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Motivation
- colourless exchange in the t-channel involving weak gauge bosons

- clear kinematic signature

- study of electroweak parameters and vertex structures

- large (but subdominant) cross section

Cross section normalized to SM value
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NLO QCD [Figy, Oleari, Zeppenfeld 2003] [Berger, Campbell 2004] 

[Figy, Zeppenfeld 2004] [Andersen, Binoth, Heinrich, Smillie 2007] 

NLO EW [Ciccolini, Denner, Dittmaier 2007 & 2008] [Figy, Palmer, 
Weiglein 2012]

NNLO QCD [Bolzoni, Maltoni, Moch, Zaro 2010 & 2012] [Cacciari, 
Dreyer, Karlberg, Salam, Zanderighi 2015] [Cruz-Martinez, Gehrmann, 
Glover, Huss 2018] [Asteriadis, Caola, Melnikov, Röntsch 2022 & 2023]

NNNLO QCD [Dreyer, Karlberg 2016]

Motivation – theoretical developments
- advanced theoretical predictions in factorisable approximation

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015]

[Dreyer, Karlberg 2016]
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 Factorisable contributions  Non-factorisable contributions

 NLO

 NNLO

Motivation – Non-factorisable contribution (I)

● Non-factorisable contributions vanish at NLO due to their colour structure, and are suppressed by a factor                   at NNLO

● Factorisable predictions are already small, at or below % level

● The actual size of NNLO non-factorisable corrections cannot be inferred from NLO contributions
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 Three terms contribute to the non-factorisable cross section at NNLO

Each ingredient requires 
individual treatment with 

different challenges:

● Pole cancellation

● Loop amplitudes

Non-factorisable contribution – ingredients of the calculation (I)
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 Non-factorisable contributions have to connect upper and lower quark lines and are effectively Abelian

 The infrared structure is simplified: no collinear singularities

 All IR singularities are of soft origin.

 Non-factorisable contributions are UV finite

 Renormalisation simply consists of 

Non-factorisable contribution – ingredients of the calculation (II)
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 Main issue of the double-real contribution: extract IR singularities while preserving the fully-differential nature of the calculation

simplified nested soft-collinear subtraction scheme [Caola, Melnikov, Röntsch 2017]

• fully factorised emissions due to Abelian nature

• abscence of collinear singularities

integration over potentially 
unresolved phase space 

Separate the soft-finite contribution from the soft-divergent part 

Double-real emission (I)

see Davide’s talk
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Integrate the eikonal factor over the radiation phase space 

 Double-real at cross-section level results in a remarkably simple object 

Double-real emission (II)

One more soft limit to consider in the single-gluon emission amplitude
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• One-loop correction to the colour-stripped 5-point amplitude

• Two-loop correction, the Abelian nature of the correction leads to the simple pole structure

Extract IR singularities from virtual amplitudes and compute finite contributions. 

 The amplitudes are UV-finite, but IR-divergent:

Virtual corrections
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 We introduce a finite combination of two the divergent functions

 

 

 

 

 

 

 

 

 

 

 

 Achievement: local pole cancellation and simple form due to abelian nature of non-factorisable contribution

Pole cancellation
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Virtual contributions

 7 scales: s12, s23, s34, s45, s51, mW, mt 

eikonal approximation [Liu, Melnikov, Penin 2019] [Dreyer, 
Karlberg, Tancredi 2020] [Gates 2023]

sub-eikonal approximation [Long, Melnikov, Quarroz 2023] 

 validity ensured by kinematic signature and WBF cuts

 

 

 

 

 

 calculated previously  [Campanario, Figy, Plätzer, Sjödahl 2013] 

 computationally expensive due to multiplicity and large 
cancellations in the soft limit

 

 pole prediction and soft limit checked
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 pp collision: √s = 13 TeV,  PDFs: NNPDF31-nnlo-as-118

• Non-factorisable corrections are
0.5 % of factorisable through NNLO

• Double-virtual accounts for 99.99 % 

• For  μR =μF scale variation is
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[Asteriadis, Brønnum-Hansen, Melnikov 2305.08016][Liu, Melnikov, Penin 2019]

WBF Higgs production: Results at 13 TeV (I)
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 To estimate the real emission contributions to the cross section, we consider the quantity

 

 

 WBF kinematics is characterised by two hard jets that are nearly collinear to the beam axis

 

 

 With this approximation, we get

 

 

 

 and we estimate the contribution from two soft gluons and compare to the π2 -enhanced double-virtual

WBF Higgs production: Results at 13 TeV (II)
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Beyond the eikonal approximation
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Going beyond the eikonal approximation of virtual contribution to WBF Higgs [Long, Melnikov, Quarroz 2023]

Calculation using method of regions:

Correction to total cross section of around 20% :

with WBF cuts and without cuts :

and including real contributions
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[Dreyer, Karlberg 2016]
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 Non-factorisable corrections can be written:
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extracting β0 αs contribution from nf  diagrams

 

Beyond NNLO

[Brodsky, Lepage, Mackenzie 1983]
[Brønnum-Hansen, Long, Melnikov 23xx.xxxxx]
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Summary

● Theoretical predictions for Higgs production in WBF are at an advanced stage
with factorisable NNLO (differential) and NNNLO (inclusive) known

● Significant recent progress for non-factorisable contributions

● Dominated by double-virtual which can be reliably estimated in the eikonal limit

● Sub-percent correction to factorisable total cross section through NNLO,
but larger than NNNLO corrections

● Percent-level correction in certain regions of phase space

● Ongoing work: accounting for running of coupling for stable theoretical predictions

preliminary
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Thank you for your attention
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