GENERALIZATION OF THE NESTED SOFT-COLLINEAR SUBTRACTION METHOD FOR NNLO QCD CALCULATIONS

DURHAM, QCD@LHC2023

Davide Maria Tagliabue

UNIVERSITȦ
DEGLI STUDI
DI MILANO

Two main difficulties: IR singularities, arising from real and virtual radiation, and mulli-loop amplitude calculations

About $2 \mathcal{R}$ singularities: they are unphysical and require specific methods to arrive at a finite physical result. Among those methods, we focus on SUBTRACTION SCHEMES

Some of the many available schemes:

Analytic Sector Subtraction [Magnea et al. 1806.09570, ...]	Antenna [Gehermann-De Ridder et al. 0505111, ...]
ColorfullNNLO [Del Duca et al. 1603.08927, ...]	STRIPPER [Czakon 1005.0274, ...]
Geometric IR subtraction [Herzog 1804.07949, ...]	Unsubtraction [Sborlini et al. 1608.01584, ...]
Universal Factorization [Anastasiou et al. 2008.12293, ...]	FDR [Pittau 1208.5457, ...]
Nested Soft-Collinear Sulbtraction (NSC) [Caola et al. 1702.01352, ...]	

WHY WE STUDY
 $\mathrm{P}+\mathrm{P} \rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

Computing cross sections in full generality at NNLO is still an open issue

Up to now NSC has only been applied to simple processes

WHY WE STUDY
 P + P $\rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

WHY WE STUDY
 P + P $\rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

Computing cross sections in full generality at NNLO is still an open issue

Up to now NSC has only been applied to simple processes

Simple $=$ limited number of hard partons

WHY WE STUDY
 P + P $\rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

WHY WE STUDY
 P + P $\rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

WHY WE STUDY

$\mathrm{P}+\mathrm{P} \rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

This talk！
［Devoto，Melnikov，Röntsch， Signorile－Signorile，D．M．T．，2309．xxxxxx］

Up to now NSC has only been applied to simple processes
＂

Higgs decay ［Caola，Melnikov，Röntsch＇19］

$$
\underset{\begin{array}{c}
\text { [Czakon et al. '21] } \\
\text { Buoatani et al. '22] }
\end{array}}{ }
$$

플
What is a good prototype of the problem？
$\mathbf{P}+\mathbf{P} \rightarrow \mathbf{X}+\mathbf{N}$ gluons

WHY WE STUDY

$\mathrm{P}+\mathrm{P} \rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

This talk!
[Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., $2309 . x x x x x x$]

Computing cross sections in full generality at NNLO is still an open issue

Up to now NSC has only been applied to simple processes

Simple $=$ limited number of hard partons

[Caola, Melnikov, Röntsch '19]
[Asteriadis, Caola, Melnikov, Röntsch '19]

*

$$
\begin{aligned}
& \text { Need to go beyond: } \\
& \mathbf{P + P} \rightarrow \mathbf{X}+\mathbf{N} \text { Jets }
\end{aligned}
$$

-

What is a good prototype of the problem?
$\mathbf{P}+\mathbf{P} \rightarrow \mathbf{X}+\mathbf{N}$ gluons

Remaining bottleneck?
double-loop amplitudes

WHY WE STUDY
 $\mathrm{P}+\mathrm{P} \rightarrow \mathrm{X}+\mathrm{N}$ gluons AT NNLO

This talk!
[Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., 2309.xxxxxx]

Computing cross sections in full generality at NNLO is still an open issue

Up to now NSC has only been applied to simple processes

Simple $=$ limited number of hard partons
[Caola, Melnikov, Röntsch '19]

[Asteriadis, Caola, Melnikov, Röntsch '19]

Higgs decay Caola, Melnikov, Röntsch '19]

$$
\xrightarrow[{\substack{\text { [Czakon et al. '21] } \\ \text { [Catani et al. } 22] \\ \text { [Buonocore et al. } \\ \hline \text { '23] }}}]{\mathbf{N}}
$$

Remaining bottleneck? double-loop amplitudes
<< If someone gives me the finite part of the double-loop amplitude of any kind of process, then I can give back the analytical expression of the whole partonic cross section. >>

$$
\int|\mathscr{M}|^{2} F_{J} \mathrm{~d}^{(d)} \phi=\left\{\left[|\mathscr{M}|^{2} F_{J}-K\right] \mathrm{d}^{(d)} \phi+\int K \mathrm{~d}^{(d)} \phi,\right.
$$

