Jet measurements @ LHC

Motivation and QCD analysis strategy

- Jets allow extensive tests on (p)QCD
- Together with HERA inclusive data they allow simultaneous fits of parton densities and $\alpha_{_{\!\!S}}$
 - \rightarrow QCD fits presented here follow HERAPDF strategy
 - \rightarrow QCD fits presented here done using xFitter

Inclusive jets at CMS @ 13 TeV

JHEP 2022 (2022) 35 (Addendum to JHEP 02 (2022) 142)

- 13 TeV inclusive jet cross sections
 already published: JHEP 02 (2022)
 142
 - \rightarrow also QCD analysis and as measurement <u>@ NNLO using k-factors</u>
- NEW: addendum with NNLO analysis using NNLO interpolation grids: JHEP 12 (2022) 035
 - \rightarrow presented here
 - NLOJET calculation to derive grids \rightarrow numerical integration uncertainty ~ 1%
 - In fit increased by a factor of 2
 → impact negligible

The most important impact on uncertainties on α_s determination

NEW

OLD

Simultaneous determination of PDFs and α_s

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1166 \pm 0.0014 \,({\rm fit}) \pm 0.0007 \,({\rm model}) \pm 0.0004 \,({\rm scale}) \pm 0.0001 \,({\rm param.})$

 $\alpha_{\rm S}(m_{\rm Z}) = 0.1170 \pm 0.0014$ (fit) ± 0.0007 (model) ± 0.0008 (scale) ± 0.0001 (param.)

Jets

(?)

LHC

5

 \rightarrow Improved precision compared to NNLO result with k-factors HERA+CMS Partial $\chi^2/N_{\rm dp}$ Data sets Good description of data by fit e^+p , $E_p = 920 \,\text{GeV}$ HERA I+II neutral current 376/332 results HERA I+II neutral current $e^+p, E_p = 820 \,\text{GeV}$ 60/63 $e^+p, E_p = 575 \,\text{GeV}$ HERA I+II neutral current 202/234 $e^+p, E_p = 460 \,\text{GeV}$ HERA I+II neutral current 209/187 $e^{-}p, E_{p} = 920 \,\text{GeV}$ HERA I+II neutral current 227/159HERA I+II charged current $e^+p, E_p = 920 \,\text{GeV}$ 46/39 $e^-p, E_p = 920 \,\text{GeV}$ 56/42HERA I+II charged current <u>These results supersede</u> these 0.0 < |y| < 0.58.6/22CMS inclusive jets 13 TeV 0.5 < |y| < 1.023/21obtained using k-factor technique 1.0 < |y| < 1.513/191.5 < |y| < 2.014/16Correlated χ^2 81 Global $\chi^2/N_{\rm dof}$ 1302/1118

DESY.

Dijets

13 TeV CMS data with 36.3 fb⁻¹ CMS PAS SMP-21-008

Jets

(?)

LHC

Cross section measurement

• Dijet cross section measured double- and triple-differentially in terms of properties of system formed by the two p_T -leading jets \rightarrow 2D: as a function of dijet invariant mass $m_{1,2}$ in five rapidity regions $|y_{max}|$

 $y_{\max} = \operatorname{sign}(|\max(y_1, y_2)| - |\min(y_1, y_2)|) \max(|y_1|, |y_2|)$

 \rightarrow 3D: m_{1,2} and ${\ \ \, \langle \, p_T^{\, } \rangle }_{1,2}$ in 15 rapidity bins, defined in terms of dijet rapidity separation y^{*} and total boost y_b of dijet system

$$y^* = \frac{1}{2}|y_1 - y_2|, \quad y_b = \frac{1}{2}|y_1 + y_2| \quad m_{1,2} = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}, \quad \langle p_T \rangle_{1,2} = \frac{1}{2}(p_{T,1} + p_{T,2})$$

- Illustration of dijet rapidity phase space, highlighting the relationship between variables used for 2D and 3D measurements
- Colored triangles are suggestive of orientation of two jets in different phase space regions in the laboratory frame (beam line runs horizontally)

Measured cross sections

• Unfolded cross sections for 2D and 3D measurements

CMS

- \rightarrow compared with fixed-order theory predictions at NNLO, complemented by NP and electroweak corrections

- Predictions for different PDFs generally in agreement \rightarrow except for AMBP16 PDF - predicted cross sections are generally smaller

