, h\right)\right]\left[\nu_{1}(q 1, q 2, h)\right]\left[\nu_{0}(q 1, q 2, h)\right]\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}
$$

1. construct chains $\mathcal{N}^{(1)}\left(q_{1}\right), \mathcal{N}^{(2)}\left(q_{2}\right), \mathcal{N}^{(3)}\left(q_{3}\right)$ using one-loop algorithm
2. combine with vertex ν_{1}, closing indices $\beta_{N_{1}}^{(1)}, \beta_{N_{2}}^{(2)}, \beta_{N_{3}}^{(3)}$
3. combine with vertex \mathcal{V}_{0}, closing indices $\beta_{0}^{(1)}, \beta_{0}^{(2)}, \beta_{0}^{(3)}$
4. sum over helicities, map momenta, multiply Born-color interference

Observations:

- complexitiy of each step depends on ranks in q_{1}, q_{2} and helicities
- step 2, 3 are performed for 6, 3 open spinor/Lorentz indices
- step 2, 3 are performed at maximal ranks
- all steps are performed for all helicities

Very inefficient: most expensive steps performed for maximal number of components and helicities.

Helicity Bookkeeping

For a set of particles $\mathcal{E}=\{1,2, \ldots, N\}$ the helicity configurations are identified as:

$$
\lambda_{p}=\left\{\begin{array}{ll}
1,3 & \text { for fermions with helicity } s=-1 / 2,1 / 2 \\
1,2,3 & \text { for gauge bosons with } s=-1,0,1 \\
0 & \text { for scalars with } s=0 \text { or unpolarized particles }
\end{array} \quad \forall p \in \mathcal{E}\right.
$$

Each particle is assigned a base 4 helicity label

$$
\bar{h}_{p}=\lambda_{p} 4^{p-1}
$$

which can be used to define a similar numbering scheme for a set of particles:
$\mathcal{E}_{a}=\left\{p_{a_{1}}, \ldots, p_{a_{n}}\right\}$ has the helicity label,

$$
h_{a}=\sum_{p \in \mathcal{E}_{a}} \bar{h}_{p} .
$$

Merging

Example:

- After one dressing step subsequent dressing steps are identical.
- Topology (scalar propagators) is identical for both diagrams.
- Diagrams can be merged.

For diagrams A, B with identical segments after n dressing steps (exploit factorization):

$$
\begin{aligned}
\mathcal{U}_{A, B} & =\mathcal{U}_{0} \operatorname{Tr}\left(\mathcal{N}_{A, B}\right)=\text { numerator } \cdot \text { Born } \cdot \text { color } \\
\mathcal{U}_{A}+\mathcal{U}_{B} & =\left(\mathcal{U}_{n, A} \cdot s_{n+1} \cdots s_{N}\right)+\left(\mathcal{U}_{n, B} \cdot s_{n+1} \cdots s_{N}\right) \\
& =\left(\mathcal{U}_{n, A}+\mathcal{U}_{n, B}\right) \cdot s_{n+1} \cdots s_{N}
\end{aligned}
$$

Only perform dressing steps $\mathrm{n}+1$ to N once.

Highly efficient way of dressing a large number of diagrams for complicated processes.

One-loop rational terms

Amputated one-loop diagram γ (1PI)

$$
\overline{\mathcal{M}}_{1, \gamma}=\underbrace{C_{1, \gamma}}_{\text {color factor }} \int_{0} \mathrm{~d} \bar{q}_{1} \frac{\mathcal{N}\left(q_{1}\right)+\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}{\mathcal{D}\left(\bar{q}_{1}\right)}=\underbrace{D_{N-1}}_{D_{0}\left(q_{11}\right.} \sum_{D_{i}} \Rightarrow \delta \mathcal{R}_{1, \gamma}=C_{1, \gamma} \int \mathrm{~d} \bar{q}_{1} \frac{\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)}{\mathcal{D}\left(\bar{q}_{1}\right)}
$$

The ε-dim numerator parts $\tilde{\mathcal{N}}\left(\bar{q}_{1}\right)=\overline{\mathcal{N}}\left(\bar{q}_{1}\right)-\mathcal{N}\left(q_{1}\right)$ contribute only via interaction with $\frac{1}{\varepsilon}$ UV poles \Rightarrow Can be restored through rational counterterm $\delta \mathcal{R}_{1, \gamma}$ [Ossola, Papadopoulos, Pittau]
$\Rightarrow \underbrace{\mathbf{R} \overline{\mathcal{M}}_{1, \gamma}}_{\text {D-dim, renormalised }}=\underbrace{\mathcal{M}_{1, \gamma}}_{\text {4-dim numerator }}+\underbrace{\delta Z_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}}_{\text {UV and rational counterterm }}$
Generic one-loop diagram 「 factorises into 1 PI subdiagram γ and external subtrees w_{i} (4-dim):