HOW THE NSC

 WORKS?
Problem of OVERLAPPING SOFT and COLLINEAR emissions

At NLO we start by regularizing soft divergences (see FKS)

The soft-regulated term then needs a similar treatment for collinear divergences: all the singular configurations can be separated out

$$
\int|\mathscr{M}|^{2} F_{J} \mathrm{~d}^{(d)} \phi=\left\{\left[|\mathscr{M}|^{2} F_{J}-K\right] \mathrm{d}^{(d)} \phi+\int K \mathrm{~d}^{(d)} \phi,\right.
$$

HOW THE NSC

 WORKS?
Problem of OVERLAPPING SOFT and COLLINEAR emissions

At NNLO we follow the same idea of separating out divergences

- start from double-soft regularization
- regularize also single-soft divergences
- at this point we have to regularize collinear divergences $\left(C_{i \mathrm{~m}}, C_{j \mathrm{n}} C_{i \mathrm{~m}}, C_{i \mathrm{~m} \mathfrak{n}}\right) \Rightarrow$ we avoid overlapping thanks to PARTITIONING and SECTORING [Czakon 1005.0274]
$+++++$
Virtual corrections d $\hat{\sigma}^{V}$: the IR content of virtual amplitudes is known [Catani 98]. Through the operator

$$
\begin{aligned}
& \begin{array}{c}
y_{i}^{\text {sing }_{(\epsilon)}=\frac{T_{i}^{2}}{\epsilon^{2}}+\frac{V_{i}}{\epsilon}} \\
N_{p}=N+2
\end{array}
\end{aligned}
$$

the divergent part of $\mathrm{d} \hat{\sigma}^{\mathrm{V}}$ can be written as

$$
I_{\mathrm{V}}(\epsilon)=\bar{I}_{1}(\epsilon)+\bar{I}_{1}^{\dagger}(\epsilon)
$$

RECURRING OPERATORS AT ILO

Virtual corrections $\mathrm{d} \hat{\sigma}^{\mathrm{V}}$: the IR content of virtual amplitudes is known [Catani '98]. Through the operator

$$
\bar{I}_{1}(\epsilon)=\frac{1}{2} \sum_{i \neq j}^{N p} \frac{\mathscr{V}_{i}^{\operatorname{sing}}}{(\epsilon)} \boldsymbol{T}_{i}^{2}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right)\left(\frac{\mu^{2}}{2 p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i \pi \lambda_{j j} \epsilon}
$$

$$
\begin{aligned}
& \mathscr{V}_{i}^{\operatorname{sing}} \\
&(\epsilon)=\frac{\boldsymbol{T}_{i}^{2}}{\epsilon^{2}}+\frac{\gamma_{i}}{\epsilon} \\
& N_{p}=N+2
\end{aligned}
$$

RECURRING OPERATORS AT ILO

the divergent part of $\mathrm{d} \hat{\sigma}^{\mathrm{V}}$ can be written as

$$
I_{\mathrm{V}}(\epsilon)=\bar{I}_{1}(\epsilon)+\bar{I}_{1}^{\dagger}(\epsilon)
$$

Real corrections di $\hat{\sigma}^{R}$: we would like something similar

Soft emission
$S_{\mathfrak{m}}:\left|\vec{p}_{\mathfrak{m}}\right| \rightarrow 0$

Collinear emission $C_{i \mathrm{~m}}: \theta_{i \mathrm{~m}} \rightarrow 0$

Making use of NSC (FKS at NLO) to regularize this divergences we obtain [Caola, Melnikov, Röntsch '17]

$+++++$

It turns out that the soft term can be written by means of an operator that, at least in principle, is very close to $I_{\mathrm{V}}(\epsilon)$:

$$
I_{\mathrm{S}}(\epsilon)=-\frac{\left(2 E_{\max } / \mu\right)^{-2 \epsilon}}{\epsilon^{2}} \sum_{i \neq j}^{N_{p}} \eta_{i j}^{-\epsilon} K_{i j}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \quad \begin{aligned}
& \eta_{i j}=\left(1-\cos \theta_{i j}\right) / 2 \\
& K_{i j} \sim \eta_{i j}^{1+\epsilon_{2} F_{1}\left(1,1,1-\epsilon, 1-\eta_{i j}\right)}
\end{aligned}
$$

