GENERALIZATION OF THE NESTED SOFT-COLLINEAR SUBTRACTION **METHOD FOR NNLO QCD CALCULATIONS**

Davide Maria Tagliabue

In collaboration with: F. Devoto, K. Melnikov, R. Röntsch, C. Signorile-Signorile

DURHAM, QCD@LHC2023

UNIVERSITÀ **DEGLI STUDI DI MILANO**

PROBLEMS AND SOLUTIONS

In collider physics we need to compute differential partonic cross section through fixed-order perturbation theory

- Two main difficulties: IR singularities, arising from real and virtual radiation, and multi-loop amplitude calculations
- <u>About IR singularities</u>: they are unphysical and require specific methods to arrive at a finite physical result. Among those methods, we focus on **SUBTRACTION SCHEMES**

Some of the many available schemes:

- Analytic Sector Subtraction [Magnea et al. 1806.09570, ...] Antenna [Gehermann-De Ridder et al. 0505111, ...]
- ColorfulINNLO [Del Duca et al. 1603.08927, ...]
- Geometric IR subtraction [Herzog 1804.07949, ...]
- Universal Factorization [Anastasiou et al. 2008.12293, ...]

- STRIPPER [Czakon 1005.0274, ...]
- Unsubtraction [Sborlini et al. 1608.01584, ...]
- FDR [Pittau 1208.5457, ...]
- Nested Soft-Collinear Subtraction (NSC) [Caola et al. 1702.01352, ...]

Computing cross sections in **full generality** at **NNLO** is still an open issue

Up to now **NSC** has only been applied to **simple** processes

DMT | QCD@LHC2023 Computing cross sections in Up to now **NSC** has full generality at NNLO is only been applied to still an open issue simple processes **Simple** = limited number of hard partons Drell-Yan DIS Higgs decay [Caola, Melnikov, Röntsch '19] [Caola, Melnikov, Röntsch '19] [Asteriadis, Caola, Melnikov, Röntsch '19] Need to go beyond: $N \rightarrow 3$ [Czakon et al. '21] [Catani et al. '22] $P + P \rightarrow X + N$ Jets [Buonocore et al. '23] .

This talk!

[Devoto, Melnikov, Röntsch, Signorile-Signorile, **D.M.T**., 2309.xxxxx]

This talk!

[Devoto, Melnikov, Röntsch, Signorile-Signorile, **D.M.T**., 2309.xxxxx]

This talk!

[Devoto, Melnikov, Röntsch, Signorile-Signorile, **D.M.T**., 2309.xxxxx]

02

HOW THE NSC WORKS?

Problem of **OVERLAPPING SOFT** and **COLLINEAR** emissions

The **soft-regulated** term then needs a similar treatment for **collinear divergences**: all the singular configurations can be separated out

DMT | QCD@LHC2023

Soft emission $S_{\mathfrak{m}}: |\vec{p}_{\mathfrak{m}}| \to 0$

At NLO we start by regularizing soft divergences (see FKS)

HOW THE NSC WORKS?

Problem of **OVERLAPPING SOFT** and **COLLINEAR** emissions

- start from double-soft regularization
- regularize also **single-soft** divergences
- at this point we have to regularize collinear divergences $(C_{im}, C_{jn}C_{im}, C_{imn}) \Rightarrow$ we avoid overlapping thanks to **PARTITIONING and SECTORING** [Czakon 1005.0274]

DMT | QCD@LHC2023

 $S_{\mathfrak{m}}: |\vec{p}_{\mathfrak{m}}| \to 0$

At NNLO we follow the same idea of **separating out divergences**

 $\bar{I}_1(\epsilon)$

RECURRING **OPERATORS AT NLO**

Virtual corrections $d\hat{\sigma}^{V}$: the IR content of virtual amplitudes is known [Catani '98]. Through the operator

$$= \frac{1}{2} \sum_{i \neq j}^{Np} \frac{\mathcal{V}_i^{\operatorname{sing}}(\epsilon)}{T_i^2} (T_i \cdot T_j) \left(\frac{\mu^2}{2p_i \cdot p_j}\right)^{\epsilon} e^{i\pi\lambda_{ij}\epsilon}$$

$$\mathcal{V}_{i}^{\text{sing}}(\epsilon) = \frac{T_{i}^{2}}{\epsilon^{2}} + \frac{\gamma_{i}}{\epsilon}$$
$$N_{p} = N + 2$$

the divergent part of $d\hat{\sigma}^{V}$ can be written as

$$\boldsymbol{I_{\mathrm{V}}}(\boldsymbol{\epsilon}) = \bar{I}_{1}(\boldsymbol{\epsilon}) + \bar{I}_{1}^{\dagger}(\boldsymbol{\epsilon})$$