Jets

(

LHC

 $\overline{\mathbf{x}}$

Comparison with NNLO predictions: 3D measurements

 Comparison with fixed-order theory predictions at NNLO, complemented by NP and electroweak corrections

- Predictions for different PDFs generally in agreement \rightarrow except for AMBP16 PDF predicted cross sections are generally smaller
- The same for 2D distributions (in back-up)

 $\overline{\mathbf{x}}$

Impact on parton distributions: 2D measurements

- Inclusion of the dijet measurements results in overall reduction of the PDF fit uncertainty
 - → In particular precision of gluon PDF is improved for parton momentum fractions x > 0.1Distributions obtained with and without the CMS data appear largely compatible within fit uncertainty alone → notable exception of gluon at x > 0.1 → increased gluon contribution

DESY.

Jets

(

LHC

Impact on parton distributions: 3D measurements

- Fits including the 3D dijet cross sections result in larger reduction of fit uncertainty
- Distributions obtained with and without the CMS data appear largely compatible even within fit uncertainty alone

Jets

(

LHC

QCD analysis @ NNLO and α_s estimation

Fitted data sets

Parameterisations used

PDF

CMS

HERA DIS + CMS dijets (2D)

HERA DIS + CMS dijets (3D)

$\begin{array}{ll} x\,g(x,\mu_{\rm F,0}^2) & A_{\rm g}\,x^{B_{\rm g}}\,(1-x)^{C_{\rm g}} & A_{\rm g}\,x^{B_{\rm g}}\,(1-x)^{C_{\rm g}} \\ x\,u_{\rm v}(x,\mu_{\rm F,0}^2) & A_{\rm u_v}\,x^{B_{\rm u_v}}(1-x)^{C_{\rm u_v}}\,(1+D_{\rm u_v}x+E_{\rm u_v}x^2) & A_{\rm u_v}\,x^{B_{\rm u_v}}(1-x)^{C_{\rm u_v}}\,(1+D_{\rm u_v}x) \\ x\,d_{\rm v}(x,\mu_{\rm F,0}^2) & A_{\rm d_v}\,x^{B_{\rm d_v}}\,(1-x)^{C_{\rm d_v}} & A_{\rm d_v}\,x^{B_{\rm d_v}}\,(1-x)^{C_{\rm d_v}} \\ x\,\overline{\rm U}(x,\mu_{\rm F,0}^2) & A_{\overline{\rm U}}\,x^{B_{\overline{\rm U}}}\,(1-x)^{C_{\overline{\rm U}}}\,(1+D_{\overline{\rm U}}x) & A_{\overline{\rm U}}\,x^{B_{\overline{\rm U}}}\,(1-x)^{C_{\overline{\rm U}}}\,(1+D_{\overline{\rm U}}x) \\ x\,\overline{\rm D}(x,\mu_{\rm F,0}^2) & A_{\overline{\rm D}}\,x^{B_{\overline{\rm D}}}\,(1-x)^{C_{\overline{\rm D}}} & A_{\overline{\rm D}}\,x^{B_{\overline{\rm D}}}\,(1-x)^{C_{\overline{\rm D}}}\,(1+D_{\overline{\rm D}}x) \end{array}$

- 2D: $\alpha_{\rm s}(m_{\rm Z}) = 0.1201 \pm 0.0012 \,(\text{fit}) \pm 0.0008 \,(\text{scale}) \pm 0.0008 \,(\text{model}) \pm 0.0005 \,(\text{param.})$ = 0.1201 ± 0.0021 (total).
- **3D**: $\alpha_{\rm s}(m_{\rm Z}) = 0.1201 \pm 0.0010 \, ({\rm fit}) \pm 0.0005 \, ({\rm scale}) \pm 0.0008 \, ({\rm model}) \pm 0.0006 \, ({\rm param.})$ = 0.1201 ± 0.0020 (total),
- 2D and 3D estimates agree well
- 3D measurements give slightly more precise value of as

Central values from dijet measurements about 1 standard deviation away from world average of as(mZ) = 0.1179 ± 0.0009 and larger by about 1.6 standard deviations than those for inclusive jets at 13 TeV $\overline{\mathbf{N}}$