RECURRING OPERATORS AT ILO

$+++++$

It turns out that the soft term can be written by means of an operator that, at least in principle, is very close to $I_{\mathrm{V}}(\epsilon)$:

$$
I_{\mathrm{S}}(\epsilon)=-\frac{\left(2 E_{\max } / \mu\right)^{-2 \epsilon}}{\epsilon^{2}} \sum_{i \neq j}^{N_{p}} \eta_{i j}^{-\epsilon} K_{i j}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \quad \begin{aligned}
& \eta_{i j}=\left(1-\cos \theta_{i j}\right) / 2 \\
& K_{i j} \sim \eta_{i j}^{1+\epsilon_{2} F_{1}\left(1,1,1-\epsilon, 1-\eta_{i j}\right)}
\end{aligned}
$$

RECURRING OPERATORS AT ILO

Combination of $I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)$: not only does it vanishes the pole $\mathcal{O}\left(\epsilon^{-2}\right)$, but it makes the pole $\mathcal{O}\left(\epsilon^{-1}\right)$ free of color-correlations

$$
\begin{aligned}
& I_{\mathrm{V}, \mathrm{~S}}(\epsilon) \sim \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \quad \boldsymbol{T}_{i}=\text { matrices in color space } \\
& N_{p}<4 \Rightarrow \mathrm{~d} \hat{\sigma}^{\mathrm{NLO}} \sim \frac{C_{A, F}}{\epsilon}\left\langle M_{0} \mid M_{0}\right\rangle \quad \quad \text { NO color-correlations } \\
& \left.N_{p} \geq 4 \Rightarrow \mathrm{~d} \hat{\sigma}^{\mathrm{NLO}} \sim \frac{1}{\epsilon}\left\langle M_{0}\right| \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\left|M_{0}\right\rangle\right\rangle \quad \text { YES color-correlations }
\end{aligned}
$$

This result for $I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)$ is trivially dependent on the number of gluons in the final state

What about the hard-collinear term? Some parts vanish against the DGLAP contribution, the remaining part can be collected within the following Catani-like operator

$$
\begin{aligned}
& I_{\mathrm{C}}(\epsilon)=\sum_{i=1}^{N_{p}} \frac{\Gamma_{i, f_{i}}}{\epsilon}
\end{aligned}
$$

RECURRING OPERATORS AT ILO

What about the hard-collinear term? Some parts vanish against the DGLAP contribution, the remaining part can be collected within the following Catani-like operator

$$
\begin{aligned}
& I_{\mathrm{C}}(\epsilon)=\sum_{i=1}^{N_{p}} \frac{\Gamma_{i, f_{i}}}{\epsilon}
\end{aligned}
$$

RECURRING OPERATORS AT ILO

$I_{\mathrm{C}}(\epsilon)$ cancels perfectly the pole $\mathcal{O}\left(\epsilon^{-1}\right)$ left by $I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)$. It is thus natural to introduce the total operator

$$
I_{\mathrm{T}}(\epsilon)=I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)+I_{\mathrm{C}}(\epsilon)
$$

In this way the final result for the NLO fits in a line:

$$
\mathrm{d} \hat{\sigma}^{\mathrm{NLO}}=\left[\alpha_{s}\right]\left\langle I_{\mathrm{T}}(\epsilon) \cdot F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]\left[\left\langle P_{a \alpha}^{\mathrm{NLO}} \otimes F_{\mathrm{LM}}\right\rangle+\left\langle F_{\mathrm{LM}} \otimes P_{a a}^{\mathrm{NLO}}\right\rangle\right]+\left\langle F_{\mathrm{LV}}^{\mathrm{fin}}\right\rangle+\left\langle\mathfrak{O}_{\mathrm{NLO}} \Delta^{(\mathrm{m})} F_{\mathrm{LM}}(\mathfrak{m})\right\rangle
$$

