Automated Calculation of Beam and Jet Functions

Guido Bell, Kevin Brune, Goutam Das, Marcel Wald

Motivation

- Resummation is required for collider observables
 - For some observables very precise $\rightarrow N^3LL$ and above

Motivation

- Resummation is required for collider observables
 - For some observables very precise $\rightarrow N^3 LL$ and above
 - For generic observables only NLL accuary
 - \rightarrow CAESAR

Motivation

- Resummation is required for collider observables
 - For some observables very precise $\rightarrow N^3LL$ and above
 - For generic observables only NLL accuary
- Our goal is to push this to N²LL'
 - Systematic framework of SCET

Soft-Collinear Effective Theory (SCET)

Effective theory

- Hard modes are integrated out
- Soft and collinear modes
- $\bullet~$ Leading power $\rightarrow~$ Soft and collinear modes decouple
- Typical scaling: $k^{\mu} \sim (k_-, k_+, k_{\perp})$
 - Hard region: $k^{\mu}_{H} \sim (1, 1, 1)Q$
 - Collinear region: $k_C^{\mu} \sim (1, \lambda^2, \lambda) Q$
 - Ultrasoft region: $k^{\mu}_{US} \sim (\lambda^2, \lambda^2, \lambda^2) Q$

SCET-II

- Different scaling compared to SCET-I
 - Hard region: $k^{\mu}_{H} \sim (1,1,1)Q$
 - Collinear region: $k_C^{\mu} \sim (1, \lambda^2, \lambda)Q$
 - Soft region: $k^{\mu}_{S} \sim (\lambda, \lambda, \lambda) Q$
- Soft and collinear modes have same virtuality
- \Rightarrow Additional rapidity divergences
 - Introduce additional regulator [Becher,Bell;12]

$$\prod_{i} \int \frac{\mathrm{d}^{d} k_{i}}{(2\pi)^{d}} \left(\frac{\nu}{k_{i}^{-} + k_{i}^{+}}\right)^{\alpha} \delta\left(k_{i}^{2}\right) \theta\left(k_{i}^{(0)}\right)$$

Factorisation

• Typical factorisation formula for LHC observables in SCET

$$d\sigma \simeq H(\mu_F) \cdot B(\mu_F) \otimes \bar{B}(\mu_F) \otimes S(\mu_F)$$

- $\bullet\,$ Some observables require input from final state radiation $\rightarrow\,$ Jet functions
 - Example: Boson-jet azimuthal decorrelation [Chien et al.;20,22]
- Resummation requires knowledge of anomalous dimensions and matching corrections

 $\underbrace{\Gamma_{\mathsf{Cusp}}, \gamma_{\mathsf{H}}, c_{\mathsf{H}}}_{\mathsf{Observable independent}}$

 $\gamma_{\mathsf{B}}, \gamma_{\mathsf{J}}, \gamma_{\mathsf{S}}, c_{\mathsf{B}}, c_{\mathsf{J}}, c_{\mathsf{S}}$

Observable dependent

• SoftSERVE:

[Bell,Rahn,Talbert;19,20]

- Automated framework to calculate NNLO soft functions
- We developed a similar framework for the beam and jet functions at NNLO
 - First application: p_T -veto for quark beam function [Bell,KB,Das,Wald;22]

Automation of Beam function calculations

Beam function definitions

• Quark beam function

$$\frac{1}{2} \begin{bmatrix} \frac{n}{2} \\ \frac{1}{2} \end{bmatrix}_{\beta\alpha} \mathcal{B}_{q/h}\left(x,\tau,\mu\right) = \sum_{X} \delta\left((1-x)P_{-} - \sum_{i} k_{i}^{-}\right) \\ \langle h(P) | \bar{\chi}_{\alpha} | X \rangle \langle X | \chi_{\beta} | h(P) \rangle \mathcal{M}(\tau; \{k_{i}\})$$

• Gluon beam function

$$-\mathcal{B}_{g/h}\left(x,\tau,\mu\right) = \frac{1}{xP_{-}} \sum_{X} \delta\left((1-x)P_{-} - \sum_{i} k_{i}^{-}\right)$$
$$\langle h(P) | \mathcal{A}_{c,\perp}^{\mu,A} | X \rangle \langle X | \mathcal{A}_{c,\perp,\mu}^{A} | h(P) \rangle \mathcal{M}(\tau; \{k_{i}\})$$

