QCD@LHC 2023 Durham, UK September 4-8, 2023

Recent results on photon physics @ LHC

Claudia Glasman Universidad Autónoma de Madrid

Universidad Autónoma de Madrid

Physics with photons @ LHC

- \bullet Measurements of the production of high p_T prompt photons (in association with jets) in hadron colliders provide
 - \rightarrow tests of pQCD predictions
 - the photon comes directly from the hard interaction (no hadronisation)
 - \rightarrow cleaner reaction than jet production
 - ***** probe of the underlying production mechanism
 - $\label{eq:posterior} \begin{array}{l} \rightarrow \text{ experimental information on the proton PDFs} \\ \star \text{ dominant production mechanism: } qg \rightarrow q\gamma \\ \star \text{ constraints on the proton PDFs, especially} \\ \text{ the gluon PDF at high } x \end{array}$
 - → input to understand the background to Higgs production and BSM searches in photon decaying channels
 - ***** validation of Monte Carlo models

direct photon (plus jet(s))

Physics with photons @ LHC

- Other sources of photons:
 - ightarrow hadron decays (eg, $\pi^0
 ightarrow \gamma\gamma$)
 - \rightarrow photons are produced copiously inside jets
 - \Rightarrow isolating photons largely removes this background
 - ightarrow photon bremsstrahlung off quarks ightarrow
 - ⇒ fragmentation photon process: signal
- Thus, to study prompt photons in hadron colliders, it is essential to require the photon to be isolated

fragmentation photon

- * cone isolation: $E_{T}^{iso}(R) \equiv \sum_{i} E_{T}^{i} < E_{T}^{max}$, with the sum over the particles inside a cone of radius R centered on the photon in the $\eta \phi$ plane \rightarrow used in experiment to suppress the contribution of photons inside jets
- * Frixione isolation: $E_T^{\max}(r) = \epsilon E_T^{\gamma}((1 \cos r)/(1 \cos R))^n$ for all r < R, where R is the maximal cone size and ϵ is a constant
- hybrid (Frixione+cone) isolation
 - → Frixione or hybrid isolation can be used in theory to avoid divergencies in the matrix elements when the photon is collinear with a parton

Photons @ ATLAS and CMS

Photons @ ATLAS and CMS: photon isolation

- The underlying event and pileup contribute to $E_{\mathrm{T}}^{\mathrm{iso}}$ \rightarrow event-by-event correction can be computed using the jet-area method (M Cacciari et al, JHEP 0804 (2008) 005)
- Clear signal of photon production observed around $E_{
 m T}^{
 m iso}(R)pprox 0$
- ⇒ A photon candidate is considered isolated if $E_{\mathrm{T}}^{\mathrm{iso}}(R) < (E_{\mathrm{T}}^{\mathrm{iso}})^{\mathrm{cut}}$ with $(E_{\mathrm{T}}^{\mathrm{iso}})^{\mathrm{cut}} = 4.2 \cdot 10^{-3} \cdot E_{\mathrm{T}}^{\gamma} + 4.8$ GeV (ATLAS) and $(E_{\rm T}^{\rm i\bar{s}o})^{\rm cut} = 5$ GeV (CMS)
- Residual background removed using data-driven (ATLAS) and template-fit (CMS) methods

CMS Collab, JHEP 05 (2021) 285 & EPJC 79 (2019) 20

QCD@LHC 2023 (September 4-8, 2023)

Photons @ ATLAS: background subtraction

- The main source of background comes from jets misidentified as photons
- A data-driven method is used to avoid relying on detailed simulations of the background processes
 - \rightarrow two-dimensional sideband method based on γ ID vs $E_{\rm T}^{\rm iso}$ plane and corrected for signal leakage
 - $\rightarrow \gamma {\rm ID}$ and ${\bar E}_{\rm T}^{\rm iso}$ are assumed to be uncorrelated for the background
 - → region A is the signal region and B, C, D are background control regions with suppressed signal contribution

in each E_{T}^{γ} and η^{γ} bin measured

- The purity of the signal is estimated as $P = rac{N_{
 m A}^{
 m sig}}{N_{
 m s}^{
 m obs}}$
 - \rightarrow the measured signal purity is larger than 93% for $E_{\rm T}^{\gamma}>250~{\rm GeV}$

