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  Jet measurements @ LHCJet measurements @ LHC

K. Wichmann  K. Wichmann  
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Motivation and QCD analysis strategyMotivation and QCD analysis strategy
● Jets allow extensive tests on (p)QCD

● Together with HERA inclusive data they allow simultaneous fits of 
parton densities and as 
→ QCD fits presented here follow HERAPDF strategy
→  QCD fits presented here done using xFitter
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Inclusive jets at CMS @ 13 TeVInclusive jets at CMS @ 13 TeV

JHEP 2022 (2022) 35
(Addendum to JHEP 02 (2022) 142)
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Inclusive jets @13 TeVInclusive jets @13 TeV
● 13 TeV inclusive jet cross sections 

already published: JHEP 02 (2022) 
142
→ also QCD analysis and as 
measurement @ NNLO using k-
factors

● NEW: addendum with NNLO analysis 
using NNLO interpolation grids: 
JHEP 12 (2022) 035
→ presented here

● NLOJET calculation to derive grids
→ numerical integration uncertainty 
~ 1%

● In fit increased by a factor of 2 
→ impact negligible

The most important impact on uncertainties on as determination 
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Simultaneous determination of PDFs and Simultaneous determination of PDFs and aass

→ Improved precision compared to NNLO result with k-factors 

NEWNEW

OLD

These results supersedeThese results supersede these  these 
obtained using k-factor techniqueobtained using k-factor technique

Good description of data by fit 
results 
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DijetsDijets

13 TeV CMS data with 36.3 fb-1 
CMS PAS SMP-21-008
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Cross section measurementCross section measurement
● Dijet cross section measured double- and triple-differentially in terms of 

properties of system formed by the two pT-leading jets
→ 2D: as a function of dijet invariant mass m1,2 in five rapidity regions |ymax|

→ 3D: m1,2 and 〈 pT〉 1,2 in 15 rapidity bins, defined in terms of dijet rapidity 
separation y* and total boost yb of dijet system 

● Illustration of dijet rapidity phase 
space, highlighting the relationship 
between variables used for 2D and 
3D measurements

● Colored triangles are suggestive of 
orientation  of two jets in different  
phase  space  regions  in  the  
laboratory  frame (beam line runs 
horizontally)
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Measured cross sectionsMeasured cross sections
● Unfolded cross sections for 2D and 3D measurements 
● → compared with fixed-order theory predictions at NNLO, complemented by NP 

and electroweak corrections

● Predictions for different PDFs generally in agreement 
→ except for AMBP16 PDF - predicted cross sections are generally smaller 
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● Comparison with fixed-order theory predictions at NNLO, complemented by NP 
and electroweak corrections

● Predictions for different PDFs generally in agreement 
→ except for AMBP16 PDF - predicted cross sections are generally smaller

● The same for 2D distributions (in back-up) 

Comparison with NNLO predictions:Comparison with NNLO predictions:
3D measurements3D measurements
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● Inclusion of the dijet 
measurements results in overall 
reduction of the PDF fit 
uncertainty
→ In particular precision of 
gluon PDF is improved for parton 
momentum fractions x > 0.1

● Distributions obtained with and 
without the CMS data appear 
largely compatible within fit 
uncertainty alone
→ notable exception of gluon at 
x > 0.1 → increased gluon 
contribution

Impact on parton distributions:Impact on parton distributions:
2D measurements2D measurements
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Impact on parton distributions:Impact on parton distributions:
3D measurements3D measurements

● Fits including the 3D dijet cross 
sections result in larger 
reduction of fit uncertainty

●  Distributions obtained with and 
without the CMS data appear 
largely compatible even within 
fit uncertainty alone
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QCD analysis @ NNLO andQCD analysis @ NNLO and  aass  estimationestimation
● Parameterisations used

● 2D: 

● 3D:

● 2D and 3D estimates agree well
● 3D measurements give slightly more precise value of as

Central values  from dijet measurements about 1 standard  deviation away 
from world average of αs(mZ) = 0.1179 ± 0.0009 and larger by about 1.6 

standard deviations than those for inclusive jets at 13 TeV
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Multi-jetsMulti-jets

Determination of strong coupling from Determination of strong coupling from 
transverse energy−energy correlationstransverse energy−energy correlations

13 TeV ATLAS data with 139 fb-1 
arXiv:2301.09351

JHEP 07 (2023) 85

  