• Matching on parton distribution functions

$$\mathcal{B}_{i/h}\left(x,\tau,\mu\right) = \sum_{j \in \{q,\bar{q},g\}} \int_{x}^{1} \frac{\mathrm{d}z}{z} \mathcal{I}_{i\leftarrow j}\left(\frac{x}{z},\tau,\mu\right) f_{j/h}(z,\mu) + \mathcal{O}(\tau\Lambda_{QCD})$$

Approach at NLO

• Parametrisation:

$$k_{-} = (1 - x)P_{-},$$
$$|\vec{k}_{\perp}| = k_{T},$$
$$\cos\left(\theta_{k}\right) = 1 - 2t_{k}$$

• Measurement function:

$$\mathcal{M}_1^B(\tau;k) = \exp\left[-\tau k_T \left(\frac{k_T}{(1-x)P_-}\right)^n f(t_k)\right]$$

• Master formula: $\mathcal{B}_{i/j}^{(1)}(x,\tau) \simeq \frac{\Gamma\left(\frac{-2\epsilon}{1+n}\right)}{1+n} (1-x)^{-1-\frac{2n\epsilon}{1+n}-\alpha} W_{i/j}^B$ $\times \int_0^1 dt_k (4t_k \bar{t_k})^{-1/2-\epsilon} f(t_k)^{\frac{2\epsilon}{1+n}} P$ (3)

Approach at NNLO

- At NNLO we need to consider two different contributions
 - 1) Real-Virtual contribution
 - Matrix element: NLO collinear splitting functions
 - Same parametrisation as NLO
 - 2) Real-Real contribution
 - Matrix element: LO triple collinear splitting functions
 - Parametrisation:

$$q_T = \sqrt{(k_- + l_-)(k_+ + l_+)}, \quad b = \frac{k_T}{l_T}$$
$$a = \frac{k_- l_T}{k_T l_-}, \quad t_{kl} = \frac{1 - \cos \theta_{kl}}{2}$$
$$x = \frac{k_- + l_-}{P}$$

Approach at NNLO

• Measurement function at NNLO

$$\mathcal{M}_2^B(\tau;k,l) = \exp\left[-\tau q_T \left(\frac{q_T}{(1-x)P_-}\right)^n F(a,b,t_{kl},t_k,t_l)\right]$$

- Many overlapping singularities remain
 - Sector decomposition
 - Selector functions
 - Non-linear transformations
- \rightarrow All singularities factorised

How to treat distributions

- In general the beam functions are distribution valued in $(1-x)^{-1}$
- 1) Direct calculation in *x*-space
 - Expand in terms of distributions

$$(1-x)^{-1-m\epsilon}f(x) = -\frac{1}{m\epsilon}f(x)\delta(1-x) + \left[\frac{1}{1-x}\right]_{+}f(x) + \dots$$
$$= -\frac{1}{m\epsilon}f(1)\delta(1-x) + \left[\frac{1}{1-x}\right]_{+}f(1) + \frac{f(x)-f(1)}{1-x} + \dots$$

2) • Resolve all distributions in Mellin space

$$\hat{\mathcal{B}}_{i/j}(N,\tau) = \int_0^1 \mathrm{d}x \, x^{N-1} \mathcal{B}_{i/j}(x,\tau)$$

SCET-I renormalisation

• The matching kernels follow the RGE

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}\mathcal{I}_{i\leftarrow j}(x,\tau,\mu) = \left[2\frac{1+n}{n}\Gamma^{i}_{\mathsf{Cusp}}L + \gamma^{i}_{B}\right]\mathcal{I}_{i\leftarrow j}(x,\tau,\mu) - 2\sum_{k}\mathcal{I}_{i\leftarrow k}(x,\tau,\mu)\otimes P_{k\leftarrow j}(x,\mu)$$