 $\bar{I}_1(\epsilon)$ =

RECURRING **OPERATORS AT NLO**

Real corrections $d\hat{\sigma}^{R}$: we would like something similar

obtain [Caol

 $d\hat{\sigma}^{R} = \langle \mathcal{L} \rangle$

Virtual corrections $d\hat{\sigma}^{V}$: the IR content of virtual amplitudes is known [Catani '98]. Through the operator

$$= \frac{1}{2} \sum_{i \neq j}^{Np} \frac{\mathcal{V}_i^{\operatorname{sing}}(\epsilon)}{T_i^2} (T_i \cdot T_j) \left(\frac{\mu^2}{2p_i \cdot p_j}\right)^{\epsilon} e^{i\pi\lambda_{ij}\epsilon}$$

$$\mathcal{V}_{i}^{\operatorname{sing}}(\epsilon) = \frac{T_{i}^{2}}{\epsilon^{2}} + \frac{\gamma_{i}}{\epsilon}$$
$$N_{p} = N + 2$$

the divergent part of $d\hat{\sigma}^V$ can be written as

$$\boldsymbol{I_{\mathrm{V}}}(\boldsymbol{\epsilon}) = \bar{I}_{1}(\boldsymbol{\epsilon}) + \bar{I}_{1}^{\dagger}(\boldsymbol{\epsilon})$$

 $S_{\mathfrak{m}}: |\vec{p}_{\mathfrak{m}}| \to 0$

Collinear emission $C_{i\mathfrak{m}}: \theta_{i\mathfrak{m}} \to 0$

Making use of NSC (FKS at NLO) to regularize this divergences we

la, Melnikov, Röntsch '17]

$$\left(S_{\mathfrak{m}}F_{\mathrm{LM}}(\mathfrak{m})\right) + \sum_{i=1}^{N_{p}} \left\langle \bar{S}_{\mathfrak{m}}C_{i\mathfrak{m}}\Delta^{(\mathfrak{m})}F_{\mathrm{LM}}(\mathfrak{m})\right\rangle + \left\langle \mathcal{O}_{\mathrm{NLO}}\Delta^{(\mathfrak{m})}F_{\mathrm{LM}}(\mathfrak{m})\right\rangle$$
Soft term

$$[S_{\mathfrak{m}}: E_{\mathfrak{m}} \to 0]$$
Hard-Collinear term

$$[C_{i\mathfrak{m}}: \theta_{i\mathfrak{m}} \to 0]$$

 $I_{\rm S}(\epsilon) = -$

RECURRING **OPERATORS AT NLO**

It turns out that the soft term can be written by means of operator that, at least in principle, is very close to $I_V(\epsilon)$:

$$-\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2}\sum_{\substack{i\neq j}}^{N_p}\eta_{ij}^{-\epsilon}K_{ij}(\boldsymbol{T}_i\cdot\boldsymbol{T}_j)$$

 $\eta_{ij} = (1 - \cos \theta_{ij})/2$ $K_{ij} \sim \eta_{ij}^{1+\epsilon} {}_2F_1(1,1,1-\epsilon,1-\eta_{ij})$

	n
a	
-	

RECURRING **OPERATORS AT NLO**

 $I_{\rm S}(\epsilon) = -$

This result for $I_V(\epsilon) + I_S(\epsilon)$ is trivially **dependent** on the **number of** gluons in the final state

It turns out that the soft term can be written by means of an **operator** that, at least in principle, is very **close to** $I_V(\epsilon)$:

$$\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{i\neq j}^{N_p} \eta_{ij}^{-\epsilon} K_{ij} (\boldsymbol{T}_i \cdot \boldsymbol{T}_j) \qquad \qquad \eta_{ij} = (1 - \cos \theta_{ij})/2 \\ K_{ij} \sim \eta_{ij}^{1+\epsilon} F_1(1, 1, 1 - \epsilon, 1 - \eta_{ij})$$