ATEEC

TEEC
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MeasurementMeasurement
● High-energy multijets selected for scalar sum of pT of two leading 

jets HT2 > 1TeV (+ binned in HT2 to study scale dependence)
● Jets reconstructed using the anti-𝑘𝑡 algorithm with radius R=0.4
● Data are corrected for detector effects  
● Results are compared with MC predictions 

● Total uncertainty of the order of 2% for TEEC and 1% for ATEEC
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Comparison to theory calculationsComparison to theory calculations
● First-time comparison to NNLO pQCD calculations

● Significant reduction in theoretical uncertainties (scale uncertainty)
● Good agreement between data and theory → precision test of QCD at 

large momentum transfers Q
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Determining Determining aass  
● as changed in prediction 0.118 +- 0.001 → sensitivity to strong coupling

● 𝛼�(��) obtained from global fits to TEEC and ATEEC distributions 
using MMHT2014, CT14 and NNPDF 3.0 PDFs
→ state of the art theory calculations included, for the first time 
with NNLO three-jet corrections
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aass results results

● Final results with MMHT2014 PDF set
● Fits to extract as repeated separately for HT2 interval → determining 
as for each energy bin → observation of running of  as possible

● Drop by a factor of 4  of theoretical uncertainties ← inclusion of 
NNLO corrections to three-jet production

● TEEC and ATEEC values compatible within uncertainties
● TEEC value → better experimental precision (smaller stat. 

uncertainty)
●  ATEEC values → better theoretical precision

ATEEC

TEEC
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aass running running

good agreement between all measurements and prediction
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Multi-jetsMulti-jets

Beyond collinear PDFs: PB-TMDBeyond collinear PDFs: PB-TMD

13 TeV CMS data with 36.3 fb-1 
arXiv:2210.13557
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MotivationMotivation
● In pp collisions at LO → two  colliding  partons scatter → production of 2 high 

pT partons → jets
● Such jets strongly correlated in transverse plane

      → azimuthal angle difference between  them should be close to π
● Higher-order corrections result in decorrelation in azimuthal plane

      → angle significantly deviates from π
● Corrections due to:

● hard parton radiation,  calculated at matrix element level at NLO
● softer multiple parton radiation described by parton showers

Predictions available with initial-state parton shower is determined by parton-
branching PB-TMD densities
→ used in CASCADE → can be confronted with data 
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Jet multiplicitiesJet multiplicities
● Jets clustered with anti-kT algorithm 

with R=0.4 and |η| < 3.2 and pT > 20 GeV
● Dijet system with pT,1 > 200 GeV and    

pT,2 > 100 GeV  and |y1,2| < 2.5
● Additional jets with pT > 50 GeV and       

|y| < 2.5

● Differential cross section as a function 
of exclusive jet multiplicity
→  up to 7 jets
 in bins of pT of leading jet and 
azimuthal angle difference between two 
highest pT jets in dijet system

● Data compared with LO predictions 
→ MADGRAPH+PY8  shape doesn't 
agree 
→ MAD-GRAPH+CA3 and HERWIG++ 
agree
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Transverse momentum distributionsTransverse momentum distributions

● Transverse momentum distributions 
of four leading jets

● Data compared with LO predictions 
→ Only PYTHIA8 describes data 
reasonably well the  shape, except 
for pT

2 < 200 GeV
→ Shape of 3rd and 4th jet 
distributions not well described, 
PYTHIA8 overestimates rate

● Compared to MADGRAPH+PY8, 
MADGRAPH+CA3 gives significant 
improvement for shape three leading 
jets

● description of 4th jet is similar 
to MADGRAPH+PY8

leadingleading

subleadingsubleading
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Transverse momentum distributionsTransverse momentum distributions

● Transverse momentum distributions 
of four leading jets
→ theory bands: scale uncertainties

● Data compared with NLO predictions 
→  MG5aMC+Py8 (jj) and 
MG5aMC+CA3 (jj) describe 
normalization and shape offirst 
three jets rather well
→ MG5aMC+CA3 (jjj) describes 3rd 
and 4th jets well within uncertainties

First time calculations using PB-
TMDs together with MEs in 

MC@NLO frame are compared with 
jet measurements over wide range 
in transverse momentum and jet 

multiplicities
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Multi-jetsMulti-jets

Azimuthal correlations among jets Azimuthal correlations among jets 
and determination of strong coupling and determination of strong coupling 