• In this analysis: $E_{
m T}^{
m iso}(R) < 4.2\cdot 10^{-3}\cdot E_{
m T}^{\gamma}+4.8~{
m GeV}$

Ø

QCD@LHC 2023 (September 4-8, 2023)

Claudia Glasman (Universidad Autónoma de Madrid)

Photons @ CMS: background subtraction

- The main source of background comes from jets misidentified as photons
- A template-fit method is used to estimate the photon yield in each $p_{\rm T}^{\gamma}$ and y^{γ} bin measured
 - → template composed of the sum of signal (from MC simulation) and background (from sideband region in data)
 - → number of isolated photons extracted from a binned maximum-likelihood fit
 to a BDT discriminant constructed from photon kinematics and shower shapes

CMS Collab, EPJC 79 (2019) 20

QCD@LHC 2023 (September 4-8, 2023)

Claudia Glasman (Universidad Autónoma de Madrid)

Photons @ CMS: background subtraction

- The main source of background comes from jets misidentified as photons
- A template-fit method is used to extract a value for the photon purity in each p_{T}^{γ} bin measured
 - \rightarrow template composed of the sum of signal (from MC simulation) and background (from misidentified photons in data)
 - \rightarrow number of isolated photons extracted from a binned maximum-likelihood fit to $\sigma_{\eta\eta}$ shower shape (length of shower along the η direction in ECAL)
- The purity of the signal is estimated as $P = rac{N_{
 m data}^{
 m iso}}{N_{
 m data}^{
 m all \ sel}}$

- ightarrow the purity as a function of p_{T}^{γ} is fitted with a functional form and used to extract the signal purity
- \rightarrow the measured signal purity is larger than 98%for $p_{\mathrm{T}}^{\gamma} > 200~\mathrm{GeV}$
- ullet In this analysis: $E_{
 m T}^{
 m iso}(0.3) < 5~{
 m GeV}$

CMS Collab, JHEP 05 (2021) 285

Photons @ QCD

Next-to-leading-order QCD calculations: **JETPHOX**

$$\sigma_{pp o \gamma + X} = \sum_{i,j,a} \int_0^1 dx_1 \, f_{i/p}(x_1, \mu_F^2) \int_0^1 dx_2 \, f_{j/p}(x_2, \mu_F^2) \, \hat{\sigma}_{ij o \gamma a^+}$$

 $\sum_{i,j,a,b} \int_{z_{\min}}^1 dz \, D_a^{\gamma}(z, \mu_f^2) \int_0^1 dx_1 \, f_{i/p}(x_1, \mu_F^2) \int_0^1 dx_2 \, f_{j/p}(x_2, \mu_F^2) \, \hat{\sigma}_{ij o ab}$

Full fixed-order NLO QCD calculations with direct and fragmentation processes
 → fragmentation contribution calculated as the convolution of jet cross section
 and fragmentation function

- Photon isolation requirement: cone isolation at parton level (as in experiment)
- Need corrections for hadronisation to compare with measurements

S Catani et al, JHEP 05 (2002) 028

Next-to-leading-order QCD calculations: SHERPA

- Full fixed-order NLO QCD calculations for $\gamma + 1$, 2 jets plus LO QCD calculations for $\gamma + 3$, 4 jets supplemented with parton shower and hadronisation \rightarrow only direct and wide-angle fragmentation contributions
- Photon isolation requirement: hybrid isolation (Frixione isolation at parton level to remove divergencies in ME and cone isolation at hadron level)
- \bullet Predictions obtained at hadron level \rightarrow direct comparison with measurements

T Gleisberg et al, JHEP 02 (2009) 007

Next-to-next-to-leading-order QCD calculations: NNLOJET (I)

- Full fixed-order NNLO QCD calculations including two-loop corrections to γ +jet, virtual corrections to $\gamma + 2$ jets and tree-level $\gamma + 3$ jets \rightarrow only direct contribution
- Photon isolation requirement: hybrid isolation at parton level (Frixione isolation to remove divergencies in ME and cone isolation to compare with measurements)
- Need corrections for hadronisation to compare with measurements