One-loop solution

$$\mathcal{I}_{i\leftarrow j}(x,\tau,\mu) = \delta(1-x)\delta_{ij} + \left(\frac{\alpha_s}{4\pi}\right) \left[\left(\frac{1+n}{n}\Gamma_0^i L^2 + \gamma_B^i L\right) \delta(1-x)\delta_{ij} - 2P_{i\leftarrow j}^{(0)}(x)L + \mathcal{I}_{i\leftarrow j}^{(1)}(x) \right] + \mathcal{O}(\alpha_s^2)$$

 \rightarrow Extraction of γ_B and $\mathcal{I}_{i\leftarrow j}(x)$ at NNLO

SCET-II renormalisation

- \bullet Additional scale $\nu \rightarrow$ Additional large logarithms
 - Resum them via collinear anomaly approach [Becher, Neubert; 13]

$$\begin{bmatrix} \mathcal{I}_{i\leftarrow k}(x_1,\tau,\mu,\nu)\mathcal{I}_{j\leftarrow l}(x_2,\tau,\mu,\nu)S_{ij}(\tau,\mu,\nu) \end{bmatrix} \underset{\alpha=0}{\equiv} \\ (q^2\bar{\tau}^2)^{-F_{ij}(\tau,\mu)} I_{i\leftarrow k}(x_1,\tau,\mu)I_{j\leftarrow l}(x_2,\tau,\mu) \end{bmatrix}$$

• Anomaly exponent F_{ij} fulfills RGE

$$\frac{\mathrm{d}F_{ij}(\tau,\mu)}{\mathrm{d}\ln\mu} = 2\Gamma_{\mathsf{Cusp}}$$

• Slightly different RGE for the matching kernel $I_{i\leftarrow k}(x,\tau,\mu)$

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}I_{i\leftarrow k}(x,\tau,\mu) = 2\left[\Gamma_{\mathsf{Cusp}}L - \gamma_H\right]I_{i\leftarrow k}(x,\tau,\mu) - 2\sum_j I_{i\leftarrow j}(x,\tau,\mu)\otimes P_{j\leftarrow k}(x,\mu)$$

ightarrow Extraction of γ_H , anomaly exponent F_{ij} and $I_{i\leftarrow k}(x)$ at NNLO

Observable status

SCET-I Observables

- Beam Thrust
- DIS Angularities
- Matching kernel can be written as

SCET-II Observables

- p_T -resummation
- Transverse Thrust
- p_T -veto

$$\begin{split} \mathcal{I}_{i\leftarrow j}(x) = & c_{-1}^{ij} \delta(1-x) + c_0^{ij} \left[\frac{1}{1-x} \right]_+ + c_1^{ij} \left[\frac{\log(1-x)}{1-x} \right]_+ \\ & + c_2^{ij} \left[\frac{\log^2(1-x)}{1-x} \right]_+ + c_3^{ij} \left[\frac{\log^3(1-x)}{1-x} \right]_+ + \mathcal{I}_{i\leftarrow j}^{(2,y),\mathsf{Grid}}(x) \end{split}$$

Observable status

SCET-I Observables

- Beam Thrust
- DIS Angularities
- Matching kernel can be written as

SCET-II Observables

- p_T -resummation
- Transverse Thrust
- p_T -veto

$$\begin{split} \mathcal{I}_{i\leftarrow j}(x) = & c_{-1}^{ij}\delta(1-x) + c_0^{ij} \left[\frac{1}{1-x}\right]_+ + c_1^{ij} \left[\frac{\log(1-x)}{1-x}\right]_+ \\ & + c_2^{ij} \left[\frac{\log^2(1-x)}{1-x}\right]_+ + c_3^{ij} \left[\frac{\log^3(1-x)}{1-x}\right]_+ + \mathcal{I}_{i\leftarrow j}^{(2,y),\mathsf{Grid}}(x) \end{split}$$

• All contributions implemented into pySecDec [Heinrich, et.al ;18,19,22]

 p_T -veto

[Preliminary]

- Measurement: $\omega_2(k,l) = \theta(\Delta R) \max(|\vec{k}^{\perp}|,|\vec{l}^{\perp}|) + \theta(R \Delta)|\vec{k}^{\perp} + \vec{l}^{\perp}|$ with $\Delta = \sqrt{\frac{1}{4} \ln^2 \frac{k-l^+}{k+l^-} + \theta_{kl}^2}$
- Independent calculation by Dingyu Shao
 - Based on computing the difference wrt to a known reference observable
 - Asymmetric phase-space regulator
 - $\rightarrow\,$ Method is similar to the one from Abreu, Gaunt, Monni, Rottoli, Szafron [2207.07037] [See talk by Gaunt]

p_T -veto

[Preliminary]