Combination of $I_{V}(\epsilon) + I_{S}(\epsilon)$: not only does it vanishes the pole $\mathcal{O}(\epsilon^{-2})$, but it makes the pole $\mathcal{O}(\epsilon^{-1})$ free of color-correlations

C	2()2	2;	3

What about the hard-collinear term? Some parts vanish against the DGLAP contribution, the remaining part can be collected within the following Catani-like operator

$I_{\rm C}(\epsilon)$

RECURRING **OPERATORS AT NLO**

$$\Gamma_{a,f_a} = \left[\left(\frac{2E_a}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \left[\gamma_{f_a} + C_{f_a} \frac{1-e^{-2\epsilon L_a}}{\epsilon} \right], \quad a = 1,2$$

$$\Gamma_{i,f_i} = \left[\left(\frac{2E_i}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \gamma_{z,g \to gg}^{22}(\epsilon, L_i), \quad i \in [3, N_p]$$

Once more the definition depends in a trivial way on N_p

RECURRING **OPERATORS AT NLO**

What about the hard-collinear term? Some parts vanish against the DGLAP contribution, the remaining part can be collected within the following Catani-like operator

 $I_{\rm C}(\epsilon)$

Once more the definition depends in a trivial way on N_p

 $I_{\rm C}(\epsilon)$ cancels perfectly the pole $\mathcal{O}(\epsilon^{-1})$ left by $I_{\rm V}(\epsilon) + I_{\rm S}(\epsilon)$. It is thus natural to introduce the total operator

 $d\hat{\sigma}^{\text{NLO}} = [\alpha_s] \left\langle I_{\text{T}}(\epsilon) \cdot F_{\text{LM}} \right\rangle + [\alpha_s] \left[\left\langle P_{aa}^{\text{NLO}} \otimes F_{\text{LM}} \right\rangle + \left\langle F_{\text{LM}} \otimes P_{aa}^{\text{NLO}} \right\rangle \right] + \left\langle F_{\text{LV}}^{\text{fin}} \right\rangle + \left\langle \mathcal{O}_{\text{NLO}} \Delta^{(\mathfrak{m})} F_{\text{LM}}(\mathfrak{m}) \right\rangle$

$$\Gamma_{a,f_a} = \left[\left(\frac{2E_a}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \left[\gamma_{f_a} + C_{f_a} \frac{1-e^{-2\epsilon L_a}}{\epsilon} \right], \quad a = 1,2$$

$$\Gamma_{i,f_i} = \left[\left(\frac{2E_i}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \gamma_{z,g \to gg}^{22}(\epsilon, L_i), \quad i \in [3, N_p]$$

$$I_{T}(\epsilon) = I_{V}(\epsilon) + I_{S}(\epsilon) + I_{C}(\epsilon)$$

in this way the final result for the NLO fits in a line:

[Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., 2309.xxxxxx]

We expect the same to happen for $d\hat{\sigma}^{RV}$ and $d\hat{\sigma}^{RR}$. Dealing with such double-color correlated terms (DCC) in general makes the structure of the poles very complicated

Consider for instance $d\hat{\sigma}^{VV} \Rightarrow$ it depends **quadratically** on $\bar{I}_1(\epsilon)$ and $\bar{I}_1^{\dagger}(\epsilon)$

$$\Rightarrow \bar{I}_{1}, \bar{I}_{1}^{\dagger} \sim T_{i} \cdot T_{j}$$
$$\Rightarrow d\hat{\sigma}^{VV} \sim (T_{i} \cdot T_{j}) \cdot (T_{k} \cdot T_{l}) \qquad \text{double color-correlation}$$

We expect the same to happen for $d\hat{\sigma}^{RV}$ and $d\hat{\sigma}^{RR}$. Dealing with such double-color correlated terms (DCC) in general makes the structure of the poles very complicated

<u>The strategy</u>: isolate DCC in $d\hat{\sigma}^{RV}$ and $d\hat{\sigma}^{RR}$ and then combine them with those contained within $d\hat{\sigma}^{VV}$

The goal: assemble all these DCC into an expression that we expect to be quadratic in $I_{T}(\epsilon)$

