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PROBLEMS
AND
SOLUTIONS

In collider physics we need to compute differential partonic cross 
section through fixed-order perturbation theory
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Two main difficulties: IR singularities, arising from real and virtual 
radiation, and multi-loop amplitude calculations

About IR singularities: they are unphysical and require specific 
methods to arrive at a finite physical result. Among those 
methods, we focus on SUBTRACTION SCHEMES
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Some of the many available schemes: 
Antenna [Gehermann-De Ridder et al. 0505111, …]

ColorfullNNLO [Del Duca et al. 1603.08927, …] STRIPPER [Czakon 1005.0274, …]

Analytic Sector Subtraction [Magnea et al. 1806.09570, …]

Geometric IR subtraction [Herzog 1804.07949, …] Unsubtraction [Sborlini et al. 1608.01584, …]

Universal Factorization [Anastasiou et al. 2008.12293, …] FDR [Pittau 1208.5457, …]

Nested Soft-Collinear Subtraction  (NSC) [Caola et al. 1702.01352, …]
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HOW THE 
NSC 
WORKS?
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∫ |ℳ |2 FJ d(d)ϕ = ∫ [|ℳ |2 FJ − K] d(d)ϕ + ∫ K d(d)ϕ

Problem of OVERLAPPING SOFT and COLLINEAR emissions
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fully local

fully analytic

Soft emission 
: S𝔪 | ⃗p𝔪 | → 0

𝔪g
⃗p𝔪

Collinear emission 
: Ci𝔪 θi𝔪 → 0

𝔪g
⃗p𝔪

At NLO we start by regularizing soft divergences (see FKS)
2 2 2

(1 − S) S= +

Soft-regulated  
still contains collinear 
divergences 

Soft-counterterm  
provides the formula 

of the soft poles

The soft-regulated term then needs a similar treatment for collinear 
divergences: all the singular configurations can be separated out
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fully local

fully analytic

Soft emission 
: S𝔪 | ⃗p𝔪 | → 0

𝔪g
⃗p𝔪

Collinear emission 
: Ci𝔪 θi𝔪 → 0

𝔪g
⃗p𝔪

At NNLO we follow the same idea of separating out divergences 

• start from double-soft regularization 

• regularize also single-soft divergences

• at this point we have to regularize collinear divergences  
( , , ) we avoid overlapping thanks to 
PARTITIONING and SECTORING [Czakon 1005.0274]

Ci𝔪 Cj𝔫Ci𝔪 Ci𝔪𝔫 ⇒

}The cross section is  
now soft-regularized 

Problem of OVERLAPPING SOFT and COLLINEAR emissions



RECURRING
OPERATORS
AT NLO
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Ī1(ϵ) =
1
2

Np

∑
i≠j

𝒱sing
i (ϵ)

T2
i

(Ti ⋅ Tj)( μ2

2pi ⋅ pj )
ϵ

eiπλijϵ
𝒱sing

i (ϵ) =
T2

i

ϵ2
+

γi

ϵ
Np = N + 2

the divergent part of  can be written asd ̂σV

IV(ϵ) = Ī1(ϵ) + Ī†
1(ϵ)

Virtual corrections : the IR content of virtual amplitudes is 
known [Catani ’98]. Through the operator 

d ̂σV
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ϵ
Np = N + 2

the divergent part of  can be written asd ̂σV

Real corrections : we would like something similard ̂σR

Making use of NSC (FKS at NLO) to regularize this divergences we 
obtain [Caola, Melnikov, Röntsch ’17]

d ̂σR = ⟨S𝔪FLM(𝔪)⟩ +
Np

∑
i=1

⟨S̄𝔪Ci𝔪Δ(𝔪)FLM(𝔪)⟩+⟨𝒪NLO Δ(𝔪)FLM(𝔪)⟩
Soft term 
[ : ]S𝔪 E𝔪 → 0

Hard-Collinear term 
[ : ]Ci𝔪 θi𝔪 → 0

IV(ϵ) = Ī1(ϵ) + Ī†
1(ϵ)
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ηij = (1 − cos θij)/2

Kij ∼ η1+ϵ
ij 2F1(1,1,1 − ϵ,1 − ηij)

= −
(2Emax/μ)−2ϵ

ϵ2

Np

∑
i≠j

η−ϵ
ij Kij (Ti ⋅ Tj)IS(ϵ)
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AT NLO

It turns out that the soft term can be written by means of an 
operator that, at least in principle, is very close to :IV(ϵ)