X Chen et al, JHEP 04 (2020) 166

Next-to-next-to-leading-order QCD calculations: NNLOJET (II)

$$\sigma_{pp o \gamma + X} = \sum_{i,j,a} \int_0^1 dx_1 \; f_{i/p}(x_1, \mu_F^2) \int_0^1 dx_2 \; f_{j/p}(x_2, \mu_F^2) \; \hat{\sigma}_{ij o \gamma a} + \ \sum_{i,j,a,b} \int_{z_{\min}}^1 dz \; D_a^{\gamma}(z, \mu_f^2) \; \int_0^1 dx_1 \; f_{i/p}(x_1, \mu_F^2) \; \int_0^1 dx_2 \; f_{j/p}(x_2, \mu_F^2) \; \hat{\sigma}_{ij o ab}$$

Full fixed-order NNLO QCD calculations with direct and fragmentation processes
 → fragmentation contribution calculated as the convolution of jet cross section
 and fragmentation function

- Photon isolation requirement: cone isolation at parton level (as in experiment)
- Need corrections for hadronisation to compare with measurements

T Gehrmann and R Schürmann, JHEP 04 (2022) 031 & X Chen et al, JHEP 08 (2022) 094

Next-to-next-to-leading-order QCD calculations: S Badger et al

$$\sigma_{pp o \gamma + \mathrm{X}} = \sum_{i,j,a} \int_0^1 dx_1 \, f_{i/p}(x_1,\mu_F^2) \int_0^1 dx_2 \, f_{j/p}(x_2,\mu_F^2) \, \, \hat{\sigma}_{ij o \gamma a}$$

• Full fixed-order NNLO QCD calculations including two-loop corrections to $\gamma + 2$ jets, virtual corrections to $\gamma + 3$ jets and tree-level $\gamma + 4$ jets \rightarrow only direct contribution

- Photon isolation requirement: Frixione isolation at parton level to remove divergencies in ME
- Need corrections for hadronisation to compare with measurements

S Badger et al, arXiv: 2304.06682

pQCD calculations: theoretical uncertainties

Claudia Glasman (Universidad Autónoma de Madrid)

Impact of inclusive isolated photon measurements @ LHC on PDFs

- Study of the impact on the gluon density of existing isolated-photon measurements from a variety of experiments, from $\sqrt{s}=200~{\rm GeV}$ up to $7~{\rm TeV}$
 - → those at LHC are the most constraining datasets
 - \rightarrow reduction of gluon uncertainty up to 20% localised in the range $x \approx 0.002$ to 0.05
 - ⇒ improved predictions for low mass Higgs production in gluon fusion:

PDF-induced uncertainty decreased by 20%

D d'Enterria and J Rojo, NPB 860 (2012) 311

Claudia Glasman (Universidad Autónoma de Madrid)

Inclusive isolated-photon production

Inclusive isolated-photon production: testing pQCD

 $pp \rightarrow \gamma + X$: inclusive isolated-photon cross sections

- $ullet E_{
 m T}^{\gamma} > 190$ GeV, $E_{
 m T}^{
 m iso}(0.3) < 5$ GeV and $|y^{\gamma}| \! < \! 2.5$ (excluding $1.44 \! < \! |y^{\gamma}| \! < \! 1.57$)
- $d^2\sigma/dE_{
 m T}^\gamma dy^\gamma$ decreases by four orders of magnitude in the measured range
- Values of E_{T}^{γ} up to 1 TeV are measured
- Shape of $d^2\sigma/dE_{
 m T}^{\gamma}dy^{\gamma}$ similar for different y^{γ} regions

- Comparison with pQCD predictions:
 - E_T (GeV) \rightarrow NLO predictions from JETPHOX based on NNPDF3.0 NLO PDFs describe the data within the uncertainties