Consider for instance di $\hat{\sigma}^{V V} \Rightarrow$ it depends quadratically on $\bar{I}_{1}(\epsilon)$ and $\bar{I}_{1}^{\dagger}(\epsilon)$

$$
\begin{aligned}
& \Rightarrow \bar{I}_{1}, \bar{I}_{1}^{\dagger} \sim \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \\
& \Rightarrow \mathrm{~d} \hat{\sigma}^{\mathrm{VV}} \sim\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot\left(\boldsymbol{T}_{k} \cdot \boldsymbol{T}_{l}\right) \quad \text { double color-correlations }
\end{aligned}
$$

We expect the same to happen for dl $\hat{\sigma}^{R V}$ and dl $\hat{\sigma}^{R R}$. Dealing with such double-color correlated terms (DCC) in general makes the structure of the poles very complicated

Consider for instance d $\hat{\sigma}^{V V} \Rightarrow$ it depends quadratically on $\bar{I}_{1}(\epsilon)$ and $\bar{I}_{1}^{\dagger}(\epsilon)$

$$
\begin{aligned}
& \Rightarrow \bar{I}_{1}, \bar{I}_{1}^{\dagger} \sim \boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \\
& \Rightarrow \mathrm{~d} \hat{\sigma}^{\mathrm{VV}} \sim\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot\left(\boldsymbol{T}_{k} \cdot \boldsymbol{T}_{l}\right) \quad \text { double color-correlations }
\end{aligned}
$$

WHAT HAPPENS AT NNLO?

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., to appear]

$$
\begin{aligned}
& \boldsymbol{Y}_{\mathbf{V V}}=\frac{\left[\alpha_{s}\right]^{2}}{\mathbf{2}}\left\langle\boldsymbol{M}_{\mathbf{0}}\right| \overline{\boldsymbol{I}}_{\mathbf{1}}^{2}+\left(\overline{\boldsymbol{I}}_{1}^{\dagger}\right)^{\mathbf{2}}+\mathbf{2} \overline{\boldsymbol{I}}_{\mathbf{1}}^{\dagger} \overline{\boldsymbol{I}}_{\mathbf{1}}\left|\boldsymbol{M}_{\mathbf{0}}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{ss})}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}}^{2}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{shc})}=\left[\alpha_{S}\right]^{2}\left\langle M_{0}\right| I_{\mathrm{S}} I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{cc})}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{C}}^{2}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RV}}^{(\mathrm{s})}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}} \bar{I}_{1}+\bar{I}_{1}^{\dagger} I_{\mathrm{S}}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RV}}^{(\mathrm{shc})}=\left[\alpha_{S}\right]^{2}\left\langle M_{0}\right|\left(\bar{I}_{1}+\bar{I}_{1}^{\dagger}\right) I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots
\end{aligned}
$$

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., to appear]

$$
\begin{aligned}
& Y_{\mathrm{VV}}=\frac{\left[\alpha_{S}\right]^{2}}{2}\left\langle M_{0}\right| \bar{I}_{1}^{2}+\left(\bar{I}_{1}^{\dagger}\right)^{2}+2 \bar{I}_{1}^{\dagger} \bar{I}_{1}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{ss})}=\frac{\left[\alpha_{S}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}}^{2}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{\text {(shc) }}=\left[\alpha_{S}\right]^{2}\left\langle M_{0}\right| I_{\mathrm{S}} I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{cc})}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{C}}^{2}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RV}}^{(\mathrm{s})}
\end{aligned}=\frac{\left[\alpha_{S}\right]^{2}}{2}\left\langle M_{0}\right| I_{S} \bar{I}_{1}+\bar{I}_{1}^{\dagger} I_{\mathrm{S}}\left|M_{0}\right\rangle+\ldots .
$$

$$
Y_{\mathrm{RV}}^{(\mathrm{shc})}=\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right|\left(\bar{I}_{1}+\bar{I}_{1}^{\dagger}\right) I_{\mathrm{C}}\left|M_{0}\right\rangle+
$$