ηij = (1 − cos θij)/2

Kij ∼ η1+ϵ
ij 2F1(1,1,1 − ϵ,1 − ηij)

= −
(2Emax/μ)−2ϵ

ϵ2

Np

∑
i≠j

η−ϵ
ij Kij (Ti ⋅ Tj)IS(ϵ)

Combination of : not only does it vanishes the pole 
, but it makes the pole  free of color-correlations

IV(ϵ) + IS(ϵ)
𝓞(ϵ−2) 𝓞(ϵ−1)

YES color-correlations

IV,S(ϵ) ∼ Ti ⋅ Tj matrices in color spaceTi =

Np < 4 ⇒ d ̂σNLO ∼
CA,F

ϵ
⟨M0 |M0⟩

Np ≥ 4 ⇒ d ̂σNLO ∼
1
ϵ

⟨M0 |Ti ⋅ Tj |M0⟩

NO color-correlations

This result for  is trivially dependent on the number of 
gluons in the final state

IV(ϵ) + IS(ϵ)

It turns out that the soft term can be written by means of an 
operator that, at least in principle, is very close to :IV(ϵ)
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What about the hard-collinear term? Some parts vanish against 
the DGLAP contribution, the remaining part can be collected 
within the following Catani-like operator

=
Np

∑
i=1

Γi, fi

ϵ
IC(ϵ)

Γa, fa = [( 2Ea

μ )
−2ϵ Γ2(1 − ϵ)

Γ(1 − 2ϵ) ] [γfa + Cfa
1 − e−2ϵLa

ϵ ],

Γi, fi = [( 2Ei

μ )
−2ϵ Γ2(1 − ϵ)

Γ(1 − 2ϵ) ] γ22
z,g→gg(ϵ, Li),

a = 1,2

i ∈ [3,Np]

Once more the definition depends in a trivial way on Np

DMT | QCD@LHC2023
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Once more the definition depends in a trivial way on Np

 cancels perfectly the pole  left by . It is thus 
natural to introduce the total operator 
IC(ϵ) 𝓞(ϵ−1) IV(ϵ) + IS(ϵ)

IT(ϵ) = IV(ϵ) + IS(ϵ) + IC(ϵ)
pole free

fully general w.r.t. Np

d ̂σNLO = [αs]⟨IT(ϵ) ⋅ FLM⟩ + [αs][⟨PNLO
aa ⊗ FLM⟩ + ⟨FLM ⊗ PNLO

aa ⟩] + ⟨Ffin
LV⟩ + ⟨𝒪NLO Δ(𝔪)FLM(𝔪)⟩

In this way the final result for the NLO fits in a line:
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WHAT 
HAPPENS 
AT NNLO?
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d ̂σNNLO = d ̂σVV + d ̂σRV + d ̂σRR + d ̂σpdf

Consider for instance   it depends quadratically on  and d ̂σVV ⇒ Ī1(ϵ) Ī†
1(ϵ)

 ⇒ Ī1, Ī†
1 ∼ Ti ⋅ Tj

 ⇒ d ̂σVV ∼ (Ti ⋅ Tj) ⋅ (Tk ⋅ Tl) double color-correlations
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We expect the same to happen for and . Dealing with such 
double-color correlated terms (DCC) in general makes the structure of 
the poles very complicated

d ̂σRV d ̂σRR

Double-Virtual

Real-Virtual

Double-Real

PDFs Renor.
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1(ϵ)

 ⇒ Ī1, Ī†
1 ∼ Ti ⋅ Tj

 ⇒ d ̂σVV ∼ (Ti ⋅ Tj) ⋅ (Tk ⋅ Tl) double color-correlations

We expect the same to happen for and . Dealing with such 
double-color correlated terms (DCC) in general makes the structure of 
the poles very complicated

d ̂σRV d ̂σRR

⇒
The strategy: isolate DCC in and  and then combine them with 
those  contained within 

d ̂σRV d ̂σRR

d ̂σVV

⇒

The goal: assemble all these DCC into an expression that we expect to 
be quadratic in IT(ϵ)
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Double-Virtual

Real-Virtual

Double-Real

PDFs Renor.
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YVV =
[αs]2

2 ⟨M0 Ī2
1 + (Ī†

1)
2 + 2Ī†

1 Ī1 M0⟩ + . . .

Y(ss)
RR =

[αs]2

2
⟨M0 | I2

S |M0⟩ + . . .

Y(shc)
RR = [αs]2⟨M0 | IS IC |M0⟩ + . . .