13 TeV CMS data with 134 fb-1 
CMS-PAS-SMP-22-005
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Correlation measurementsCorrelation measurements
● Aim: as(Q) extraction of  from 

multijet at various energy scale
● Means: ratio observable R∆φ(pT), 

related to azimuthal correlations 
among jets measured as a 
function of jet pT 

criteria of neighboring jets
● At NLO radiation of a third hard 

parton allows 3-jet topology
● R directly proportional to as at 

lowest order
→ select 3+jet, reconstructed 
with anti-kT and R = 0.7
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Determination of strong coupling Determination of strong coupling 
●               sensitive to as   

Nominal result with 
NNPDF3.1 NLO
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Strong coupling and strong coupling runningStrong coupling and strong coupling running

● as  results using other PDF sets  
compatible among each other

● central result compatible with world 
average

● Expected from pQCD running of 
strong coupling observed
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Multi-jetsMulti-jets

Multijet event isotropies Multijet event isotropies 
with ATLAS detectorwith ATLAS detector

13 TeV CMS data with 140 fb-1 
arXiv:2305.16930
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Event isotropiesEvent isotropies
● Novel event shapes constructed to probe different aspects of QCD 

radiation in collider events
● Used for MC tuning

Event isotropy computed using the Energy-Mover’s Distance – application of ‘Earth-Mover’s 
Distance’ from computer vision to particle physics, using p-Wasserstein metric

● Reference geometries and observables used in this analysis

cylindrical     ring-like symmetry     128 
reference points
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● No perfect description from any model
→ NLO does better than LO

LO

balanced dijets more isotropic

Most inclusive measurement of IMost inclusive measurement of I22
RingRing

in events with Nin events with Njetjet ≥ 2 and H ≥ 2 and HT2T2  ≥ 500 GeV  ≥ 500 GeV
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balanced dijets isotropic multijets

Measurement of 1-IMeasurement of 1-I128 128 
RingRing

in events with Nin events with Njetjet ≥ 2 and H ≥ 2 and HT2T2  ≥ 500 GeV  ≥ 500 GeV

● Powheg+Pythia and Powheg+Herwig strongly disagree with other MCs
→ overestimate measurements for isotropic events, others underestimate it
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● None of the MC predictions describe data, except near distribution peak

Most inclusive measurement of 2D 1-IMost inclusive measurement of 2D 1-I1616
CylCyl

forfor N Njetjet ≥ 2 and H ≥ 2 and HT2T2  ≥ 500 GeV  ≥ 500 GeV

forward dijets Multijets evenly 
covering 
rapidity–azimuth 
plane (central & 
forward region)
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MC tuning toolMC tuning tool

● Available also measurements of event isotropy with
→ increasing Njets requirement
→ inclusive bins of both Njets  and HT2

No MC model offers satisfactory description of most variables or 
most regions → perfect tool for tuning

→ Rivet routine is available for these measurements 
→ measured data points have been made publicly available along with 
other auxiliary information for use in future MC tuning and other 
QCD studies
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Message to take homeMessage to take home
● Jets @ LHC provide multiple opportunities for probing fundamental 

properties of QCD

Beautiful differential and multi-dimensional measurements (up to 3D)
 
→ improving PDF uncertainties, especially for gluon
→ studies of PB-TMDs and their implementation in MCs 
→ high precision as measurements and studies (running) using various 
techniques

● Global QCD fits
● Transverse energy–energy correlation and asymmetries 

→ probing cylindrical and circular symmetries at hadron colliders using 
novel event shape variables → input to MC tuning 

Some of these done for the very first time 
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Additional slidesAdditional slides
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Comparison of measurement Comparison of measurement 
with predictions using various PDFswith predictions using various PDFs
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Impact of CMS jet data in QCD analysisImpact of CMS jet data in QCD analysis

● Precision of PDFs improved, especially for high-x gluon
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Comparison with NNLO predictions:Comparison with NNLO predictions:
2D measurements2D measurements

● Comparison with fixed-order theory predictions at NNLO, complemented by NP 
and electroweak corrections

● Predictions for different PDFs generally in agreement 
→ except for AMBP16 PDF - predicted cross sections are generally smaller 
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Why look at Why look at aass
  ??
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HERAPDF2.0 parameterisationHERAPDF2.0 parameterisation

● Additional constrains
●                         constrained by the quark-number sum rules and 

momentum sum rule
●

●                       at starting scale, fs = 0.4
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