CMS Collab, EPJC 79 (2019) 20

 $\mathcal{L}=2.26~{
m fb}^{-1}$

Inclusive isolated-photon production: testing pQCD

$pp ightarrow \gamma + { m X}$: inclusive isolated-photon cross sections

 $\mathcal{L}=2.26~{
m fb}^{-1}$

• Comparison with pQCD predictions:

→ NLO predictions from JETPHOX based on NNPDF3.0 NLO PDFs describe the data within the uncertainties CMS Collab, EPJC 79 (2019) 20

QCD@LHC 2023 (September 4-8, 2023)

Claudia Glasman (Universidad Autónoma de Madrid)

Inclusive isolated-photon production: testing pQCD

NNLOJET

 $pp \rightarrow \gamma + X$: inclusive isolated-photon cross sections

- \rightarrow most data points agree with the NNLO prediction within the uncertainties
- \rightarrow discrepancies mainly observed at high p_{T}^{γ}
- \rightarrow the prediction for the slope of the p_{T}^{γ} cross section for $0.8\!<\!|y^{\gamma}|\!<\!1.44$ is harder than in the data

 \rightarrow might be attributed to the PDFs

CMS Collab, EPJC 79 (2019) 20

X Chen et al, JHEP 04 (2020) 166

 $\sqrt{s} = 13 \text{ TeV}$

 $\mathcal{L}=2.26~{
m fb}^{-1}$

QCD@LHC 2023 (September 4-8, 2023)

Claudia Glasman (Universidad Autónoma de Madrid)

Inclusive isolated-photon production: testing pQCD

$pp \rightarrow \gamma + X$: inclusive isolated-photon cross sections

10 10

 10^{-7}

 10^{-6}

 10^{-9}

300

- Values of E_{T}^{γ} up to $2.5 \ \mathrm{TeV}$ are measured
- Shape of ${
 m d}\sigma/{
 m d}E_{
 m T}^{\gamma}$ similar for different η^γ regions and radii
- 10^{-10} • Normalisation of ${
 m d}\sigma/{
 m d}E_{{f T}}^{\gamma}$ for R = 0.2 is higher than for R = 0.4
- Comparison with pQCD predictions:
 - \rightarrow NLO and NNLO predictions generally describe the data within the uncertainties

JETPHOX ($\mu = E_{-}^{\gamma}/2$

NIO OCD MMHT20

1000

ATLAS Collab, JHEP 07 (2023) 086

Claudia Glasman (Universidad Autónoma de Madrid)

2000 300

 E_{T}^{γ} [GeV]

 $\mathcal{L} = 139~\mathrm{fb}^{-1}$

ATLAS

1000

2000

 E_{T}^{γ} [GeV]

√s = 13 TeV, 139 fb⁻¹

Inclusive isolated-photon production: testing pQCD

$pp ightarrow \gamma + { m X}$: inclusive isolated-photon cross sections

- Comparison with pQCD predictions:
 - \rightarrow NLO and NNLO predictions generally describe the data within the uncertainties
 - \rightarrow NNLO prediction in $1.56\,{<}\,|\eta^{\gamma}|\,{<}\,1.81$ below the data
 - \rightarrow Differences in slope between NNLO and data might be attributed to the PDFs

ATLAS Collab, JHEP 07 (2023) 086

 $\mathcal{L}=139~{
m fb}^{-1}$

Inclusive isolated-photon production: sensitivity to PDFs

Comparison of pQCD predictions based on different PDFs shows differences
 The measurements have the potential to constrain further the PDFs

ATLAS Collab, JHEP 07 (2023) 086

 $\mathcal{L} = 139 \text{ fb}^{-1}$

Photon plus jet production

Photon plus jet production: testing colour dynamics

 $pp
ightarrow \gamma + ext{jet} + ext{X}$: isolated-photon plus jet cross sections

- Photon selection: $E_{\rm T}^{\gamma}$ > 125 GeV and $|\eta^{\gamma}|$ < 2.37, excluding the region $1.37 < |\eta^{\gamma}| < 1.56$
- Photon isolation: $E_{
 m T}^{
 m iso}(0.4) < 4.2\cdot 10^{-3}\cdot E_{
 m T}^{\gamma}+10$ GeV; $\Delta R^{\gammam jet}>0.8$
- ullet Jet selection: anti- $k_{
 m t}$ algorithm with R=0.4, leading jet with $p_{
 m T}^{
 m jet}>100$ GeV and $|y^{
 m jet}|\!<\!2.37$