Y(cc)
RR =

[αs]2

2
⟨M0 | I2

C |M0⟩ + . . .

Y(s)
RV =

[αs]2

2 ⟨M0 IS Ī1 + Ī†
1 IS M0⟩ + . . .

Y(shc)
RV = [αs]2⟨M0 (Ī1 + Ī†

1) IC M0⟩ + . . .
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1 IS M0⟩ + . . .

Y(shc)
RV = [αs]2⟨M0 (Ī1 + Ī†
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1 Ī1 M0⟩ + . . .

Y(ss)
RR =

[αs]2

2
⟨M0 | I2

S |M0⟩ + . . .

Y(shc)
RR = [αs]2⟨M0 | IS IC |M0⟩ + . . .

Y(cc)
RR =

[αs]2

2
⟨M0 | I2

C |M0⟩ + . . .

Y(s)
RV =

[αs]2

2 ⟨M0 IS Ī1 + Ī†
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Y(shc)
RV = [αs]2⟨M0 (Ī1 + Ī†

1) IC M0⟩ + . . .
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The benefits of introducing these Catani-like operators:
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Once combined, these objects return NB square of NLO

⇒

the problem of double color-correlated poles disappears, since 
everything is written in terms of , which is I2

T(ϵ) 𝓞(ϵ0)

the definition of  depends trivially on  so the result we got 
is fully general w.r.t. the number of final state gluons

IT(ϵ) Np

We do not explicitly calculate the individual sub-blocks of the 
process. Instead, we write each of these in terms of ,  and 

, then recombine them to get . The cancellation of the 
poles takes place automatically

IV(ϵ) IS(ϵ)
IC(ϵ) IT(ϵ)

Y =
[αs]2

2 ⟨M0 [IV + IS + IC]2 M0⟩ + . . . ≡ ⟨M0 |I2
T |M0⟩ + . . .

DMT | QCD@LHC2023
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is fully general w.r.t. the number of final state gluons

IT(ϵ) Np
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H2(ϵ) =
i fabc

384ϵ (γcusp
0 )2

Np

∑
(i, j,k)

Ta
i Tb

j Tc
k log

−sij

−sjk
log

−sjk

−ski
log

−ski

−sij

−
i fabc

128ϵ
γcusp
0

Np

∑
(i, j,k)

Ta
i Tb

j Tc
k ( γi

0

Cfi
−

γ j
0

Cfj ) log
−sij

−sjk
log

−ski

−sij

+
Γ1

16ϵ
−

γcusp
1 Γ0

64ϵ
−

π2β0Γ′ 0

128ϵ

Stri
𝔪 RV ∼ ∑

(i, j,k)

sij

si𝔪sj𝔪 (
sjk

sj𝔪sk𝔪 )
ϵ

Ta
i Tb

j Tc
k

From  d ̂σVV From  d ̂σRV

𝒪(ϵ−1)

𝒪(ϵ−2)

Y =
[αs]2

2 ⟨M0 [IV + IS + IC]2 M0⟩ + . . . ≡ ⟨M0 |I2
T |M0⟩ + . . .

TRIPLE-POLES known in the literature (for ):Np ≥ 4

?
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Y =
[αs]2

2 ⟨M0 [IV + IS + IC]2 M0⟩ + . . . ≡ ⟨M0 |I2
T |M0⟩ + . . .

Need to add other contributions. But where do they come from?

[Ī1, Ī†
1] ≠ 0

[Ī1, ĪS] ≠ 0
[Ī†

1, ĪS] ≠ 0

If Np ≥ 4

→ fabcTa
i Tb

j Tc
k

⇒ Itri =
1
2 [IV + IS, Ī1 − Ī†

1] −
1
4 [IV, Ī1 − Ī†

1]
Combining the commutators 

Once combined with the other triples, 
this cancels out all the triple-poles

TRIPLE-POLES known in the literature (for ):Np ≥ 4



12

CONCLUSIONS 
AND 
OUTLOOK

We find recurring building blocks, i.e. , 
,  and , which let us solve the 

problem of color-correlated poles

IV(ϵ)
IS(ϵ) IC(ϵ) IT(ϵ)

Outlook: application of the method to pheno-
studies

DMT | QCD@LHC2023

1
2
3
4
5

The procedure is (almost) entirely process 
independent 

The cancellation of the poles is analytical and 
takes place automatically for  gluonsNp

Work in progress: next step is a generalization to 
asymmetric initial state and arbitrary final 
state
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