• Measurement:
$$\omega_2(k,l) = \theta(\Delta - R) \max(|\vec{k}^{\perp}|, |\vec{l}^{\perp}|) + \theta(R - \Delta)|\vec{k}^{\perp} + \vec{l}^{\perp}|$$

with $\Delta = \sqrt{\frac{1}{4} \ln^2 \frac{k-l^+}{k^+l^-} + \theta_{kl}^2}$

• Focus on the gluon-to-gluon and quark-to-gluon channels

R = 0.2	This work	AGMRS
$c_{-1,C_AT_F}^{gg}$	0.31(1)	0.32
c^{gg}_{-1,C^2_A}	-23.32(9)	-23.32
$c_{0,C_A T_F}^{gg}$	16.44(1)	16.44
$c_{0,C_{A}^{2}}^{gg}$	79.02(6)	79.02

R = 0.5	This work	AGMRS
c^{gg}_{-1,C_AT_F}	1.38(1)	1.38
c^{gg}_{-1,C^2_A}	-16.98(9)	-16.98
$c_{0,C_AT_F}^{gg}$	11.40(1)	11.40
$c_{0,C_{A}^{2}}^{gg}$	43.20(6)	43.20

R = 0.8	This work	AGMRS
c^{gg}_{-1,C_AT_F}	1.94(1)	1.94
c^{gg}_{-1,C^2_A}	-12.29(9)	-12.29
$c_{0,C_A T_F}^{gg}$	9.01(1)	9.01
$c^{gg}_{0,C^{2}_{A}}$	20.19(6)	20.19

AGMRS: [Abreu et al.;22]

 p_T -veto - $I_{g\leftarrow g}^{(2,y),{\sf Grid}}(x)$

[Preliminary]

Kevin Brune (University of Siegen)

$$p_T$$
-veto - $I_{g\leftarrow q}^{(2,y),\mathsf{Grid}}(x)$

150 1400 . R = 0.2R = 0.2R = 0.5125 R = 0.51200 . • R = 0.8R = 0.8100 $I_{g \leftarrow q}^{(2, C_F), \text{Grid}, \text{Grid}(X)}$ 1000 $I_{g \leftarrow q}^{(2, C_A), \operatorname{Grid}}(x)$ 75 800 50 600 25 400 0 200 -25 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 x value x value

[Preliminary]

DIS Angularities

• Measurement:

[Zhu, Kang, Maji; 21]

[Preliminary]

$$\omega_{\text{DIS}}(\{k_i\}) = \sum_{i} \left(k_i^+\right)^{1-\frac{A}{2}} \left(k_i^-\right)^{\frac{A}{2}}$$

- Here we consider the cases $A = \{-1, 0, 0.5\}$
- Focus on the quark-to-quark and gluon-to-quark channels

c_{-1}^{qq}	A = -1	A = 0.5
$C_F T_F$	6.32(1)	-17.49(6)
C_F^2	-2.91(4)	6.41(41)
$C_F C_A$	-4.09(12)	-2.69(68)

c_0^{qq}	A = -1	A = 0.5
$C_F T_F$	-0.15(1)	8.16(1)
C_F^2	34.19(3)	8.55(13)
$C_F C_A$	17.58(65)	8.64(19)

c_1^{qq}	A = -1	A = 0.5
$C_F T_F$	-11.85(1)	-5.93(1)
C_F^2	-54.10(3)	-1.46(3)
$C_F C_A$	22.16(3)	11.08(4)

c_2^{qq}	A = -1	A = 0.5
$C_F T_F$	4.74(1)	1.18(1)
C_F^2	0	0
$C_F C_A$	-13.04(1)	-3.26(1)

c_3^{qq}	A = -1	A = 0.5
C_F^2	14.22(1)	3.56(1)

DIS Angularities - $\mathcal{I}_{q\leftarrow q}^{(2,y),\operatorname{Grid}}(x)$

A = -1

A = 0

.