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., to appear]

$$
\begin{aligned}
Y_{\mathrm{VV}} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| \bar{I}_{1}^{2}+\left(\bar{I}_{1}^{\dagger}\right)^{2}+2 \bar{I}_{1}^{\dagger} \bar{I}_{1}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{ss})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{shc})} & =\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right| I_{\mathrm{S}} I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{cc})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{C}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RV}}^{(\mathrm{s})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}} \bar{I}_{1}+\bar{I}_{1}^{\dagger} I_{\mathrm{S}}\left|M_{0}\right\rangle+\ldots
\end{aligned}
$$

$$
Y_{\mathrm{RV}}^{(\mathrm{shc})}=\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right|\left(\bar{I}_{1}+\bar{I}_{1}^{\dagger}\right) I_{\mathrm{C}}\left|M_{0}\right\rangle+
$$

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., to appear]

$$
\begin{aligned}
Y_{\mathrm{VV}} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| \bar{I}_{1}^{2}+\left(\bar{I}_{1}^{\dagger}\right)^{2}+2 \bar{I}_{1}^{\dagger} \bar{I}_{1}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{ss})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{shc})} & =\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right| I_{\mathrm{S}} I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{cc})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{C}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RV}}^{(\mathrm{s})} & =\frac{\left[\alpha_{S}\right]^{2}}{2}\left\langle M_{0}\right| I_{S} \bar{I}_{1}+\bar{I}_{1}^{\dagger} I_{\mathrm{S}}\left|M_{0}\right\rangle+\ldots
\end{aligned}
$$

$$
Y_{\mathrm{RV}}^{(\mathrm{shc})}=\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right|\left(\bar{I}_{1}+\bar{I}_{1}^{\dagger}\right) I_{\mathrm{C}}\left|M_{0}\right\rangle+
$$

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.т., to appear]

$$
\begin{aligned}
& Y_{\mathrm{VV}}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| \bar{I}_{1}^{2}+\left(\bar{I}_{1}^{\dagger}\right)^{2}+2 \bar{I}_{1}^{\dagger} \bar{I}_{1}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{ss})}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}}^{2}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{shc})}=\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right| I_{\mathrm{S}} I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RR}}^{(\mathrm{cc})}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{C}}^{2}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RV}}^{(\mathrm{s})}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}} \bar{I}_{1}+\bar{I}_{1}^{\dagger} I_{\mathrm{S}}\left|M_{0}\right\rangle+\ldots \\
& Y_{\mathrm{RV}}^{(\mathrm{shc})}=\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right|\left(\bar{I}_{1}+\bar{I}_{1}^{\dagger}\right) I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots
\end{aligned}
$$

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.т., to appear]

$$
\begin{aligned}
Y_{\mathrm{VV}} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| \bar{I}_{1}^{2}+\left(\bar{I}_{1}^{\dagger}\right)^{2}+2 \bar{I}_{1}^{\dagger} \bar{I}_{1}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{ss})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{shc})} & =\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right| I_{\mathrm{S}} I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{cc})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{C}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RV}}^{(\mathrm{s})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}} \bar{I}_{1}+\bar{I}_{1}^{\dagger} I_{\mathrm{S}}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RV}}^{(\mathrm{shc})} & =\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right|\left(\bar{I}_{1}+\bar{I}_{1}^{\dagger}\right) I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots
\end{aligned}
$$

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., to appear]

$$
\begin{aligned}
Y_{\mathrm{VV}} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| \bar{I}_{1}^{2}+\left(\bar{I}_{1}^{\dagger}\right)^{2}+2 \bar{I}_{1}^{\dagger} \bar{I}_{1}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{ss})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{shc})} & =\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right| I_{\mathrm{S}} I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RR}}^{(\mathrm{cc)}} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{C}}^{2}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RV}}^{(\mathrm{s})} & =\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right| I_{\mathrm{S}} \bar{I}_{1}+\bar{I}_{1}^{\dagger} I_{\mathrm{S}}\left|M_{0}\right\rangle+\ldots \\
Y_{\mathrm{RV}}^{(\mathrm{shc})} & =\left[\alpha_{s}\right]^{2}\left\langle M_{0}\right|\left(\bar{I}_{1}+\bar{I}_{1}^{\dagger}\right) I_{\mathrm{C}}\left|M_{0}\right\rangle+\ldots
\end{aligned}
$$

Once combined, these objects return

$$
Y=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right|\left[I_{\mathrm{V}}+I_{\mathrm{S}}+I_{\mathrm{C}}\right]^{2}\left|M_{0}\right\rangle+\ldots \equiv\left\langle M_{0}\right| I_{\mathrm{T}}^{2}\left|M_{0}\right\rangle+\ldots
$$