• Comparison to NLO predictions of JETPHOX (+ hadr cor) and SHERPA:

→ good description of data within experimental and theoretical uncertainties ATLAS Collab, PLB 780 (2018) 578

Claudia Glasman (Universidad Autónoma de Madrid)

 $\mathcal{L}=3.2~{
m fb}^{-1}$

Photon plus jet production: testing pQCD

 $pp
ightarrow \gamma + \mathrm{jet} + \mathrm{X}$: isolated-photon plus jet cross sections

- Photon selection: $E_{\rm T}^{\gamma} > 125$ GeV and $|\eta^{\gamma}| < 2.37$, excluding the region $1.37 < |\eta^{\gamma}| < 1.56$
- Photon isolation: $E_{
 m T}^{
 m iso}(0.4) < 4.2\cdot 10^{-3}\cdot E_{
 m T}^{\gamma}+10$ GeV; $\Delta R^{\gammam jet}>0.8$
- Jet selection: anti- $k_{
 m t}$ algorithm with R=0.4, leading jet with $p_{
 m T}^{
 m jet}>100$ GeV and $|y^{
 m jet}|\!<\!2.37$
- Comparison with NNLOJET predictions: (parton level, no hadr cor, with fragmentation, cone isolation)
 - → excellent description of data with reduced scale uncertainty

- For $100 < p_T^{jet} < 125$ GeV and $\pi/2 < \Delta \phi^{\gamma-jet} < 6\pi/10$, the calculation is effectively only of NLO-type and uncertainty is large
- The region $p_T^{jet} > 500$ GeV is dominated by events with two hard recoiling jets and a relatively soft photon \rightarrow these configurations are also effectively at NLO accuracy resulting in increasing scale uncertainties ATLAS Collab, PLB 780 (2018) 578 X Chen et al, JHEP 08 (2022) 094

QCD@LHC 2023 (September 4-8, 2023)

 $\mathcal{L}=3.2~{
m fb}^{-1}$

Photon plus jet production: testing pQCD

 $pp \rightarrow \gamma + \text{jet} + X$: isolated-photon plus jet cross sections

- Photon selection: $p_{
 m T}^{\gamma}\!>\!200$ GeV and $|y^{\gamma}|\!<\!1.4$
- Photon isolation: $E_{
 m T}^{
 m iso}(0.3) < 5$ GeV; $\Delta R^{\gammam jet} > 0.5$
- ullet Jet selection: anti- $k_{
 m t}$ algorithm with R=0.4, leading jet with $p_{
 m T}^{
 m jet}>100$ GeV and $|y^{
 m jet}|\!<\!2.4$

d ${\sf d}_{\gamma}^{\prime} {\sf d}_{{\sf T}}^{\gamma}$ [pb/GeV]

10-

CMS

 γ +jets

+ Data

Stat + syst unc

JetPhox (NLO)

- $d\sigma/dp_{
 m T}^{\gamma}$ decreases by five orders of magnitude in the measured range
- \bullet Values of $p_{\rm T}^{\gamma}$ up to $1.5~{\rm TeV}$ are measured
- Comparison with pQCD predictions: \rightarrow LO prediction from aMC@NLO has a different shape than the data
 - \rightarrow NLO predictions from aMC@NLO, **JETPHOX and SHERPA show a better** agreement with the data

Sherpa + OpenLoops (≤ 4j@NLO QCD+EW

MG5_aMC + PY8 (1j@NLO+PS)

MG5 aMC + PY8 (≤ 4j@LO+PS)

 $\mathcal{L}=35.9~\mathrm{fb}^{-1}$

35.9 fb⁻¹ (13 TeV)

Photon plus jet production: testing pQCD

 $pp
ightarrow \gamma + ext{jet} + ext{X}$: isolated-photon plus jet cross sections