Determination of strong coupling from transverse energy-energy correlations

> 13 TeV ATLAS data with 139 fb⁻¹ arXiv:2301.09351 JHEP 07 (2023) 85

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\varphi_{ij}) \qquad \mathsf{TEEC}$$

 $\frac{1}{\sigma} \frac{\mathrm{d}\Sigma^{\mathrm{asym}}}{\mathrm{d}\cos\phi} = \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \bigg|_{\pi-\phi}$

ATEEC

Measurement

- High-energy multijets selected for scalar sum of p_{T} of two leading jets H_{T2} > 1TeV (+ binned in H_{T2} to study scale dependence)
 - Jets reconstructed using the anti-kt algorithm with radius R=0.4
 - Data are corrected for detector effects
 - Results are compared with MC predictions
- Total uncertainty of the order of 2% for TEEC and 1% for ATEEC

(

L H C

ATLAS Comparison to theory calculations

- First-time comparison to NNLO pQCD calculations
 - Significant reduction in theoretical uncertainties (scale uncertainty)
 - Good agreement between data and theory \rightarrow precision test of QCD at large momentum transfers Q

• α_s changed in prediction 0.118 +- 0.001 \rightarrow sensitivity to strong coupling

$$\chi^2(\alpha_{\rm s},\vec{\lambda}) = \sum_{\rm bins} \frac{(x_i - F_i(\alpha_{\rm s},\vec{\lambda}))^2}{\Delta x_i^2 + \Delta \xi_i^2} + \sum_k \lambda_k^2 - F_i(\alpha_{\rm s},\vec{\lambda}) = \psi_i(\alpha_{\rm s}) \left(1 + \sum_k \lambda_k \sigma_k^{(i)}\right)$$

αs(mZ) obtained from global fits to TEEC and ATEEC distributions using MMHT2014, CT14 and NNPDF 3.0 PDFs
 → state of the art theory calculations included, for the first time with NNLO three-jet corrections

- Final results with MMHT2014 PDF set
- Fits to extract α_s repeated separately for H_{T2} interval \rightarrow determining α_s for each energy bin \rightarrow observation of running of α_s possible

$$\alpha_{\rm s}(m_Z) = 0.1175 \pm 0.0006 \,({\rm exp.})^{+0.0034}_{-0.0017}$$
 (theo.) TEEC
 $\alpha_{\rm s}(m_Z) = 0.1185 \pm 0.0009 \,({\rm exp.})^{+0.0025}_{-0.0012}$ (theo.). ATEEC

- TEEC and ATEEC values compatible within uncertainties
 - TEEC value \rightarrow better experimental precision (smaller stat. uncertainty)
 - ATEEC values \rightarrow better theoretical precision

good agreement between all measurements and prediction

Jets @ LHC

Multi-jets

Beyond collinear PDFs: PB-TMD

13 TeV CMS data with 36.3 fb⁻¹ arXiv:2210.13557

Motivation

- In pp collisions at LO \to two colliding partons scatter \to production of 2 high $p_{_T}$ partons \to jets
- Such jets strongly correlated in transverse plane
 - \rightarrow azimuthal angle difference between them should be close to π
- Higher-order corrections result in decorrelation in azimuthal plane \rightarrow angle significantly deviates from π
- Corrections due to:
 - hard parton radiation, calculated at matrix element level at NLO
 - softer multiple parton radiation described by parton showers

Predictions available with initial-state parton shower is determined by partonbranching PB-TMD densities

 \rightarrow used in CASCADE \rightarrow can be confronted with data

Generator	PDF	ME	Tune
PYTHIA8 [23]	NNPDF 2.3 (LO) [25]	$LO 2 \rightarrow 2$	CUETP8M1 [24]
MADGRAPH+Py8 4	NNPDF 2.3 (LO) [25]	$LO 2 \rightarrow 2, 3, 4$	CUETP8M1 [24]
MADGRAPH+CA3 [4]	PB-TMD set 2 (NLO) 1	LO 2 \rightarrow 2, 3, 4	—
HERWIG++ [26]	CTEQ6L1 (LO) [27]	$LO 2 \rightarrow 2$	CUETHppS1 [24]
MG5_aMC+Py8 (jj)	NNPDF 3.0 (NLO) [31]	NLO $2 \rightarrow 2$	CUETP8M1 [24]
MG5_aMC+CA3 (jj)	PB-TMD set 2 (NLO) [NLO $2 \rightarrow 2$	—
MG5_aMC+CA3 (jjj)	PB-TMD set 2 (NLO) [1]	NLO $2 \rightarrow 3$	—