0.6 0.8

: :

0.6

A = 0.5

1.0

•

.

.

0.8

Kevin Brune (University of Siegen)

1.0

[Preliminary]

DIS Angularities - $\mathcal{I}_{q\leftarrow g}^{(2,y),\mathrm{Grid}}(x)$

Automation of Jet function calculations

Jet function definitions

• Quark jet function

$$\frac{\frac{\eta}{2}}{2}J_q\left(Q,\tau,\mu\right) = \frac{1}{\pi}\sum_X (2\pi)^d \delta\left(Q - \sum_i k_i^-\right) \delta^{d-2}\left(\sum_i k_i^\perp\right) \\ \frac{\langle 0|\chi|X\rangle \langle X|\bar{\chi}|0\rangle \mathcal{M}(\tau;\{k_i\})}{\langle 0|\chi|X\rangle \langle X|\bar{\chi}|0\rangle \mathcal{M}(\tau;\{k_i\})}$$

• Gluon jet function

$$-g_{\perp}^{\mu\nu}\delta^{ab}g_{s}^{2}J_{g}\left(Q,\tau,\mu\right) = \frac{Q}{\pi}\sum_{X}(2\pi)^{d}\delta\left(Q-\sum_{i}k_{i}^{-}\right)\delta^{d-2}\left(\sum_{i}k_{i}^{\perp}\right)$$
$$\left\langle 0\right|\mathcal{A}_{\perp}^{\mu,a}\left|X\right\rangle\left\langle X\right|\mathcal{A}_{\perp,\nu}^{b}\left|0\right\rangle\mathcal{M}(\tau;\{k_{i}\})$$

Approach at NLO

• Parametrisation:

$$\begin{aligned} k_{-} &= zQ, \quad p_{-} &= \bar{z}Q, \\ |\vec{k}_{\perp}| &= |\vec{p}_{\perp}| &= k_{T}, \\ \cos\left(\theta_{k}\right) &= 1 - 2t_{k} \end{aligned}$$

• Measurement function:

$$\mathcal{M}_{1}^{J}(\tau;k,p) = \exp\left[-\tau \left(k_{T}\right)^{\boldsymbol{m}} \left(\frac{k_{T}}{Q}\right)^{\boldsymbol{n}} (z\bar{z})^{-\frac{\boldsymbol{m}+\boldsymbol{n}}{1+\boldsymbol{n}}\boldsymbol{n}} f(z,t_{k})\right]$$

• Master formula:

$$\begin{split} J_i^{(1)}(Q,\tau,\mu) \simeq & \frac{\Gamma\left(\frac{-2\epsilon}{m+n}\right)}{m+n} \int_0^1 \mathrm{d}z (z\bar{z})^{-1-\frac{2n\epsilon}{1+n}-\alpha} W_i^J(z) & \text{ for all } \\ & \times \int_0^1 \mathrm{d}t_k (4t_k \bar{t_k})^{-1/2-\epsilon} f(z,t_k)^{\frac{2\epsilon}{m+n}} \end{split}$$

Approach at NNLO

- Similar approach to the beam functions
 - Parametrisation:

$$q_T = \sqrt{(k_- + l_-)(k_+ + l_+)}, \quad b = \frac{k_T}{l_T}$$
$$a = \frac{k_- l_T}{k_T l_-}, \quad t_{kl} = \frac{1 - \cos \theta_{kl}}{2}, \quad z = \frac{k_- + l_-}{Q}$$

• Measurement function at NNLO

$$\mathcal{M}_2^J(\tau;k,l,p) = \exp\left[-\tau(q_T)^m \left(\frac{q_T}{(z\bar{z})^{\frac{m+n}{1+n}}Q}\right)^n F(z,a,b,t_{kl},t_k,t_l)\right]$$

- Renormalisation follows as in the beam function case
 - Slightly simpler RGE

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu}J_i(Q,\tau,\mu) = 2\left[\frac{1+n}{n}\Gamma_{\mathsf{Cusp}}L + \gamma_J\right]J_i(Q,\tau,\mu)$$

