CT18 FC: heavy quarks in CTEQ-TEA QCD analyses

with M. Guzzi, K. Xie, J. Huston, P. Nadolsky, C.-P. Yuan

see also: 1707.00657 and 2205.10444

and members of the <u>CTEQ-TEA</u> (Tung Et. Al.) working group

References

HQs, charm in the proton have extensive literature...

Heavy quarks in pQCD calculations

- 1. ACOT: Aivazis, Collins, Olness, Tung; PRD50 (1994) 3102-3138
- 2. NC DIS, NNLO: Guzzi, Nadolsky, Lai, Yuan; PRD86 (2012) 053005
- 3. CC DIS, NNLO: Gao, TJH, Nadolsky, Sun, Yuan; PRD105 (2022) 1, L011503

Intrinsic charm from nonperturbative methods and models:

- 1. BHPS: Brodsky, Hoyer, Peterson, Sakai, PLB 93 (1980) 451
- 2. Meson-Baryon models (MBM): TJH, Londergan, Melnitchouk, PRD 89 (2014) 074008
- 3. Light-front WF models: TJH, Alberg, Miller, PRD 96 (2017) 7, 074023

QCD analyses of nonperturbative charm

- 1. P. Jimenez-Delgado, TJH, Londergan, Melnitchouk, PRL114 (2015) 8, 082002; NLO fit; first analysis with EMC data
- 2. T.-J. Hou et al., JHEP 02 (2018) 059; QCD factorization with the NP charm and CT14 IC NNLO pheno analysis
- → 3. M. Guzzi, TJH, K. Xie, et al., arXiv:2211.01387; **new** CT18 FC analysis with LHC Run-1 and 2 data

QCD analyses traverse many scales, Q; variable flavor

→ number of active parton flavors is a scheme-dependent choice

 $\hfill \hfill \hfill$

variable flavor-number scheme to interpolate between ZM and FFN regimes: ACOT

<u>Aivazis, Collins, Olness, T</u>ung; PRD50 (1994) 3085-3118

→ systematic approach to incorporating HQ mass dependence

introduce subtraction term(s) to eliminate double counting between FC/FE contributions:

 $\begin{cases} Q \gtrsim M_Q \implies (\text{SUB}) \approx (\text{FE}) \text{ such that } n_f = 3 \text{ FC dominates} \\ Q \gg M_Q \implies (\text{SUB}) \approx (\text{FC}) \text{ such that } n_f = 4 \text{ FE dominates} \\ \chi(x, Q, M_Q) = x \left(1 + \frac{1}{Q^2} [\sum_{\text{FS}} M_Q]^2 \right) \end{cases}$

"simplified" ACOT (S-ACOT): neglect full HQ mass dependence in FE graphs [CT default] S-ACOT- χ : smooth HQ thresholds, approx. HQ mass dependence: $C_i(x) \rightarrow C_i(\chi)$

requires <u>careful tracking of diagrams</u> to organize calculation correctly

NNLO formalism generalizes to other DIS processes, e.g., CC DIS

PRD105 (2022) 1, L011503

→ Inclusive Reactions Study (YR7.1.1): CC DIS – including positron beam – may access d, s PDFs

2023-09-04

possible subtlety: nonperturbative heavy-quark PDFs ---- 'intrinsic charm'

$$F_i = C_i \otimes \frac{f_{c/p}}{f_{c/p}}$$

might also explore *nonperturbative* charm; *i.e.*, <u>not</u> radiatively generated,

$$c(x, Q = m_c) = c^{\mathrm{IC}}(x) \neq 0$$

F. M. Steffens, W. Melnitchouk and A. W. Thomas, Eur. Phys. J. C **11**, 673 (1999) [hep-ph/9903441].

but can global PDF fits constrain intrinsic charm?

"fitted charm" is a more direct term to describe the charm PDF found in the global QCD fit

analog: the fitted charm mass

PDF fits may include a fitted charm PDF

fitted charm = "higher-twist charm" + other (possibly not universal) higher $O(\alpha_s)$, higher-power terms

QCD factorization theorem for DIS structure function F(x, Q) [Collins, 1998]:

All
$$\alpha_s$$
 orders: $F(x,Q) = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} C_a\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu)\right) f_{a/p}(\xi, \mu) + \mathcal{O}(\Lambda^2/m_c^2, \Lambda^2/Q^2)$

PDF fits implement this formula only up to (N)NLO ($N_{ord} = 1$ or 2):

$$\mathsf{PDF fits:} \quad F(x,Q)^{[\mathrm{trunc}]} = \sum_{a=0}^{N_f} \int_x^1 \frac{d\xi}{\xi} \, \mathcal{C}_a^{(N_{ord})}\left(\frac{x}{\xi}, \frac{Q}{\mu}, \frac{m_c}{\mu}; \alpha(\mu)\right) f_{a/p}^{(N_{ord})}(\xi, \mu)$$

leading-power charm PDF component cancels at $Q \approx m_c$, up to a higher order fitted charm component may potentially **absorb missing terms** of orders α_s^p with $p > N_{ord}$, or Λ^2/m_c^2 , or Λ^2/Q^2