Jets

(

LHC

Jet multiplicities

- Jets clustered with anti- k_{τ} algorithm with R=0.4 and $|\eta| < 3.2$ and $p_{\tau} > 20$ GeV Dijet system with $p_{\tau,1} > 200$ GeV and $p_{\tau,2} > 100$ GeV and $|y^{1,2}| < 2.5$
- Additional jets with $p_{\tau} > 50$ GeV and |y| < 2.5
- $\begin{array}{l} \mbox{Differential cross section as a function} \\ \mbox{of exclusive jet multiplicity} \\ \mbox{\rightarrow up to 7 jets} \\ \mbox{in bins of p_T of leading jet and} \\ \mbox{azimuthal angle difference between two} \\ \mbox{highest p_T jets in dijet system} \end{array}$
- Data compared with LO predictions → MADGRAPH+PY8 shape doesn't agree
 - \rightarrow MAD-GRAPH+CA3 and HERWIG++

agree

Transverse momentum distributions

- Transverse momentum distributions of four leading jets
- Data compared with LO predictions \rightarrow Only PYTHIA8 describes data reasonably well the shape, except for $p_T^2 < 200 \text{ GeV}$
- → Shape of 3rd and 4th jet
 distributions not well described,
 PYTHIA8 overestimates rate
 Compared to MADGRAPH+PY8,
 MADGRAPH+CA3 gives significant
 improvement for shape three leading
 jets
 - description of 4th jet is similar to MADGRAPH+PY8

Jets

(

L H C

Transverse momentum distributions

Jets @ LHC

CMS

- Transverse momentum distributions of four leading jets
- \rightarrow theory bands: scale uncertainties
- Data compared with NLO predictions → MG5aMC+Py8 (jj) and MG5aMC+CA3 (jj) describe normalization and shape offirst three jets rather well → MG5aMC+CA3 (jjj) describes 3^{rd} and 4^{th} jets well within uncertainties

First time calculations using PB-TMDs together with MEs in MC@NLO frame are compared with jet measurements over wide range in transverse momentum and jet multiplicities

Multi-jets

Azimuthal correlations among jets and determination of strong coupling

13 TeV CMS data with 134 fb⁻¹ CMS-PAS-SMP-22-005

Correlation measurements

<u>Aim</u>: α_s(Q) extraction of from multijet at various energy scale
 <u>Means</u>: ratio observable RΔφ(pT), related to azimuthal correlations among jets measured as a function of jet p_T

 $R_{\Delta\phi}(p_{\rm T}) = \frac{\sum_{i=1}^{N_{\rm jet}(p_{\rm T})} N_{\rm nbr}^{(i)}(\Delta\phi, p_{\rm Tmin}^{\rm nbr})}{N_{\rm jet}(p_{\rm T})}$

criteria of neighboring jets /

- At NLO radiation of a third hard parton allows 3-jet topology
- R directly proportional to α_s at lowest order
 → select 3+jet, reconstructed
 - with anti- k_{T} and R = 0.7

Wichmann @ QCD@LHC23

 $\overline{\mathbf{x}}$

Jets

© LHC

Strong coupling and strong coupling running

- α_s results using other PDF sets
 compatible among each other
- central result compatible with world average
- Expected from pQCD running of strong coupling observed

 $\alpha_S(M_Z) = 0.1177 \pm 0.0013 \,(\exp)^{+0.0116}_{-0.0073}(\text{th}) = 0.1177^{+0.011}_{-0.0077}$

DESY.

27

Jets

(

LHC

Multi-jets

Multijet event isotropies with ATLAS detector

13 TeV CMS data with 140 fb⁻¹ arXiv:2305.16930

Event isotropies

- Novel event shapes constructed to probe different aspects of QCD radiation in collider events
- Used for MC tuning
 - Event isotropy computed using the Energy-Mover's Distance application of 'Earth-Mover's Distance' from computer vision to particle physics, using p-Wasserstein metric
- Reference geometries and observables used in this analysis

• No perfect description from any model \rightarrow NLO does better than LO

DESY.