Consider for instance $d\hat{\sigma}^{VV} \Rightarrow$ it depends **quadratically** on $\bar{I}_1(\epsilon)$ and $\bar{I}_1^{\dagger}(\epsilon)$

$$\Rightarrow \bar{I}_1, \bar{I}_1^{\dagger} \sim T_i \cdot T_j \Rightarrow d\hat{\sigma}^{\text{VV}} \sim (T_i \cdot T_j) \cdot (T_k \cdot T_l) \qquad \text{double color-correla}$$

 \downarrow

 \downarrow

WHAT HAPPENS **AT NNLO?**

DMT | QCD@LHC2023

$$Y_{\rm VV} = \frac{[\alpha_{\rm s}]^2}{2} \langle M_0 | \bar{I}_1^2 + (\bar{I}_1^{\dagger})^2 + 2\bar{I}_1^{\dagger} \bar{I}_1 | M_0 \rangle + \dots$$
$$Y_{\rm RR}^{\rm (ss)} = \frac{[\alpha_{\rm s}]^2}{2} \langle M_0 | I_{\rm S}^2 | M_0 \rangle + \dots$$

 $Y_{\rm RR}^{(\rm snc)} = [\alpha_s]^2 \langle M_0 | I_{\rm S} I_{\rm C} | M_0 \rangle + \dots$

$$Y_{\rm RR}^{\rm (cc)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm C}^2 | M_0 \rangle + \dots$$

$$Y_{\rm RV}^{\rm (s)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S} \bar{I}_1 + \bar{I}_1^{\dagger} I_{\rm S} | M_0 \rangle + \dots$$

WHAT HAPPENS **AT NNLO?**

DMT | QCD@LHC2023

$$Y_{\rm VV} = \frac{[\alpha_s]^2}{2} \langle M_0 | \bar{I}_1^2 + (\bar{I}_1^{\dagger})^2 + 2\bar{I}_1^{\dagger} \bar{I}_1 | M_0 \rangle + \dots$$
$$Y_{\rm RR}^{\rm (ss)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S}^2 | M_0 \rangle + \dots$$

 $Y_{\rm RR}^{\rm (shc)} = [\alpha_s]^2 \langle M_0 | I_{\rm S} I_{\rm C} | M_0 \rangle + \dots$

$$Y_{\rm RR}^{\rm (cc)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm C}^2 | M_0 \rangle + \dots$$

$$Y_{\rm RV}^{\rm (s)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S} \bar{I}_1 + \bar{I}_1^{\dagger} I_{\rm S} | M_0 \rangle + \dots$$

WHAT HAPPENS **AT NNLO?**

DMT | QCD@LHC2023

$$Y_{\rm VV} = \frac{[\alpha_s]^2}{2} \langle M_0 | \bar{I}_1^2 + (\bar{I}_1^{\dagger})^2 + 2\bar{I}_1^{\dagger} \bar{I}_1 | M_0 \rangle + \dots$$
$$Y_{\rm RR}^{\rm (ss)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S}^2 | M_0 \rangle + \dots$$

 $Y_{\rm RR}^{\rm (shc)} = [\alpha_s]^2 \langle M_0 | I_{\rm S} I_{\rm C} | M_0 \rangle + \dots$

$$Y_{\rm RR}^{\rm (cc)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm C}^2 | M_0 \rangle + \dots$$

$$Y_{\rm RV}^{\rm (s)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S} \bar{I}_1 + \bar{I}_1^{\dagger} I_{\rm S} | M_0 \rangle + \dots$$

WHAT HAPPENS **AT NNLO?**

DMT | QCD@LHC2023

$$Y_{\rm VV} = \frac{[\alpha_s]^2}{2} \langle M_0 | \bar{I}_1^2 + (\bar{I}_1^{\dagger})^2 + 2\bar{I}_1^{\dagger} \bar{I}_1 | M_0 \rangle + \dots$$
$$Y_{\rm RR}^{\rm (ss)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S}^2 | M_0 \rangle + \dots$$

 $Y_{\rm RR}^{\rm (shc)} = [\alpha_s]^2 \langle M_0 | I_{\rm S} I_{\rm C} | M_0 \rangle + \dots$

$$Y_{\mathrm{RR}}^{(\mathrm{cc})} = \frac{[\alpha_{\mathrm{s}}]^2}{2} \langle M_0 | I_{\mathrm{C}}^2 | M_0 \rangle + \dots$$
$$Y_{\mathrm{RV}}^{(\mathrm{s})} = \frac{[\alpha_{\mathrm{s}}]^2}{2} \langle M_0 | I_{\mathrm{S}} \bar{I}_1 + \bar{I}_1^{\dagger} I_{\mathrm{S}} | M_0 \rangle + \dots$$

