Extraction of unpolarized TMDPDF from global fit of Drell-Yan data at N4LL

ART23

Valentin Moos, Ignazio Scimemi, Alexey Vladimirov, Pia Zurita

based on: [2305.07473]

Universität Regensburg

크다 시크다

Outline

1 Technicalities and theory

2 Included data

Image: A math black

Technicalities and Theory

Main definitions

▶ TMD distributions and operators

 $\Phi_{q\leftarrow h}^{[\Gamma]}(x,b) = \int \frac{dz}{2\pi} e^{-ixzp_+} \langle P, S | \,\overline{q} \, [zn+b, \mp\infty+b] \,\Gamma \left[\mp\infty, 0\right] q | P, S \rangle$

- ▶ variables
 - $\triangleright x$ is Bjorken-x
 - ▶ b is the transverse (to scattering plane) distance $\sim p_T^{-1}$
 - ▶ n is a light-cone vector associated to the hadrons large momentum P
 - Γ ∈ {γ⁺, γ⁺γ₅, iσ_T^{α+}γ₅} the mainly contributing gamma structures
 [x, y] is a straight Wilson line
 - Infinities depend on the Process: +/- in SIDIS/DY

8 TMD distributions

The parametrized forms of the TMD distributions include 8 functions, e.g. the unpolarized (f_1) , Sivers (f_{1T}^{\perp}) pretzelosity h_{1T}^{\perp} distribution.

$$\begin{split} \Phi_{q \leftarrow h}^{[\gamma^+]}(x,b) &= f_1(x,b) + i\epsilon_T^{\mu\nu} b_\mu s_{T\nu} M f_{1T}^{\perp}(x,b) \\ \Phi_{q \leftarrow h}^{[\gamma^+\gamma_5]}(x,b) &= \lambda g_{1L}(x,b) + i b_\mu s_T^{\mu} M g_{1T}(x,b) \\ \Phi_{q \leftarrow h}^{[\sigma^{\alpha+}\gamma_5]}(x,b) &= s_T^{\alpha} h_1(x,b) - i \lambda b^{\alpha} M h_{1L}^{\perp}(x,b) + i \epsilon_T^{\alpha\mu} b_\mu M h_1^{\perp}(x,b) \\ &- \frac{M^2 b^2}{2} \left(\frac{g_T^{\alpha\mu}}{2} - \frac{b^{\alpha} b^{\mu}}{b^2} \right) s_{T\mu} h_{1T}^{\perp}(x,b) \end{split}$$

Valentin Moos

virtual photon

virtual W Boson

★ E → _ E

ъ

▶ unpolarized distribution f_1 enters for q, \bar{q}

프 🖌 🔺 프 🕨

▶ unpolarized distribution f₁ enters for q, q → compute dσ/dydq_T using artemide

프 🖌 🔺 프 🕨

- ▶ unpolarized distribution f_1 enters for q, \overline{q}
- compute $\frac{d\sigma}{dydq_T^2}$ using artemide
- ▶ comapare to data (fit!) to determine NP parameters

물 > < 물 > 물

Our model: distribution's shape

Parametrization of TMDPDF:

$$f_{1,f}(x,b) = \int_x^1 \frac{dy}{y} \sum_{f'} C_{f \to f'}(y, \mathbf{L}, a_s) q_{f'}\left(\frac{x}{y}\right) f_{\mathrm{NP}}^f(x, b)$$

depend on factorization scale $\mu_{OPE} = 2 \operatorname{GeV} + \frac{2 \exp^{-\gamma_E}}{b}$

$$f_{1,f}(x,b) \equiv f_{1,f}(x,b,\mu,\zeta_{\mu})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの

Our model: hard scale evolution Evolution equation:

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

▶ perturbative series (a_s, L_μ)

$$\mathcal{D}_{\text{small-b}} = \sum_{n,k=0}^{\infty,n} a_s^n \mathbf{L}_{\mu}^k d^{(n,k)} \quad \Gamma_{\text{cusp}}(\mu) = \sum_{n=0}^{\infty} a_s^{n+1} \Gamma_n \quad \gamma_V(\mu) = \sum_{n=1}^{\infty} a_s^n \gamma_n$$

In our fit, we truncate the series after the power(coefficient):

$\Gamma_{\rm cusp}$	γ_V	β	$\mathcal{D}_{\mathrm{small-b}}$	$C_{f \to f'}$	C_V	PDF
$a_s^5 (\Gamma_4)$	$a_s^4 (\gamma_4)$	a_s^5 (β_3)	$a_s^4 (d^{(4,0)})$	$a_s^3 \ (C_{f \to f'}^{[3]})$	a_s^4	NNLO

