Resummation of jet vetoes

Jonathan Gaunt (U. of Manchester)

Based on: Gangal, JG, Stahlhofen, Tackmann, arXiv:1608.01999 Gangal, JG, Tackmann, Vryonidou, arXiv:2003.04323 Abreu, JG, Monni, Szafron, arXiv:2204.02987 Abreu, JG, Monni, Rottoli, Szafron, arXiv:2207.07037

QCD@LHC 2023 Durham, 5th September 2023

The University of Manchester

JET VETOES

W

h

2

Common tool at LHC to separate different hard processes, reduce backgrounds. Example:

Study Higgs coupling to W bosons

Also produces two Ws, plus bottom quarks that decay into jets

Background:

000000000

To enhance signal/background, enforce **veto** on energetic jets. When scale of veto $\mathcal{T} \leq$ scale of hard process Q, double logs of Q/T appear in perturbative series and must be resummed.

From talk by A. Banfi

DIFFERENT JET VETOES

Traditional jet veto: apply uniform cut on p_T of jets, regardless of rapidity

Can also have a jet veto that is tightest at central rapidity, and becomes looser as one goes forward

$$\mathcal{T}_{B,j} = m_{Tj}e^{-|y_j - Y|}$$
$$\mathcal{T}_{C,j} = \frac{m_{Tj}}{2\cosh(y_j - Y)}$$

Tackmann, Walsh, Zuberi, arXiv:1206.4312 Gangal, Stahlhofen, Tackmann, arXiv:1412.4792

WHY ALTERNATIVE JET VETOES?

Why consider such alternative jet vetoes?

 Contamination from pile-up predominantly in forward region of detector, difficult to disentangle due to no tracking.

Michel, Pietrulewicz, Tackmann, arXiv:1810.12911

- Resummation structure very different. Technically: SCET_{I} observable rather than $\text{SCET}_{\text{II}}.$
- Different way to divide cross section into jet bins.

WHY ALTERNATIVE JET VETOES?

Why consider such alternative jet vetoes?

 $\mathcal{T}_{B/C,i}$ is more inclusive (tight veto over smaller range) \rightarrow less strongly impacted by UE and hadronisation than p_{Ti} for same central veto

Gangal, JG, Tackmann, Vryonidou, arXiv:2003.04323

Underlying Event

Hadronisation

FACTORISATION FOR $T_{B/Cj}$

Consider colour singlet production with $\mathcal{T}_{B/Cj}$ veto. For $\mathcal{T}_{B/Cj} \ll Q$, cross section factorises: $\frac{d\sigma_0}{dY} (\mathcal{T}_j < \mathcal{T}^{cut}) = \sigma_B H(Q,\mu) B_i(Q\mathcal{T}^{cut}, x_a, R,\mu) B_i(Q\mathcal{T}^{cut}, x_b, R,\mu)$ $\times S(\mathcal{T}^{cut}, R, \mu)$ Tackmann, Walsh, Zuberi, arXiv:1206.4312

For $\mathcal{T}_{B/Cj} \gg \Lambda_{QCD}$ we also have:

Figure from Stewart, Tackmann, Waalewijn, arXiv:0910.0467

Perturbative coefficient

 $B_i(Q\mathcal{T}^{cut}, x, R, \mu) = \mathfrak{T}_{ij}(Q\mathcal{T}^{cut}, x, R, \mu) \otimes_x f_j(x, \mu)$

Usual PDFs

6

$$\ln^2\left(\frac{\mathcal{T}^{cut}}{Q}\right) = 2\ln^2\left(\frac{Q}{\mu}\right) - \ln^2\left(\frac{\mathcal{T}^{cut}Q}{\mu^2}\right) + 2\ln^2\left(\frac{\mathcal{T}^{cut}}{\mu}\right)$$

RESUMMATION FOR $T_{B/Cj}$

7

Resum logs using RGEs of different pieces:

$$\mu \frac{d}{d\mu} \ln \left[B_g(t^{cut}, x, R, \mu) \right] = \gamma_B^g(t^{cut}, R, \mu)$$
Anomalous dimension
$$\gamma_B^g(t^{cut}, R, \mu) = -2\Gamma_{cusp}^g[\alpha_s(\mu)] \ln \frac{t^{cut}}{\mu^2} + \gamma_B^g[\alpha_s(\mu), R]$$
Non-cusp anomalous dimension