The benefits of introducing these Catani-like operators:
ル
the problem of double color-correlated poles disappears, since everything is written in terms of $I_{\mathrm{T}}^{2}(\epsilon)$, which is $\mathscr{O}\left(\epsilon^{0}\right)$

WHAT
 HAPPENS AT NNLO?

 is fully general w.r.t. the number of final state gluons
\mathcal{M} We do not explicitly calculate the individual sub-blocks of the process. Instead, we write each of these in terms of $I_{\mathrm{V}}(\epsilon), I_{\mathrm{S}}(\epsilon)$ and $I_{\mathrm{C}}(\epsilon)$, then recombine them to get $I_{\mathrm{T}}(\epsilon)$. The cancellation of the poles takes place automatically

Once combined, these objects return

$$
Y=\frac{\left[\alpha_{S}\right]^{2}}{2}\left\langle M_{0}\right|\left[I_{\mathrm{V}}+I_{\mathrm{S}}+I_{\mathrm{C}}\right]^{2}\left|M_{0}\right\rangle+\ldots \equiv\left\langle M_{0}\right| I_{\mathrm{T}}^{2}\left|M_{0}\right\rangle+\ldots
$$

The benefits of introducing these Catani-like operators:
1 the problem of double color-correlated poles disappears, since everything is written in terms of $I_{\mathrm{T}}^{2}(\epsilon)$, which is $\mathcal{O}\left(\epsilon^{0}\right)$

WHAT
 HAPPENS AT NNLO?

 is fully general w.r.t. the number of final state gluons
\mathcal{M} We do not explicitly calculate the individual sub-blocks of the process. Instead, we write each of these in terms of $I_{\mathrm{V}}(\epsilon), I_{\mathrm{S}}(\epsilon)$ and $I_{\mathrm{C}}(\epsilon)$, then recombine them to get $I_{\mathrm{T}}(\epsilon)$. The cancellation of the poles takes place automatically

Once combined, these objects return

$Y=\frac{\left[\alpha_{S}\right]^{2}}{2}\left\langle M_{0}\right|\left[I_{\mathrm{V}}+I_{\mathrm{S}}+I_{\mathrm{C}}\right]^{2}\left|M_{0}\right\rangle+\ldots \equiv\left\langle M_{0}\right| I_{\mathrm{T}}^{2}\left|M_{0}\right\rangle+\ldots$

TRIPLE-POLES known in the literature (for $N_{p} \geq 4$):

WHAT HAPPENS AT NNLO?

From d $\hat{\sigma}^{\mathrm{VV}}$.

$$
: \begin{aligned}
& H_{2}(\epsilon)= \frac{i f_{a b c}}{384 \epsilon}\left(\gamma_{0}^{\text {cusp }}\right)^{2} \sum_{(i, j, k)}^{N_{p}} T_{i}^{a} T_{j}^{b} T_{k}^{c} \log \frac{-s_{i j}}{-s_{j k}} \log \frac{-s_{j k}}{-s_{k i}} \log \frac{-s_{k i}}{-s_{i j}} \\
&-\frac{i f_{a b c}}{128 \epsilon} \gamma_{0}^{\text {cusp }} \sum_{(i, j, k}^{N_{p}} T_{i}^{a} T_{j}^{b} T_{k}^{c}\left(\frac{\gamma_{0}^{i}}{C_{f_{i}}}-\frac{\gamma_{0}^{j}}{C_{f_{j}}}\right) \log \frac{-s_{i j}}{-s_{j k}} \log \frac{-s_{k i}}{-s_{i j}} \\
& \quad+\frac{\boldsymbol{\Gamma}_{1}}{16 \epsilon}-\frac{\gamma_{1}^{\text {cusp }} \boldsymbol{\Gamma}_{0}}{64 \epsilon}-\frac{\pi^{2} \beta_{0} \Gamma_{0}^{\prime}}{128 \epsilon}
\end{aligned}
$$