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●□= ◇Q@

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

▶ Ansatz for NP part:

$$\mathcal{D}_{\mathrm{NP}}(b) = c_0 b b^* + c_1 b b^* \ln\left(rac{b^*}{B_{\mathrm{NP}}}
ight)$$

Image: A math black

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

▶ Ansatz for NP part:

$$\mathcal{D}_{\rm NP}(b) = c_0 b b^* + c_1 b b^* \ln\left(\frac{b^*}{B_{\rm NP}}\right)$$

 adds 3 parameters for TMDPDF scale evolution

물 수 문 사 문 남

Parametrization of TMD Evolution:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu^*) + \int_{\mu^*}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}(\mu') + \mathcal{D}_{\text{NP}}(b)$$

▶ Ansatz for NP part:

$$\mathcal{D}_{\rm NP}(b) = c_0 b b^* + c_1 b b^* \ln\left(\frac{b^*}{B_{\rm NP}}\right)$$

 adds 3 parameters for TMDPDF scale evolution

$$+ 2 \times 5 (u, \overline{u}, d, \overline{d}, sea)$$

$$= 13$$
 parameters to fit.

물 수 문 사 문 남

collinear PDF choice

Param.	MSHT20	HERA2.0	NNPDF3.1	CT18
κ_1^u	0.12	0.11	0.28	0.05
κ_2^u	0.32	8.15	2.58	0.9

- obtained parameters stronly depend on PDF
- collinear PDF is base layer of TMDPDF
- ► we choose MSHT20 as the strongest candidate in JHEP 10 (2022) 118

→ ∃ →

included Data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで

13 / 29

ELE DOG

イロト イヨト イヨト

Valentin Moos

- ▶ high resolution scales up to 1 TeV
- including W production in DY
- 627 datapoints included 457 (SV19), 484 (MAP)

3 N A 3 N

▶ q^{μ} : hard processes total momentum, $Q^2 = q^2$

▶ q_T : Its transverse component

$$\blacktriangleright \ \delta^2 = \frac{q_T^2}{Q^2}$$

 σ: (uncorrelated.) Standard deviation (datapoint)

◆□▶ ◆□▶ ◆三▶ ★三▶ 三回日 のへの

▶ q^{μ} : hard processes total momentum, $Q^2 = q^2$

Criteria to include datapoint:

▶ q_T : Its transverse component

$$\blacktriangleright \ \delta^2 = \frac{q_T^2}{Q^2}$$

 σ: (uncorrelated.) Standard deviation (datapoint)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▶ q^{μ} : hard processes total momentum, $Q^2 = q^2$

▶ q_T : Its transverse component

$$\blacktriangleright \ \delta^2 = \frac{q_T^2}{Q^2}$$

 σ: (uncorrelated.) Standard deviation (datapoint)

Criteria to include datapoint:

•
$$\delta < 0.25$$

- ▶ q^{μ} : hard processes total momentum, $Q^2 = q^2$
- ▶ q_T : Its transverse component

$$\blacktriangleright \ \delta^2 = \frac{q_T^2}{Q^2}$$

 σ: (uncorrelated.) Standard deviation (datapoint)

Criteria to include datapoint:

$$\blacktriangleright \ \delta < 0.25$$

▶ at least **one** of the following:

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回 のへの

- $\ \, \mathbf{0} \ \, q_T < 10 \, GeV$
- $\textcircled{2} \ \delta^2/\sigma < 2$

Results

χ^2 results

dataset	$N_{\rm pt}$	$\chi_D^2/N_{\rm pt}$	$\chi_{\lambda}^2/N_{\rm pt}$	$\chi^2/N_{\rm pt}$	$\langle d/\sigma \rangle$
CDF (run1)	33	0.51	0.16	$0.67^{+0.05}_{-0.03}$	9.1%
CDF (run2)	45	1.58	0.11	$1.59^{+0.26}_{-0.14}$	4.0%
CDF (W-boson)	6	0.33	0.00	$0.33^{+0.01}_{-0.01}$	-
D0 (run1)	16	0.69	0.00	$0.69^{+0.08}_{-0.03}$	7.1%
D0 (run2)	13	2.16	0.16	$2.32^{+0.40}_{-0.32}$	-
D0 (W-boson)	7	2.39	0.00	$2.39^{+0.20}_{-0.18}$	-
ATLAS (8TeV, $Q \sim M_Z$)	30	1.60	0.49	$2.09^{+1.09}_{-0.35}$	4.1%
ATLAS (8TeV)	14	1.11	0.11	$1.22^{+0.47}_{-0.21}$	2.3%
ATLAS (13 TeV)	5	1.94	1.75	$3.70^{+16.5}_{-2.24}$	-
CMS (7TeV)	8	1.30	0.00	$1.30^{+0.03}_{-0.01}$	-
CMS (8TeV)	8	0.79	0.00	$0.78^{+0.02}_{-0.01}$	-
CMS (13 TeV, $Q \sim M_Z$)	64	0.63	0.24	$0.86^{+0.23}_{-0.11}$	4.3%
CMS (13 TeV, $Q > M_Z$)	33	0.73	0.12	$0.92^{+0.40}_{-0.15}$	1.0%