RESUMMATION FOR p_{Tj}

Factorisation for p_{Ti} is slightly different:

Becher, Neubert, arXiv:1205.3806 Becher, Neubert, Rothen, arXiv:1307.0025 Tackmann, Walsh, Zuberi, arXiv:1206.4312 Stewart, Tackmann, Walsh, Zuberi, arXiv:1307.1808

$$\frac{d\sigma_0}{dY} (p_{Tj} < p_T^{cut}) = \sigma_B H(Q, \mu) B_i (x_a, Q, p_T^{cut}, R, \mu, \nu) B_i (x_b, Q, p_T^{cut}, R, \mu, \nu)$$
$$\times S(p_T^{cut}, R, \mu, \nu)$$

Rapidity regularisation scale

RESUMMATION PRECISION

9

To achieve higher resummation precision, require B, H, S and γ s at higher orders.

GOAL: State-of-the-art **NNLL'** (partial N³LL) precision :

	B, H, S	<i>ΥΗ,Β,S</i> , <i>Υ</i> ν	Γ _{cusp}	β	
NNLL'	NNLO	2-loop	3-loop	3-loop	
		Moc [hep Korc Nuc 364	ch, Vermaseren, Vog o-ph/0403192] chemsky, Radyushkir I. Phys. B283 (1987) 3	gt, Tarasov, Vladimirov, Zh Lett. B 93 (1980) 429–43	arkov, Phy 12. p-ph/9302

Must compute these via two-loop computations of B,S: this talk!

CALCULATION: APPROACH

Approach here: direct computation, as much of it analytic as possible.

Full *R* dependence difficult to obtain analytically – we compute expansion in *R*.

Only need first few terms for commonly used R values < 1

 $\mathbb{F}(R) = -\frac{1}{2} + \ln R - \frac{1}{6} \left(\frac{R}{2}\right)^2 - \frac{1}{90} \left(\frac{R}{2}\right)^4 - \frac{1}{567} \left(\frac{R}{2}\right)^6 + \mathcal{O}(R^8)$ $\mathcal{U}_B(R) = -\left(\frac{R}{2}\right)^2 - \frac{64}{45\pi} \left(\frac{R}{2}\right)^3 - \frac{1}{9} \left(\frac{R}{2}\right)^4 + \frac{1}{135} \left(\frac{R}{2}\right)^6 - \frac{1}{945} \left(\frac{R}{2}\right)^8 + \mathcal{O}(R^{10})$ $\mathcal{U}_C(R) = -2 \left(\frac{R}{2}\right)^2 - \frac{2}{9} \left(\frac{R}{2}\right)^4 + \frac{2}{135} \left(\frac{R}{2}\right)^6 - \frac{2}{945} \left(\frac{R}{2}\right)^8 + \mathcal{O}(R^{10}) .$ Gangal, JG, Stahlhofen, Tackmann, arXiv:1608.01999

For p_{Tj} : Numerical extraction from NNLO calculations was performed in Stewart, Tackmann, Walsh, Zuberi, [arXiv:1307.1808]. Direct numerical computation also recently available Bell, Rahn, Talbert, 1812.08690, arXiv:2004.08396, Bell, Brune, Das, Wald, arXiv:2207.05578 [see talk by Brune]

CALCULATION: APPROACH

Strategy: compute difference from a simpler reference measurement, which however coincides with jet veto for one emission

For $\mathcal{T}_{B/Cj}$: $B_{jet}(m_H \mathcal{T}^{cut}, x, R, \mu) = B_{ref}(m_H \mathcal{T}^{cut}, x, \mu) + \Delta B(m_H \mathcal{T}^{cut}, x, R, \mu)$

Reference measurement: Beam thrust/0-jettiness

Known analytically to two loops

JG, Stahlhofen, Tackmann, JHEP 1404 (2014) 113, JHEP 1408 (2014) 020 (and now to three loops: Ebert, Mistlberger, Vita, arXiv:2006.03056, Baranowski et al, arXiv:2211.05722)

 $\Delta B = 0$ for one emission – only need double-real graphs, most of UV/IR divergences absent.