 $Y_{\rm RV}^{\rm (snc)} = [\alpha_s]^2 \langle M_0 | (I_1 + I_1^{\dagger}) I_{\rm C} | M_0 \rangle + \dots$

WHAT HAPPENS **AT NNLO?**

DMT | QCD@LHC2023

$$Y_{\rm VV} = \frac{[\alpha_s]^2}{2} \langle M_0 | \bar{I}_1^2 + (\bar{I}_1^{\dagger})^2 + 2\bar{I}_1^{\dagger} \bar{I}_1 | M_0 \rangle + \dots$$
$$Y_{\rm RR}^{\rm (ss)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S}^2 | M_0 \rangle + \dots$$

 $Y_{\rm RR}^{\rm (shc)} = [\alpha_s]^2 \langle M_0 | I_{\rm S} I_{\rm C} | M_0 \rangle + \dots$

$$Y_{\rm RR}^{\rm (cc)} = \frac{[\alpha_s]^2}{2} \langle M_0 \,|\, I_{\rm C}^2 \,|\, M_0 \rangle + \dots$$

$$Y_{\rm RV}^{\rm (s)} = \frac{[\alpha_{\rm s}]^2}{2} \langle M_0 | I_{\rm S} \bar{I}_1 + \bar{I}_1^{\dagger} I_{\rm S} | M_0 \rangle + \dots$$

WHAT HAPPENS **AT NNLO?**

DMT | QCD@LHC2023

$$Y_{\rm VV} = \frac{[\alpha_s]^2}{2} \langle M_0 \left| \bar{I}_1^2 + (\bar{I}_1^{\dagger})^2 + 2\bar{I}_1^{\dagger} \bar{I}_1 \right| M_0 \rangle + \dots$$
$$Y_{\rm RR}^{\rm (ss)} = \frac{[\alpha_s]^2}{2} \langle M_0 \left| I_{\rm S}^2 \right| M_0 \rangle + \dots$$

 $Y_{\rm RR}^{\rm (shc)} = [\alpha_s]^2 \langle M_0 | I_{\rm S} I_{\rm C} | M_0 \rangle + \dots$

$$Y_{\rm RR}^{\rm (cc)} = \frac{[\alpha_s]^2}{2} \langle M_0 \,|\, I_{\rm C}^2 \,|\, M_0 \rangle + \dots$$

$$Y_{\rm RV}^{\rm (s)} = \frac{[\alpha_{\rm s}]^2}{2} \langle M_0 | I_{\rm S} \bar{I}_1 + \bar{I}_1^{\dagger} I_{\rm S} | M_0 \rangle + \dots$$

WHAT HAPPENS **AT NNLO?**

DMT | QCD@LHC2023

$$Y_{\rm VV} = \frac{[\alpha_s]^2}{2} \langle M_0 | \bar{I}_1^2 + (\bar{I}_1^{\dagger})^2 + 2\bar{I}_1^{\dagger} \bar{I}_1 | M_0 \rangle + \dots$$
$$Y_{\rm RR}^{\rm (ss)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm S}^2 | M_0 \rangle + \dots$$

 $Y_{\rm RR}^{\rm (shc)} = [\alpha_s]^2 \langle M_0 | I_{\rm S} I_{\rm C} | M_0 \rangle + \dots$

$$Y_{\rm RR}^{\rm (cc)} = \frac{[\alpha_s]^2}{2} \langle M_0 | I_{\rm C}^2 | M_0 \rangle + \dots$$

$$Y_{\rm RV}^{\rm (s)} = \frac{[\alpha_{\rm s}]^2}{2} \langle M_0 | I_{\rm S} \bar{I}_1 + \bar{I}_1^{\dagger} I_{\rm S} | M_0 \rangle + \dots$$

$$Y_{\rm RV}^{\rm (shc)} = \left[\alpha_s\right]^2 \left\langle M_0 \left| \left(\bar{I}_1 + \bar{I}_1^{\dagger}\right) I_{\rm C} \left| M_0 \right\rangle + \dots \right.$$

d, these objects return

$$M_0 \left| \left[I_V + I_S + I_C \right]^2 \left| M_0 \right\rangle + \dots \equiv \langle M_0 \left| I_T^2 \left| M_0 \right\rangle + \dots \right| = \langle M_0 \left| I_T^2 \left| M_0 \right\rangle + \dots \right|$$