- Photon selection: $p_{
 m T}^{\gamma}\!>\!200$ GeV and $|y^{\gamma}|\!<\!1.4$
- Photon isolation: $E_{
 m T}^{
 m iso}(0.3) < 5$ GeV; $\Delta R^{\gammam jet} > 0.5$
- ullet Jet selection: anti- $k_{
 m t}$ algorithm with R=0.4, leading jet with $p_{
 m T}^{
 m jet}>100$ GeV and $|y^{
 m jet}|\!<\!2.4$
- Comparison with pQCD predictions:
 - \rightarrow LO <code>aMC@NLO</code> has (10-30)% disagreement in shape with the data for $p_{\rm T}^\gamma \lesssim 600~{\rm GeV}$
 - ightarrow NLO aMC@NLO is in agreement with the data within uncertainties
 - \rightarrow SHERPA is above (consistent with) the data for $p_{\rm T}^{\gamma} < (>)500~{\rm GeV}$
 - \rightarrow JETPHOX is above (consistent with) the group data for $p_{\rm T}^{\gamma} < (>)500~{\rm GeV}$
- Experimental uncertainties smaller than $\frac{1}{200}$ $\frac{1}{400}$ theoretical uncertainties for low and intermediate $p_{\rm T}^{\gamma}$
 - \rightarrow The measurements have the potential to constrain further the PDFs CMS Collab, JHEP 05 (2021) 285

 $\mathcal{L}=35.9~{
m fb}^{-1}$

Ratios of cross sections

Ratio of inclusive-photon cross sections: tests of pQCD

- $pp \rightarrow \gamma + X$: inclusive isolated-photon cross sections
- $R_{13/8}^{\gamma} = [d\sigma/dE_{
 m T}^{\gamma}(\sqrt{s} = 13~{
 m TeV})]/[d\sigma/dE_{
 m T}^{\gamma}(\sqrt{s} = 8~{
 m TeV})]$ $\mathcal{L} = 20.2 \text{ fb}^{-1}$ (8 TeV) and 3.2 fb^{-1} (13 TeV)
- The measured ratio
 - ightarrow increases as $E_{
 m T}^{\gamma}$ increases from pprox 2 at $E_{
 m T}^{\gamma}=125$ GeV to pprox an order of magnitude at the end of the **ATLAS** 8 TeV, 20.2 fb⁻¹ and 13 TeV, 3.2 fb⁻¹ $\mathsf{R}^{\chi}_{13/8}$ ATLAS 8 TeV. 20.2 fb⁻¹ and 13 TeV. 3.2 fb⁻¹ spectrum
 - ightarrow increases as $|\eta^{\gamma}|$ at fixed $E^{\gamma}_{{f T}}$
- The NLO QCD predictions reproduce the measured $R_{13/8}^{\gamma}$ \rightarrow in particular, the increase with E^{γ} or $|n^{\gamma}|$ at fixed E^{γ} with $E^{\gamma}_{
 m T}$ or $|\eta^{\gamma}|$ at fixed $E^{\gamma}_{
 m T}$ for all PDF sets considered within much reduced uncertainties

⇒ Very stringent test of pQCD and of its scale evolution

ATLAS Collab, JHEP 04 (2019) 093

Ratio of inclusive-photon cross sections: tests of pQCD

 $pp
ightarrow \gamma + \mathrm{X}$: inclusive isolated-photon cross sections

- Dependence on R studied by measuring the ratios of the differential cross sections for R = 0.2 and R = 0.4 as functions of E_T^{γ} in different regions of η^{γ}
- These measurements provide a very stringent test of pQCD with reduced experimental and theoretical uncertainties (both $\approx 1\%$!)