A twist-4 contribution in HERA DIS charm production (⊂ "intrinsic charm")

 $\alpha_s^2(Q) \cdot (\Lambda^2/Q^2)$

or $\alpha_s^2(Q) \cdot (\Lambda^2/m_c^2)$

 $\alpha_s^2(Q) \cdot \ln(Q^2/m_c^2)$

 $\alpha_s^3(Q) \cdot (\Lambda^2/m_c^2) \ln(Q^2/m_c^2)$

A ladder; must be resummed in c(x, Q) in the $N_f = 4$ scheme at $Q^2 \gg m_c^2$; e.g., in the ACOT scheme

The ladder subgraphs can be resummed as a part of c(x, Q) in the N_f = 4 scheme at $Q^2 \gg m_c^2 > \Lambda^2$;

contributes to the boundary condition for $c(x, Q_0)$ at $Q_0 \approx m_c$;

obeys twist-2 DGLAP equations.

Can be of order ~10% of the twist-2 α_s^2 term

 $\Lambda \lesssim 1 \text{ GeV}$

Collins, PRD58 (1998) 094002

fitted charm contributions, practical implementation in CT18

In the absence of full computation, we (and other groups) make the simplest approximation:

$$F_{FC}(x,Q_0) = [c_{h,h} \otimes f_{c/p}^{FC}](x,Q_0)$$

 $c_{h,h}$ is the twist-2 charm DIS coefficient function introduced to factorize the twist-4 ladder terms; defined according to the SACOT-MPS scheme

Start with $N_f = 3$ at $\mu_0 = m_c - \epsilon$, evolve to $\mu > \mu_0$ by incrementing N_f to 4 and 5

FC is compatible with any version of the ACOT scheme (cf. arXiv:1707.00657).

Flavor-excitation coefficient functions of these schemes differ by terms of $O(m_c^2/Q^2)$. Their overall differences are of $O(\Lambda^2/Q^2)$, i.e., within the accuracy of the factorization theorem.

In nonperturbative models:

naturally formulated in language of proton wave function

→ "Extrinsic" sea

[maps onto leading-power sea production from light flavors]

"Intrinsic" sea
 [excited Fock nonpert. states;
 ...beyond leading-power production]

challenging to formulate a rigorous definition of intrinsic charm

- The concept of nonperturbative methods
- Can refer to a component of the hadronic Fock state or the type of the hard process
- Predicts a typical enhancement of the charm PDF at $x \ge 0.2$

- A charm PDF parametrization at scale $Q_0 \approx 1$ GeV found by global fits [CT, NNPDF, ...]
- Arises in perturbative QCD expansions over α_s and operator products
- May absorb process-dependent or unrelated radiative contributions

2023-09-04

nonperturbative QCD can generate a low-scale charm PDF

few expts with 'smoking gun' sensitivity to FC; but EMC data (?)

historically, charm structure function data, $F_2^{c\bar{c}}$, from EMC were suggestive

J. J. Aubert et al. (EMC), NPB**213** (1983) 31–64.

- \rightarrow hint of high-*x* excess in select Q^2 bins
- → data were analyzed only at LO
- \rightarrow show anomalous Q^2 dependence
- → EMC data fit poorly in CT14 IC study

we do not include EMC in CT18 FC

CT14 IC, arXiv: 1707.00657.

Candidate NNLO PDF fits	$\chi^2/N_{ m pts}$						
	All Experiments	HERA inc. DIS	HERA $c\bar{c}$ SIDIS	EMC $c\bar{c}$ SIDIS			
CT14 + EMC (weight=0), no IC	1.10	1.02	1.26	3.48			
CT14 + EMC (weight=10), no IC	1.14	1.06	1.18	2.32			
CT14 + EMC in BHPS model	1.11	1.02	1.25	2.94			
CT14 + EMC in SEA model	1.12	1.02	1.28	3.46			

2023-09-04

FC at LHC: Z+c suggested as sensitive probe

T. Boettcher, P. Ilten, M. Williams, 1512.06666; Bailas, Goncalves, 1512.06007

 $p_{\rm T}$ spectra, rapidity distributions nominally sensitive to high-x charm PDF

 \rightarrow parton-shower effects can dampen high- p_{T} tails

[Hou et al., arXiv:1707.00657]

Z+c at LHCb: intriguing new data; need theory development

2022 LHCb 13 TeV data: (*Z*+*c*) / (*Z*+*jet*) ratios; 3 rapidity bins

R. Aaij, et al. (LHCb); arXiv: 2109.08084.

□ FC slightly enhances ratio; not enough to improve agreement with data

→ calculated NLO cross-section ratio similarly depends on showering, hadronization