Finite set of process-independent rational terms in renormalisable models computed from UV divergent vertex functions

Status of two-loop rational terms

Renormalised D-dim amplitudes can be computed from amplitudes with 4-dim numerators and a finite set of universal UV and rational counterterms inserted lower-loop amplitudes

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta \mathcal{R}_{1, \gamma}\right) \cdot \mathcal{M}_{1, \Gamma / \gamma}+\left(\delta Z_{2, \Gamma}+\delta \mathcal{R}_{2, \Gamma}\right)
$$

Status of two-loop rational terms

- General method for the computation of rational counterterms of UV origin from simple tadpole integrals in any renormalisable model [Pozzorini, Zhang, Zoller, 2020]
- Complete renormalisation scheme dependence [Lang, Pozzorini, Zhang, Zoller,2020]
- Rational Terms for Spontaneously Broken Theories [Lang, Pozzorini, Zhang, Zoller,2021]
- Full set of two-loop rational terms computed for
- QED with full dependence on the gauge parameter [Pozzorini, Zhang, Zoller,2020]
- $S U(N)$ and $U(1)$ in any renormalisation scheme [Lang, Pozzorini, Zhang, Zoller,2020]
- QED and QCD corrections to the full SM [Lang, Pozzorini, Zhang, Zoller,2021]
- Rational terms of IR origin currently under investigation

Explicit dressing steps

Triple vertex loop segment:
$\left[S_{a}^{(i)}\left(q_{i}, h_{a}^{(i)}\right)\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}}={ }_{\beta_{a-1}^{(i)} \longrightarrow k_{i a}^{w_{a}^{(i)}}}^{\beta_{a}^{(i)}}=\left\{\left[Y_{i a}^{\sigma}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}}+\left[Z_{i a, \nu}^{\sigma}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} q_{i}^{\nu}\right\} w_{a \sigma}^{(i)}\left(k_{i a}, h_{a}^{(i)}\right)$
Quartic vertex segments:
$\left[S_{a}^{(i)}\left(q_{i}, h_{a}^{(i)}\right)\right]_{\beta_{a-1}}^{\beta_{a}^{(i)}}=\underbrace{w_{a_{1}}^{(i)}}_{\substack{k_{i a_{1}} \\ \beta_{a-1}^{(i)}}} \underbrace{w_{a_{2}}^{(i)}}_{k_{k_{a_{2}}}^{(i)}}=\left[Y_{i a}^{\sigma_{1} \sigma_{2}}\right]_{\beta_{a-1}^{(i)}}^{\beta_{a}^{(i)}} w_{a_{1} \sigma_{1}}^{(i)}\left(k_{i a_{1}}, h_{a_{1}}^{(i)}\right) w_{a_{2} \sigma_{2}}^{(i)}\left(k_{i a_{2}}, h_{a_{2}}^{(i)}\right)$
with $h_{a}^{(i)}=h_{a_{1}}^{(i)}+h_{a_{2}}^{(i)}$ and $k_{i a}=k_{i a_{1}}+k_{i a_{2}}$.
Dressing step for a segment with a triple vertex:

$$
\begin{aligned}
{\left[\mathcal{N}_{n ; \mu_{1} \ldots \mu_{r}}^{(1)}\left(\hat{h}_{n}^{(1)}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{n}^{(1)}}=} & \left\{\left[\mathcal{N}_{n-1 ; \mu_{1} \ldots \mu_{r}}^{(1)}\left(\hat{h}_{n-1}^{(1)}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}}\left[Y_{1 n}^{\sigma}\right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}}\right. \\
& \left.+\left[\mathcal{N}_{n-1 ; \mu_{2} \ldots \mu_{r}}^{(1)}\left(\hat{h}_{n-1}^{(1)}\right)\right]_{\beta_{0}^{(1)}}^{\beta_{n-1}^{(1)}}\left[Z_{1 n, \mu_{1}}^{\sigma}\right]_{\beta_{n-1}^{(1)}}^{\beta_{n}^{(1)}}\right\} w_{n \sigma}^{(1)}\left(k_{n}, h_{n}^{(1)}\right) .
\end{aligned}
$$