 $\overline{\mathbf{x}}$

Wichmann @

QCD@LHC23

Jets

S O LHC

Powheg+Pythia and Powheg+Herwig strongly disagree with other MCs \rightarrow overestimate measurements for isotropic events, others underestimate it Jets

(

HC

 $\overline{\mathbf{x}}$

Wichmann @

None of the MC predictions describe data, except near distribution peak

DESY.

- Available also measurements of event isotropy with
 - \rightarrow increasing N_{jets} requirement
 - \rightarrow inclusive bins of both $N_{jets}~~and~H_{T2}$

No MC model offers satisfactory description of most variables or most regions \rightarrow perfect tool for tuning

 \rightarrow Rivet routine is available for these measurements \rightarrow measured data points have been made publicly available along with other auxiliary information for use in future MC tuning and other QCD studies

Jets @ LHC

Message to take home

 Jets @ LHC provide multiple opportunities for probing fundamental properties of QCD

Beautiful differential and multi-dimensional measurements (up to 3D)

- \rightarrow improving PDF uncertainties, especially for gluon
- \rightarrow studies of PB-TMDs and their implementation in MCs
- - Global QCD fits
- Transverse energy-energy correlation and asymmetries
- \rightarrow probing cylindrical and circular symmetries at hadron colliders using novel event shape variables \rightarrow input to MC tuning

Some of these done for the very first time

Additional slides

Comparison of measurement with predictions using various PDFs

Impact of CMS jet data in QCD analysis

CMS

• Precision of PDFs improved, especially for high-x gluon

Comparison with NNLO predictions: 2D measurements

 Comparison with fixed-order theory predictions at NNLO, complemented by NP and electroweak corrections

Predictions for different PDFs generally in agreement
 → except for AMBP16 PDF - predicted cross sections are generally smaller

DESY.

 $\overline{\mathbf{x}}$

Wichmann

(?)

QCD@LHC23

Jets

(

LHC

Why look at as?

 αs is least known coupling constant;

needed to constrain GUT scenarios; cross section predictions, including Higgs;

. . .

Gluon-Fusion Higgs production, LHC 13 TeV

PDFs and/or **αs** limit: precision SM and Higgs measurements, BSM searches,

PDG21: αs = 0.1175 ± 0.0010 (w/o lattice)

what is true α s central value and uncertainty?

new precise determinations have important role to play

$$\begin{aligned} & \text{HERAPDF2.0 parameterisation} \\ & xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}) \\ & xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}}, \\ & xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+E_{u_{v}}x^{2}\right), \\ & xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}, \\ & x\overline{U}(x) = A_{\overline{U}}x^{B_{\overline{U}}}(1-x)^{C_{\overline{U}}}\left(1+D_{\overline{U}}x\right), \\ & x\overline{D}(x) = A_{\overline{D}}x^{B_{\overline{D}}}(1-x)^{C_{\overline{D}}}. \end{aligned}$$

- Additional constrains
 - $A_{u_v}, A_{d_v}, A_{g_{\perp}}$ constrained by the quark-number sum rules and momentum sum rule
 - $\bullet B_{\overline{U}} = B_{\overline{D}}$
 - $x\overline{s} = f_s x\overline{D}$ at starting scale, $f_s = 0.4$

Jets @ LHC

K. Wichmann @ QCD@LHC23

Jets

(

LHC

DESY.

TMDs-what is it? [Phys. Lett. B 772 (2017), 446-451], [JHEP 01 (2018), 070]

- TMDs : Transverse Momentum Dependent parton distributions
- extended collinear PDFs : transverse momentum effects from intrinsic k_t + evolution

Why TMD?

- fixed order calculations are limited in application
- small transverse momentum & small-x phenomena need TMDs

New approach: Parton Branching (PB) method

- evolution of TMDs and collinear PDFs at LO, NLO & NNLO
- automatically contain soft gluon resummation (at NLL identical to CSS approach)
- unique feature: backward evolution fully determines the TMD shower
- very successful for description of inclusive processes
 [Phys. Rev. D 100 (2019) no.7, 074027], [Eur. Phys. J. C 80 (2020) no.7, 598]

Two angular ordered sets with different choice of scale in α_s :

- set1: α_s (evolution scale)
- set2: α_s (transverse momentum): similar quality as the NLO + NNLL prediction in $p_t(z)$ description

Sara Taheri Monfared (DESY)

PB TMDs