NNLO calculations recently available, but not implemented in PDF fits

R. Gauld, et al.; arXiv: 2005.03016; 2302.12844 M. Czakon, et al.; arXiv: 2011.01011.

Z+c at LHCb: intriguing new data; need theory development

in addition to NNLO corrections, IRC safety poses challenges to jet algorithms:

multi-parton interactions (MPI) can represent a significant correction

 \rightarrow ~10% effect on (Z+c)/(Z+jet), especially for y(Z) > 3.5; large uncertainty

massless fixed-order calculation affected by divergences

theory improvements would help guarantee interpretation for PDF extractions

2023-09-04

CT18 FC: fit charm against baseline CT data set

FC scenarios traverse range of high-x behaviors from IC models

- → fit implementation of BHPS from CT14IC (BHPS3) on CT18 or CT18X (NNLO)
- → fit two MBMs: MBMC (confining), MBME (effective mass) on CT18

investigate constraints from newer LHC data in CT18

FC PDF moments as F.o.M.

moments of the FC PDFs often used to characterize magnitude, asymmetry

$$\langle x^n \rangle_{c^{\pm}} = \int_0^1 dx \, x^n (c \pm \bar{c})[x,Q]$$

$$\langle x \rangle_{\rm FC} \equiv \langle x \rangle_{\rm c} + [Q_0 = 1.27 \,{\rm GeV}] \qquad \text{...at NNLO.}$$

$$= 0.0048 \stackrel{+0.0063}{_{-0.0043}} \stackrel{+0.0090}{_{-0.0048}}, \, {\rm CT18} \, ({\rm BHPS3})$$

$$= 0.0041 \stackrel{+0.0049}{_{-0.0041}} \stackrel{+0.0091}{_{-0.0041}}, \, {\rm CT18X} \, ({\rm BHPS3})$$

$$= 0.0057 \stackrel{+0.0048}{_{-0.0045}} \stackrel{+0.0084}{_{-0.0057}}, \, {\rm CT18} \, ({\rm MBMC})$$

$$= 0.0061 \stackrel{+0.0030}{_{-0.0038}} \stackrel{+0.0064}{_{-0.0061}}, \, {\rm CT18} \, ({\rm MBME})$$

$$\Delta \chi^2 \leq 10 \qquad \Delta \chi^2 \leq 30$$

(restrictive tolerance)

(~CT standard tolerance)

FC PDF moments as F.o.M.

even restrictive uncertainties give moments consistent with zero

\rightarrow	broaden	further	for	default	CT tol.

 \rightarrow lattice may give $\langle x\rangle_{c^+},\,\langle x^2\rangle_{c^-}$

 $\langle x \rangle_{\rm FC} \equiv \langle x \rangle_{\rm c^+} [Q_0 = 1.27 \,{\rm GeV}]$

= 0.0048 + 0.0063 + 0.0090 + 0.0090 + 0.0048 + 0.0048 + 0.0048 + 0.0048 + 0.0048 + 0.0048 + 0.0048 + 0.0091 + 0.0041 + 0.0041 + 0.0041 + 0.0041 + 0.0084 + 0.0084 + 0.0057 + 0.0045 + 0.0057 + 0.0041 + 0.0057 +

data pull opposingly on $\langle x \rangle_{ m FC}$; depend on FC scenario, enhancing error

possible charm-anticharm asymmetries

pQCD only very weakly breaks $c = \bar{c}$ through HO corrections

- Jarge(r) charm asymmetry would signal nonpert dynamics, IC
- → MBM breaks $c = \bar{c}$ through hadronic interactions

re: other studies \rightarrow first full fit with EMC data; no signal for 'IC'

recent NNPDF IC analysis

- NNPDF have recently claimed 3σ evidence for 'IC'
 - \rightarrow based on local (x-dependent) deviation of FC PDF from the 'no-FC' scenario
 - \rightarrow implies crucial dependence on size and shape of PDF uncertainty

- \rightarrow Two classes of uncertainties need further scrutiny:
- 1. Missing HO unc (MHOU): N3LO in DIS, etc.; N2LO in Z+c production

 $\langle x \rangle_{\rm FC} = 0.62 \pm 0.28\%$ without MHOU $\langle x \rangle_{\rm FC} = 0.62 \pm 0.61\%$ with MHOU

2. Parametrization sampling uncertainty (underestimation of PDFU) 2023-09-04 T. Hobbs, QCD@LHC 2023 Durham, UK

MC uncertainties closely connected to sampling strategy

- default replica-training in MC studies may omit nominally acceptable solutions

Courtoy et al., PRD107 (2023) 3, 034008.

see also, NNPDF response: 2211.12961.

broader sampling with the public NNPDF4.0 code impacts PDF errors of cross sections

- size, shape of nonpert charm remains indeterminate
 - \rightarrow theoretical ambiguities in relation between FC/IC unresolved
 - \rightarrow need more sensitive data; <u>FC currently consistent with zero</u>

concordance with enlarged error estimates: $\langle x \rangle_{\rm FC} \sim 0.5\%$, well below evidence-level

- need more NNLO+ and better showering calculations (*e.g.*, for Z+c)
- further progress in quantifying and estimating PDF uncertainties

opportunities to improve knowledge of FC:

 \rightarrow promising experiments at <u>LHC</u>, FPF; EIC

- → lattice data on key charm PDF moments; quasi-PDFs
- \rightarrow direct benchmarking of FC among PDF fitting groups