Processes considered in performance tests

corrections	process type	massless fermions	massive fermions	process
QED	$2 \rightarrow 2$	e	-	$e^{+} e^{-} \rightarrow e^{+} e^{-}$
	$2 \rightarrow 3$	e	-	$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$
QCD	$2 \rightarrow 2$	$\begin{gathered} u \\ u, d \\ u \\ u \\ u \\ u \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ t \\ t \\ t \end{gathered}$	$\begin{gathered} g g \rightarrow u \bar{u} \\ d \bar{d} \rightarrow u \bar{u} \\ g g \rightarrow g g \\ u \bar{u} \rightarrow t \bar{t} g \\ g g \rightarrow t \bar{t} \\ g g \rightarrow t \bar{t} g \end{gathered}$
	$2 \rightarrow 3$	$\begin{gathered} u, d \\ u \\ u, d \\ u, d \\ u \\ u \end{gathered}$		$\begin{gathered} d \bar{d} \rightarrow u \bar{u} g \\ g g \rightarrow g g g \\ u \bar{d} \rightarrow W^{+} g g \\ u \bar{u} \rightarrow W^{+} W^{-} g \\ u \bar{u} \rightarrow t \bar{t} H \\ g g \rightarrow t \bar{t} H \end{gathered}$

Memory usage of the two-loop algorithm

	virtual-virtual memory [MB]		real-virtual [MB]	
hard process	segment-by-segment	diagram-by-diagram	coefficients	full
$e^{+} e^{-} \rightarrow e^{+} e^{-}$	18	8	6	23
$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma$	154	25	22	54
$g g \rightarrow u \bar{u}$	75	31	10	26
$g g \rightarrow t \bar{t}$	94	35	15	34
$g g \rightarrow t \bar{t} g$	2000	441	152	213
$u \bar{d} \rightarrow W^{+} g g$	563	143	54	90
$u \bar{u} \rightarrow W^{+} W^{-} g$	264	67	36	67
$u \bar{u} \rightarrow t \bar{t} H$	82	28	14	40
$g g \rightarrow t \bar{t} H$	604	145	50	90
$u \bar{u} \rightarrow t \bar{t} g$	323	83	41	74
$g g \rightarrow g g$	271	94	41	55
$d \bar{d} \rightarrow u \bar{u}$	18	10	9	20
$d \bar{d} \rightarrow u \bar{u} g$	288	85	39	68
$g g \rightarrow g g g$	6299	1597	623	683

Pole Cancellation Check

Renormalized two-loop diagram 「 (assuming off-shell external legs):

(from arxiv:2007.03713v2)

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) \mathcal{M}_{1, \Gamma / \gamma}+\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right)
$$

Pole Cancellation Check

Renormalized two-loop diagram Γ (assuming off-shell external legs):

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) \mathcal{M}_{1, \Gamma / \gamma}+\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right)
$$

In terms of ϵ :

$$
\begin{aligned}
\mathcal{M}_{2, \Gamma} & =\frac{1}{\epsilon^{2}} M_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} M_{2, \Gamma}^{(1)}+M_{2, \Gamma}^{(0)}+\epsilon M_{2, \Gamma}^{(-1)}+\mathcal{O}(\epsilon) \\
\mathcal{M}_{1, \Gamma / \gamma} & =\frac{1}{\epsilon} M_{1, \Gamma / \gamma}^{(1)}+M_{1, \Gamma / \gamma}^{(0)}+\epsilon M_{1, \Gamma / \gamma}^{(-1)}+\mathcal{O}\left(\epsilon^{2}\right) \\
\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) & =\frac{1}{\epsilon} Z_{1, \gamma}^{(1)}+Z_{1, \gamma}^{(0)} \\
\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right) & =\frac{1}{\epsilon^{2}} Z_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} Z_{2, \Gamma}^{(1)}+Z_{2, \Gamma}^{(0)}
\end{aligned}
$$

Pole Cancellation Check

Renormalized two-loop diagram Γ (assuming off-shell external legs):

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) \mathcal{M}_{1, \Gamma / \gamma}+\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right)
$$

In terms of ϵ :

$$
\begin{aligned}
\mathcal{M}_{2, \Gamma} & =\frac{1}{\epsilon^{2}} M_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} M_{2, \Gamma}^{(1)}+M_{2, \Gamma}^{(0)}+\epsilon M_{2, \Gamma}^{(-1)}+\mathcal{O}(\epsilon) \\
\mathcal{M}_{1, \Gamma / \gamma} & =\frac{1}{\epsilon} M_{1, \Gamma / \gamma}^{(1)}+M_{1, \Gamma / \gamma}^{(0)}+\epsilon M_{1, \Gamma / \gamma}^{(-1)}+\mathcal{O}\left(\epsilon^{2}\right) \\
\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) & =\frac{1}{\epsilon} Z_{1, \gamma}^{(1)}+Z_{1, \gamma}^{(0)} \\
\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right) & =\frac{1}{\epsilon^{2}} Z_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} Z_{2, \Gamma}^{(1)}+Z_{2, \Gamma}^{(0)}
\end{aligned}
$$

then poles should cancel:

- $\frac{1}{\epsilon} Z_{2, \Gamma}^{(1)}+\frac{1}{\epsilon} \sum_{\gamma}\left(Z_{1, \gamma}^{(1)} M_{1, \Gamma / \gamma}^{(0)}+Z_{1, \gamma}^{(0)} M_{1, \Gamma / \gamma}^{(1)}\right)+\frac{1}{\epsilon} M_{2, \Gamma}^{(1)}$

Pole Cancellation Check

Renormalized two-loop diagram Γ (assuming off-shell external legs):

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) \mathcal{M}_{1, \Gamma / \gamma}+\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right)
$$

In terms of ϵ :

$$
\begin{aligned}
\mathcal{M}_{2, \Gamma} & =\frac{1}{\epsilon^{2}} M_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} M_{2, \Gamma}^{(1)}+M_{2, \Gamma}^{(0)}+\epsilon M_{2, \Gamma}^{(-1)}+\mathcal{O}(\epsilon) \\
\mathcal{M}_{1, \Gamma / \gamma} & =\frac{1}{\epsilon} M_{1, \Gamma / \gamma}^{(1)}+M_{1, \Gamma / \gamma}^{(0)}+\epsilon M_{1, \Gamma / \gamma}^{(-1)}+\mathcal{O}\left(\epsilon^{2}\right) \\
\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) & =\frac{1}{\epsilon} Z_{1, \gamma}^{(1)}+Z_{1, \gamma}^{(0)} \\
\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right) & =\frac{1}{\epsilon^{2}} Z_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} Z_{2, \Gamma}^{(1)}+Z_{2, \Gamma}^{(0)}
\end{aligned}
$$

then poles should cancel:

- $\frac{1}{\epsilon} Z_{2, \Gamma}^{(1)}+\frac{1}{\epsilon} \sum_{\gamma}\left(Z_{1, \gamma}^{(1)} M_{1, \Gamma / \gamma}^{(0)}+Z_{1, \gamma}^{(0)} M_{1, \Gamma / \gamma}^{(1)}\right)+\frac{1}{\epsilon} M_{2, \Gamma}^{(1)}$
- $\frac{1}{\epsilon^{2}} M_{2, \Gamma}^{(2)}+\frac{1}{\epsilon^{2}} \sum_{\gamma} Z_{1, \gamma}^{(1)} M_{1, \Gamma / \gamma}^{(1)}+\frac{1}{\epsilon^{2}} Z_{2, \Gamma}^{(2)}$

Pole Cancellation Check

Renormalized two-loop diagram Γ (assuming off-shell external legs):

$$
\mathbf{R} \overline{\mathcal{M}}_{2, \Gamma}=\mathcal{M}_{2, \Gamma}+\sum_{\gamma}\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) \mathcal{M}_{1, \Gamma / \gamma}+\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right)
$$

In terms of ϵ :

$$
\begin{aligned}
\mathcal{M}_{2, \Gamma} & =\frac{1}{\epsilon^{2}} M_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} M_{2, \Gamma}^{(1)}+M_{2, \Gamma}^{(0)}+\epsilon M_{2, \Gamma}^{(-1)}+\mathcal{O}(\epsilon) \\
\mathcal{M}_{1, \Gamma / \gamma} & =\frac{1}{\epsilon} M_{1, \Gamma / \gamma}^{(1)}+M_{1, \Gamma / \gamma}^{(0)}+\epsilon M_{1, \Gamma / \gamma}^{(-1)}+\mathcal{O}\left(\epsilon^{2}\right) \\
\left(\delta Z_{1, \gamma}+\delta \tilde{Z}_{1, \gamma}+\delta R_{1, \gamma}\right) & =\frac{1}{\epsilon} Z_{1, \gamma}^{(1)}+Z_{1, \gamma}^{(0)} \\
\left(\delta Z_{2, \Gamma}+\delta R_{2, \Gamma}\right) & =\frac{1}{\epsilon^{2}} Z_{2, \Gamma}^{(2)}+\frac{1}{\epsilon} Z_{2, \Gamma}^{(1)}+Z_{2, \Gamma}^{(0)}
\end{aligned}
$$

then poles should cancel:

- $\frac{1}{\epsilon} Z_{2, \Gamma}^{(1)}+\frac{1}{\epsilon} \sum_{\gamma}\left(Z_{1, \gamma}^{(1)} M_{1, \Gamma / \gamma}^{(0)}+Z_{1, \gamma}^{(0)} M_{1, \Gamma / \gamma}^{(1)}\right)+\frac{1}{\epsilon} M_{2, \Gamma}^{(1)}$
- $\frac{1}{\epsilon^{2}} M_{2, \Gamma}^{(2)}+\frac{1}{\epsilon^{2}} \sum_{\gamma} Z_{1, \gamma}^{(1)} M_{1, \Gamma / \gamma}^{(1)}+\frac{1}{\epsilon^{2}} Z_{2, \Gamma}^{(2)}$

This would validate $\delta R_{2, \Gamma}$ (contains $\frac{1}{\epsilon}$ pole) as well as implementation of $\delta \tilde{Z}_{1, \gamma}, \delta Z_{2, \Gamma}$

Implementation of Renormalization, Rational Terms

Example (from arXiv:2001.11388v3) :

where $\mathrm{k}=1,2$ is the loop order.

For NNLO need to implement:

- universal Feynman rules for new tensor structures
- new rational counterterms

Tensor Integrals

For NNLO need:

- 11 Tl for
- 1l diagrams with ct insertions: up to $\mathcal{O}(\epsilon)$, new topolgies due to squared propagator,
e.g. $\overbrace{a}^{a}=\int \mathrm{d} \bar{q}_{q} \frac{q_{1}^{\mu_{1} \cdots q_{1}^{\mu_{r}}}}{\mathrm{D}_{0} \bar{D}_{0} \bar{D}_{1} \bar{D}_{2}}=I^{\mu_{1} \cdots \mu_{r}}$
- VV reducible, V, RV, L2: exists
- 2l TI
- VV irreducible: ${ }_{\mu_{1}}$

$$
\left.\int \mathrm{d} \bar{q}_{1} \int \mathrm{~d} \bar{q}_{2} \frac{q_{1}^{\mu_{1}} \cdots q_{1}^{\mu_{r}} q_{2}^{\nu_{1} \cdots q_{2}^{\nu_{s}}}}{\mathcal{D}^{(1)}\left(\bar{q}_{1}\right) \mathcal{D}^{(2)}\left(\bar{q}_{2}\right) \mathcal{D}^{(3)}\left(\bar{q}_{3}\right)}\right|_{q_{3} \rightarrow-\left(q_{1}+q_{2}\right)}=I^{\mu_{1} \cdots \mu_{r} \nu_{1} \cdots \nu_{s}}
$$

Implementation of Renormalization, Rational Terms

for NNLO need the following UV rational/counterterms:

- 1 l ct in 0 l diagrams (ct and tensor structures exist) renormalization of:

- reducible 21 diagrams (VV): Eseuó, new
- 1 lt in 11 diagrams (ct exist, new tensor structures \rightarrow implemented and tested with pseudotree test) renormalization of:
- irreduclible 21 diagrams (VV):
 new
- reducible 21 diagrams (VV): "Mo. new
- 2 l ct in 01 diagrams (new ct, tensor structures exists) renormalization of:
- irreducible 21 diagrams (VV): ${ }^{6}{ }^{6}$ 亿., (new)

Tensor Integrals

Currently working on interfacing and extending twored:

an in-house tensor integral library for 2 and 3 point topologies (possibly extend to 4 point) with off-shell external legs and massless propagators.

Approach:

For a given topology with tensor integral $I^{\mu_{1} \cdots \mu_{r}}$

- covariant decomposition: $I^{\mu_{1} \cdots \mu_{r}}=T_{i}^{\mu_{1} \cdots \mu_{r}} \cdot C_{i}$, generate all possible tensor structures $T^{\mu_{1} \cdots \mu_{r}}$ from ext. momenta metric tensors
- express coefficients in terms of scalar integrals C_{i} using projectors $P_{\mu_{1} \cdots \mu_{r}}$, $C_{i}=\left(P_{j, \mu_{1} \cdots \mu_{r}} T_{i}^{\mu_{1} \cdots \mu_{r}}\right)^{-1} P_{j, \mu_{1} \cdots \mu_{r}} I^{\mu_{1} \cdots \mu_{r}}$
- reduce scalar integrals to master integrals G_{k} using FIRE $C_{i}=\alpha_{i k} G_{k} \Rightarrow I^{\mu_{1} \cdots \mu_{r}}=T_{i}^{\mu_{1} \cdots \mu_{r}} \cdot \alpha_{i k} \cdot G_{k}$