$$
\begin{aligned}
& S_{\mathrm{ma}}^{\text {tri }} \mathrm{RV} \sim \sum_{(i, j, k)} \frac{s_{i j}}{s_{i \mathrm{~m}} s_{j \mathrm{~m}}}\left(\frac{s_{j k}}{s_{j \mathrm{jm}} s_{k \mathrm{~m}}}\right)^{\epsilon} T_{i}^{a} T_{j}^{b} T_{k}^{c} \\
& \mathcal{O (\epsilon ^ { - 2 })} \\
& \mathcal{O (\epsilon ^ { - 1 })}
\end{aligned}
$$

$$
Y=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right|\left[I_{\mathrm{V}}+I_{\mathrm{S}}+I_{\mathrm{C}}\right]^{2}\left|M_{0}\right\rangle+\ldots \equiv\left\langle M_{0}\right| I_{\mathrm{T}}^{2}\left|M_{0}\right\rangle+\ldots
$$

TRIPLE-POLES known in the literature (for $N_{p} \geq 4$):
From d $\hat{\sigma}^{\mathrm{VV}}$
$H_{2}(\epsilon)=$
$=\frac{i f_{a b c}}{384 \epsilon}\left(\gamma_{0}^{\text {cusp }}\right)^{2} \sum_{(i, j, k)}^{N_{p}} T_{i}^{a} T_{j}^{b} T_{k}^{c} \log \frac{-s_{i j}}{-s_{j k}} \log \frac{-s_{j k}}{-s_{k i}} \log \frac{-s_{k i}}{-s_{i j}}$

$-\frac{i f_{a b c}}{128 \epsilon} \gamma_{0}^{\text {cusp }} \sum_{(i, j, k)}^{N_{p}} T_{i}^{a} T_{j}^{b} T_{k}^{c}\left(\frac{\gamma_{0}^{i}}{C_{f_{i}}}-\frac{\gamma_{0}^{j}}{C_{f_{j}}}\right) \log \frac{-s_{i j}}{-s_{j k}} \log \frac{-s_{k i}}{-s_{i j}}$

$+\frac{\Gamma_{1}}{16 \epsilon}-\frac{\gamma_{1}^{\text {cusp }} \Gamma_{0}}{64 \epsilon}-\frac{\pi^{2} \beta_{0} \Gamma_{0}^{\prime}}{128 \epsilon}$

Need to add other contrilbutions. But where do they come from?

$$
\begin{array}{ll}
\text { Iff } N_{p} \geq 4 \\
{\left[\bar{I}_{1}, \bar{I}_{1}^{\dagger}\right] \neq 0} \\
{\left[\bar{I}_{1}^{\dagger}, \bar{I}_{S}\right] \neq 0 \rightarrow f_{a b c} T_{i}^{a} T_{j}^{b} T_{k}^{c} \Rightarrow} & \text { Combining the commutators } \\
{\left[\bar{I}_{1}, \bar{I}_{S}\right] \neq 0} & \Rightarrow \\
I^{\text {tri }}=\frac{1}{2}\left[I_{V}+I_{S}, \bar{I}_{1}-\bar{I}_{1}^{\dagger}\right]-\frac{1}{4}\left[I_{V}, \bar{I}_{1}-\bar{I}_{1}^{\dagger}\right] \\
& \text { Once combined with the other triples, } \\
\text { this cancels out all the triple-poles }
\end{array}
$$

$$
Y=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right|\left[I_{\mathrm{V}}+I_{\mathrm{S}}+I_{\mathrm{C}}\right]^{2}\left|M_{0}\right\rangle+\ldots \equiv\left\langle M_{0}\right| I_{\mathrm{T}}^{2}\left|M_{0}\right\rangle+\ldots
$$

1
We find recurring building blocks, i.e. $I_{V}(\epsilon)$, $I_{S}(\epsilon), I_{C}(\epsilon)$ and $I_{T}(\epsilon)$, which let us solve the problem of color-correlated poles

2 The procedure is (almost) entirely process

CONCLUSIONS AND OUTLOOK

3 The cancellation of the poles is analytical and 3 takes place automatically for N_{p} gluons
$4 \begin{aligned} & \text { Work in progress: next step is a generalization to } \\ & \text { asymmetric initial state and arbitrary final } \\ & \text { state }\end{aligned}$
5 Outlook: application of the method to phenostudies

MANY THANKS FOR YOUR ATTENTION

Presented by
Davide Maria Tagliabue

E-mail

davide.tagliabue@unimi.it