11

For
$$p_{Tj}$$
: $B_{jet}(x, Q, p_T^{cut}, R, \mu, \nu) = B_{ref}(x, Q, p_T^{cut}, R, \mu, \nu) + \Delta B(x, Q, p_T^{cut}, R, \mu, \nu)$

Reference measurement: Vector transverse momentum sum of all QCD radiation. Known up to 3 loops. Luo et al., arXiv:1912.05778, Ebert, Mistlberger, Vita, arXiv:2006.05329

STRUCTURE OF BEAM FUNCTION

Structure of (bare) ΔB for $\mathcal{T}_{B/Cj}$:

$$\Delta B(t^{cut}, x, R) = \left(\frac{\alpha_s}{\pi}\right)^2 \left(\frac{\mu^2}{t^{cut}}\right)^{2\epsilon} \left[\delta(1-x)\left\{\frac{1}{\epsilon}[\#\log(R) + \# + \#R^2 + \#R^4 + \cdots]\right\}\right. \\ \left. + [\#\log^2(R) + \#\log(R) + \# + \#R^2 + \#R^2\log(R) + \#R^4 + \cdots]\right\} \\ \left. + \left(\frac{1}{1-x}\right)_+ \{\#(x)\log(R) + h(x) + \#(x)R^2 + \#(x)R^4 + \cdots\} \\ \left. + \left\{\frac{1}{\epsilon^2}\#(x) + \frac{1}{\epsilon}(\#(x) + \#(x)R^2) + \#(x)R^2 \\ + \#(x)R^2\log(R) + \#(x)R^4 + \cdots\}\right\}\right]$$

Coefficients in blue (and for certain cases purple) obtained analytically. Leaves three 1D functions: f(R), g(R), h(x), which were fitted from numerical evaluations of $\Delta B(t^{cut}, x, R)$. Gangal, JG, Stahlhofen, Tackmann, arXiv:1608.01999

For p_{Tj} calculation, equivalent of f(R) and g(R) obtained analytically up to terms of order R^8 , and R-dependence of $\left(\frac{1}{1-x}\right)_+$ piece obtained up to R^8

Abreu, JG, Monni, Szafron, arXiv:2204.02987 Abreu, JG, Monni, Rottoli, Szafron, arXiv:2207.07037

CHECKS: NUMERICAL CALCULATION

In p_{Tj} case, analytic results cross-checked with a completely separate numerical computation retaining full R dependence:

14

Can cross-check two-loop beam and soft functions by using them to do an NNLO computation for the production of a colour singlet *X*:

NNLO 'slicing' calculation

Catani, Grazzini, hep-ph/0703012, Boughezal, Focke, Liu, Petriello, arXiv:1504.02131, JG, Stahlhofen, Tackmann, Walsh, arXiv:1505.04794, ...

CHECKS: SLICING

15

16

HIGGS WITH $T_{B/Cj}$ VETO

W AND Z WITH p_{Tj} VETO

Implementation of p_{Tj} resummation in MCFM, using our two-loop B and S Campbell, Ellis, Neumann, Seth, arXiv:2301.11768

 $y_{cut} = 4.4, p_T^{cut} = 30 \text{ GeV}$

WZ AND WW WITH p_{Tj} VETO

 $y_{cut} = 4.5, p_T^{cut} = 25 \text{ GeV}$

ATLAS WZ cuts, noticeable effect of resummation. More data needed.

CMS WZ cuts: p_{Tj} cut imposed over more limited rapidity range. Not accounted for in theory prediction.

For CMS WW measurement, important impact of resummation

OTHER RESULTS WITH WITH p_{Tj} VETO

New 'flavour' of GENEVA using resummation of jet veto logs to achieve NNLO + PS matching (incorporates info from twoloop B and S). Compared to ATLAS and CMS WW data:

Gavardi, Lim, Alioli, Tackmann, [arXiv:2308.11577]

Various results at NNLL(') +(N)NNLO for

Higgs production: Stewart, Tackmann, Walsh, Zuberi [arXiv:1307.1808], Becher, Neubert, Rothen [arXiv:1307.0025], Banfi, Monni, Salam, Zanderighi [arXiv:1206.4998] (+Z production), Banfi, Caola, Dreyer, Monni, Salam, Zanderighi, Dulat [arXiv:1511.02886]

SUMMARY

- Two loop beam and soft functions computed for production of a colourless state in the presence of various jet vetoes: T_{Bj} , T_{Cj} and p_{Tj} .
- Computed mostly analytically as an expansion in *R*. Checked using numerical computation + NNLO slicing calculation.
- Enables NNLL' resummed computations. For full N³LL missing ingredient is a 3-loop rapidity/non-cusp anomalous dimension – WIP.