When the problem of double color-correlated poles disappears, since everything is written in terms of $I_T^2(\epsilon)$, which is $\mathcal{O}(\epsilon^0)$

the definition of $I_{T}(\epsilon)$ depends trivially on N_{p} so the result we got is fully general w.r.t. the number of final state gluons

We **do not explicitly calculate** the individual sub-blocks of the process. Instead, we write each of these in terms of $I_V(\epsilon)$, $I_S(\epsilon)$ and $I_{\rm C}(\epsilon)$, then recombine them to get $I_{\rm T}(\epsilon)$. The cancellation of the poles takes place automatically

Once combined, these objects return **NB** square of NLO $Y = \frac{[\alpha_s]^2}{2} \langle M_0 | \left[I_V + I_S + I_C \right]^2 | M_0 \rangle + \dots \equiv \langle M_0 | I_T^2 | M_0 \rangle + \dots$

The benefits of introducing these Catani-like operators:

1

When the problem of double color-correlated poles disappears, since everything is written in terms of $I_T^2(\epsilon)$, which is $\mathcal{O}(\epsilon^0)$

the definition of $I_{T}(\epsilon)$ depends trivially on N_{p} so the result we got is fully general w.r.t. the number of final state gluons

We **do not explicitly calculate** the individual sub-blocks of the process. Instead, we write each of these in terms of $I_V(\epsilon)$, $I_S(\epsilon)$ and $I_{\rm C}(\epsilon)$, then recombine them to get $I_{\rm T}(\epsilon)$. The cancellation of the poles takes place automatically

Once combined, these objects return

The benefits of introducing these Catani-like operators:

1

 $Y = \frac{[\alpha_s]^2}{2} \left\langle M_0 \right| \left[I_V + I_S + I_C \right]^2 \left| M_0 \right\rangle + \ldots \equiv \left\langle M_0 \right| I_T^2 \left| M_0 \right\rangle + \ldots \right]$

TRIPLE-POLES known in the literature (for $N_p \ge 4$):

$$M_0 \left| \left[I_{\rm V} + I_{\rm S} + I_{\rm C} \right]^2 \right| M_0 \right\rangle + \ldots \equiv \langle M_0 \left| I_{\rm T}^2 \right| M_0 \rangle + \ldots$$

TRIPLE-POLES known in the literature (for $N_p \ge 4$):

From $d\hat{\sigma}^{VV}$

Need to add other contributions. But where do they come from?

 \Rightarrow

If $N_p \ge 4$ $\left[\bar{I}_1, \bar{I}_1^{\dagger}\right] \neq 0$ $\left[\bar{I}_{1}^{\dagger}, \bar{I}_{S}\right] \neq 0 \rightarrow f_{abc}T_{i}^{a}T_{j}^{b}T_{k}^{c}$ $\left[\bar{I}_1, \bar{I}_S\right] \neq 0$

Combining the commutators

$$I^{\text{tri}} = \frac{1}{2} \left[I_V + I_S, \bar{I}_1 - \bar{I}_1^{\dagger} \right] - \frac{1}{4} \left[I_V, \bar{I}_1 - \bar{I}_1^{\dagger} \right]$$

Once combined with the other triples, this cancels out all the triple-poles

$$M_0 \left| \left[I_{\mathrm{V}} + I_{\mathrm{S}} + I_{\mathrm{C}} \right]^2 \right| M_0 \right\rangle + \ldots \equiv \langle M_0 | I_{\mathrm{T}}^2 | M_0 \rangle + \ldots$$

CONCLUSIONS AND OUTLOOK

We find **recurring building blocks**, i.e. $I_V(\epsilon)$, $I_S(\epsilon)$, $I_C(\epsilon)$ and $I_T(\epsilon)$, which let us solve the problem of color-correlated poles

The procedure is (almost) entirely process independent

- The cancellation of the poles is **analytical** and 5 takes place automatically for N_p gluons
- Work in progress: next step is a generalization to asymmetric initial state and arbitrary final state
- **Outlook:** application of the method to phenostudies

MANY THANKS FOR YOUR ATTENTION

Presented by

Davide Maria Tagliabue

E-mail

davide.tagliabue@unimi.it