Observable status

SCET-I Observables

- Thrust
- Angularities
- Transverse Thrust

SCET-II Observables

- WTA-axis Broadening
- WTA-axis p_T -resummation
- e^+e^- jet rates

Observable status

SCET-I Observables

- Thrust
- Angularities
- Transverse Thrust

SCET-II Observables

- WTA-axis Broadening
- WTA-axis p_T -resummation
- e^+e^- jet rates

Transverse Thrust

• Measurement:

[Becher, Garcia i Tormo; 15]

[Preliminary]

$$\omega_{TT}(\{k_i\}) = 4s_{\theta} \sum_{i} \left(\left| \vec{k}_i^{\top} \right| - \left| \vec{n}^{\top} \cdot \vec{k}_i^{\top} \right| \right)$$

• $k_{\rm T}^{\mu}$ transverse to beam axis

• Quark and gluon jet anomalous dimension agree with literature [Bell,Rahn,Talbert;19,20]

γ_1^q	This work	SoftSERVE
$C_F T_F$	-21.09(1)	-21.09
C_F^2	10.80(17)	10.61
$C_F C_A$	83.67(16)	83.77(3)

γ_1^g	This work	SoftSERVE
T_F^2	0	0
$C_F T_F$	-4.00(2)	-4
$C_A T_F$	-16.95(4)	-16.99
C_A^2	96.33(21)	96.33(3)

NNLO matching correction

c_2^q	This work
$C_F T_F$	-5.91(3)
C_F^2	42.55(59)
$C_F C_A$	116.66(61)

c_2^g	This work
T_F^2	7.86(1)
$C_F T_F$	-47.21(12)
$C_A T_F$	30.69(19)
C_A^2	172.92(81)

Winner-take-all recombination scheme

• Select the two closest particles and merge [Bertolini, Chan, Thaler; 13]

$$E_{(ij)} = E_i + E_j, \ \vec{p}_{(ij)} = E_{(ij)} \left[\frac{\vec{p}_i}{|\vec{p}_i|} \theta(E_i - E_j) + \frac{\vec{p}_j}{|\vec{p}_j|} \theta(E_j - E_i) \right]$$

- $\rightarrow\,$ Massless pseudoparticle that points in the direction of the most energetic particle
- $\rightarrow~$ This direction is the "winner-take-all" axis
- At leading power the soft function is the same as for the standard jet axis

WTA-axis p_T -resummation

- Distance measure: k_T -algorithm, anti- k_T -algorithm and Cambridge-Aachen-algorithm
- Measurement: Vector sum of the transverse momentum projected onto the WTA axis
 - $\rightarrow~$ Needed for Boson-jet azimuthal decorrelation
- Quark and gluon anomaly exponent agree with literature
- Quark remainder function comparison with Event2
 - Predictions differ by a sign, which has been confirmed in the meantime.

c_2	This work	GSWZ
$C_F T_F$	12.72(5)	-13.0(3)
C_F^2	-13.84(37)	12.2(11)
$C_F C_A$	14.40(80)	-9.3(2)
$Quark:k_T$ -algorithm		

c_2	This work	GSWZ	
$C_F T_F$	12.29(31)	-12.5(3)	
C_F^2	-25.76(60)	24.5(6)	
$C_F C_A$	7.41(132)	-6.7(2)	
Quark:Cambridge-Aachen-algorithm			

c_2	This work	GSWZ	
$C_F T_F$	12.27(31)	-12.5(3)	
C_F^2	-25.90(59)	25.3(6)	
$C_F C_A$	3.72(131)	-6.3(2)	
Quark:anti- k_T -algorithm			

[Preliminary]

[Bell,Rahn,Talbert;19,20]

GSWZ: [Gutierrez-Reves et al.;20]

c_2	This work	
T_F^2	-5.96(1)	
$C_F T_F$	170.48(6)	
$C_A T_F$	9.19(5)	
C_A^2	25.13(49)	
$Gluon: k_T \text{-} algorithm$		

Conclusion and Outlook

• We have reported on our automated approach for the calculation of beam and jet functions at NNLO

Complete setup for SCET-I and SCET-II observables

Beam functions

- DIS Angularities
- p_T -veto

Jet functions

- Transverse Thrust
- WTA-axis p_T -resummation

<u>Outlook</u>

- Automatic approach for polarised gluon jet and beam functions
- Development of a stand-alone C++ code