χ^2 results

dataset	$N_{\rm pt}$	$\chi_D^2/N_{\rm pt}$	$\chi_{\lambda}^2/N_{\rm pt}$	$\chi^2/N_{\rm pt}$	$\langle d/\sigma \rangle$
LHCb (7 TeV)	10	1.21	0.56	$1.77^{+0.53}_{-0.31}$	5.0%
LHCb (8 TeV)	9	0.77	0.78	$1.55^{+0.94}_{-0.50}$	4.3%
LHCb (13 TeV)	49	1.07	0.10	$1.18^{+0.25}_{-0.01}$	4.5%
PHENIX	3	0.29	0.12	$0.42^{+0.15}_{-0.10}$	10.%
STAR	11	1.91	0.28	$2.19^{+0.51}_{-0.31}$	15.%
E288 (200)	43	0.31	0.07	$0.38^{+0.12}_{-0.05}$	44.%
E288 (300)	53	0.36	0.07	$0.43^{+0.08}_{-0.04}$	48.%
E288 (400)	79	0.37	0.05	$0.48^{+0.11}_{-0.03}$	48.%
E772	35	0.87	0.21	$1.08^{+0.08}_{-0.05}$	27.%
E605	53	0.18	0.21	$0.39^{+0.03}_{-0.00}$	49.%
Total	627	0.79	0.17	$0.96\substack{+0.09\\-0.01}$	

Data at $\sqrt{s} = 13$ TeV

- ∢ ≣ →

Data at $\sqrt{s} = 13$ TeV

A 3 >

Data at $\sqrt{s} = 1.8$ TeV

3

★ Ξ → ★ Ξ →

A D > A D >
 A

Data at $\sqrt{s} = 19, 23$ and 27 GeV

W Boson ($\sqrt{s} = 1.8$ TeV)

TMDPDF distributions visualized

• ART23 (us) MSHT20

• SV19 NNPDF3.1

프 🖌 🔺 프 🕨

3 2

23 / 29

u TMDPDF vs. x and b

 $24 \ / \ 29$
\overline{u} TMDPDF vs. x and b

25 / 29

• MSHT20 extraction • NNPDF3.1 extraction

A 3 >

Collins-Soper kernel

CS Kernels in comparison

B >

Scale variation

Variation of the 3 scales μ, μ^*, μ_{OPE} with factors $\frac{1}{2}$, 1, 2

$$\Delta d\sigma = \max_{i} \left(|d\sigma_{i} - d\sigma| \right)$$

• overall reducing (higher orders) • minor oscillations

Recapitulation & Outlook

▶ A first of a kind N4LO extraction of TMDPDFs

▶ overall good prescription of data

Outlook:

- ► Extension: DY+SIDIS fit
- ▶ Pion TMDPDF fit
- ► Impact Studies for EIC

- E - F

PDF uncertainty impact

→ ∃→

d TMDPDF vs. x and b

\overline{d} TMDPDF vs. x and b

sea TMDPDF vs. x and b

ъ

• 3 >

A 3 >

Valentin Moos

• 3 >

TMDPDF distributions visualized

• ART23 (us) MSHT20

• SV19 NNPDF31

프 🖌 🛪 프 🕨

고 노

11/35

TMDPDF distributions visualized

• ART23 (us) MSHT20

• SV19 NNPDF31

ELE DOG

12/35

★ Ξ → < Ξ →</p>

TMDPDF distributions visualized

• ART23 (us) MSHT20

• SV19 NNPDF31

= 200

13/35

-

→ E → < E →</p>

프 🖌 🔺 프 🕨

글 > - < 글 >

- ∢ ≣ →

- ∢ ≣ →

3 1 4 3 1

- E - F

20/35

21 / 35

22/35

23 / 35

CDF

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

(4)目(4) (4)目(4)

24 / 35

三日 のへの

25 / 35

1

- ∢ ≣ →

3

(< ≥) < ≥)</p>

A D > A D >
A

< D > < B >

★ E → < E →</p>

≡ ∽৭ে 27/35

2

28 / 35

ъ

D0

29 / 35

ъ

< ∃⇒

LHCb

30 / 35

LHCb

< D > < B >

≡ ∽৭ে 31/35

(★ 문) > _ 문
LHCb

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

프 🖌 🔺 프 🕨

2

≡ ∽৭ে 32/35

STAR and PHENIX

33 / 35

ъ

< ∃⇒

E228

E772 + E605

35/35

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日日 のへの