ATLAS JETPHOX (NLO QCD) $d\sigma/dE_T^{\gamma}(R=0.2)/d\sigma/dE_T^{\gamma}(R=0.4)$ PDF and a unc. from NLO JETPHOX s = 13 TeV, 139 fb MMHT2014 NNI O OCE O Data Data $0.6 < |\eta^{\gamma}| < 0.8$ $0.8 < |\eta^{\gamma}| < 1.37$ HERPA (ME+PS@NLO QCD) $d\sigma/dE_T^{\gamma}(R=0.2)/d\sigma/dE_T^{\gamma}(R=0.4)$ 0.9 Data Data ∧ Data $1.56 < |\eta^{\gamma}| < 1.81$ $1.81 < |\eta^{\gamma}| < 2.01$ $2.01 < |\eta^{\gamma}| < 2.37$ 0.8 300 2000 300 1000 2000 2000 1000 300 1000 E_{τ}^{γ} [GeV] E_{T}^{γ} [GeV] E_{τ}^{γ} [GeV]

 \Rightarrow Validation of the underlying pQCD theoretical description up to $\mathcal{O}(\alpha_s^2)$

ATLAS Collab, JHEP 07 (2023) 086

 $\mathcal{L} = 139~\mathrm{fb}^{-1}$

Ratio of Z and photon cross sections: tests of pQCD

 $pp
ightarrow Z + {
m jets} \ {
m and} \ \gamma + {
m jets}$

 $\mathcal{L} = 35.9 \text{ fb}^{-1}$

- Measurement of $[d\sigma/dp_{\rm T}^Z]/[d\sigma/dp_{\rm T}^\gamma]$ as a function of $p_{\rm T}$
- The ratio
 - ightarrow increases as $p_{
 m T}$ increases from pprox 0.03 at $p_{
 m T}=200~{
 m GeV}$ to pprox 0.05 at $p_{
 m T}=1.4~{
 m TeV}$
- Comparison with NLO QCD predictions:
 - \rightarrow aMC@NLO is in agreement with the data within uncertainties
 - \rightarrow SHERPA is below (consistent with) the data for $p_{\rm T} < (>)300~{\rm GeV}$

⇒ Very stringent test of pQCD

CMS Collab, JHEP 05 (2021) 285

QCD@LHC 2023 (September 4-8, 2023)

Claudia Glasman (Universidad Autónoma de Madrid)

Photon plus two-jets production

Photon+2 jets: probing the production mechanisms

 $pp
ightarrow \gamma + 2 ext{ jets}$: isolated-photon plus two-jets cross sections $\mathcal{L} = 36.1 ext{ fb}^{-1}$

- Photon selection: $E_{\rm T}^{\gamma} > 150$ GeV and $|\eta^{\gamma}| < 2.37$, excluding the region $1.37 < |\eta^{\gamma}| < 1.56$
- Photon isolation: $E_{
 m T}^{
 m iso}(0.4) < 4.2\cdot 10^{-3}\cdot E_{
 m T}^{\gamma}+10$ GeV; $\Delta R^{\gammam jet}>0.8$
- ullet Jet selection: anti- $k_{
 m t}$ algorithm with R=0.4, leading jet with $p_{
 m T}^{
 m jet}>100$ GeV and $|y^{
 m jet}|\!<\!2.5$
- The photon and the leading and subleading jets are considered to study the dynamics of prompt-photon production when accompanied by jets
 - \rightarrow the photon + 2 jets final state provides a deeper understanding of the fragmentation component which remains after the isolation requirement

Photon+2 jets: probing the production mechanisms

- The characteristics observed in the measured cross sections in the fragmentation and direct regions are in agreement with the expectations based on the two underlying mechanisms which dominate each sample
- Comparison with NLO QCD calculations:
 - \to Adequate description of the shape and normalisation of the data by Sherpa NLO within uncertainties, except at high $m^{\rm jet-jet}$ values

ATLAS Collab, JHEP 03 (2020) 179

Photon+2 jets: probing the production mechanisms

• Differential cross sections as functions of $\Delta \phi^{
m jet-jet}$ in different regions:

Total

Direct

- The characteristics observed in the measured cross sections in the fragmentation and direct regions are in agreement with the expectations based on the two underlying mechanisms which dominate each sample
- Comparison with NLO QCD calculations:
 - → Adequate description of the shape and normalisation of the data by SHERPA NLO within uncertainties

ATLAS Collab, JHEP 03 (2020) 179

Photon+2 jets: testing pQCD

Differential cross sections for photon+2jets as functions of

• Comparison with NNLO QCD calculations:

(parton level, no hadr cor, no fragmentation, Frixione isolation)

- \rightarrow improved description of the data with smaller uncertainties than NLO
- \rightarrow differences for $E_{
 m T}^{\gamma} > 1$ TeV \rightarrow attributed to electroweak effects (not included)
- \rightarrow differences for $m^{jet-jet} < 100 \text{ GeV} \rightarrow$ attributed to different isolation (resummation effects should play no role in this region)
- ightarrow for $\Delta \phi^{
 m jet-jet}$, NNLO corrections essential to describe shape of distribution

ATLAS Collab, JHEP 03 (2020) 179

S Badger et al, arXiv: 2304.06682

QCD@LHC 2023 (September 4-8, 2023)

Claudia Glasman (Universidad Autónoma de Madrid)

Diphoton production

Diphoton production @ LHC

- $pp
 ightarrow \gamma \gamma + \mathrm{X}$: isolated-diphoton cross sections
- Photon selection: $p_{\mathrm{T},\gamma_1(2)}\!>\!40~(30)$ GeV and $|\eta^\gamma|\!<\!2.37$, excluding the region $1.37\!<\!|\eta^\gamma|\!<\!1.52$
- Photon isolation: $E_{
 m T}^{
 m iso}(0.2) < 0.09 \cdot p_{
 m T}^{\gamma}$ GeV; $\Delta R^{\gamma\gamma} > 0.4$
- \bullet Measurements of diphoton production in pp collisions provide
 - \rightarrow tests of pQCD predictions
 - \rightarrow input to understand the background to Higgs production and BSM searches in diphoton decaying channels \rightarrow validation of Monte Carlo models
- Diphotons are produced via two mechanisms: direct and fragmentation processes

- Main challenge and source of uncertainty
 - \rightarrow estimation of the background from non-prompt photons in jet events
 - ightarrow data-driven technique is used to estimate this background

ATLAS Collab, JHEP 11 (2021) 169

 $\mathcal{L} = 139 \text{ fb}^{-1}$

31

Diphoton production: testing pQCD

- Differential cross sections as functions of p_{T,γ_1} and p_{T,γ_2} :
- The measured $d\sigma/dp_{{
 m T},\gamma_1}(p_{{
 m T},\gamma_2})$ decreases by four (three) orders of magnitude in the measured range
- do/dp_{T,γ} [pb GeV⁻¹] _____101 _____101 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ [pb GeV⁻¹ ATLAS ATLAS Data — DIPHOX NNLOJET ¹ [‰] 10^{−1} dp/dp Sherpa – 10^{-2} 10-2 10^{-3} 10^{-3} 1.6 1.4 1.2 Theory/Data Theory/Data 0.8 0.6 0.6 0.4 0.4 0.2 100 200 300 400 500 50 p_{T.v1} [GeV]

- Comparison with pQCD calculations:
 - \rightarrow fixed-order DIPHOX and NNLOJET predictions not expected to be valid

	Fixed-order accuracy						Fragmentation		QCD	NP
	$\gamma\gamma$	+1 <i>j</i>	+2 <i>j</i>	+3j	$+ \ge 4j$	$gg \rightarrow \gamma\gamma$	single	double	res.	effects
Diphox	NLO	LO	-	-	-	LO	NLO		-	-
Nnlojet	NNLO	NLO	LO	-	-	LO	-	-	-	-
Sherpa	NLO		LO		PS	LO	ME+PS		PS	\checkmark

in regions where effects of multiple collinear or soft QCD emissions are relevant

- → ME+PS@NLO SHERPA provides remarkably good agreement with data in these regions
- \rightarrow DIPHOX describes the shape but not the normalisation of the data, except for $p_{\mathrm{T},\gamma_2}\!<\!40~\mathrm{GeV}$
- \rightarrow NNLOJET and SHERPA are compatible with the data over the full measured range ATLAS Collab, JHEP 11 (2021) 169

Data -+

DIPHOX

NNLOJET

32

Diphoton production: testing pQCD

• Differential cross sections as functions of $m_{\gamma\gamma}$ and $p_{{
m T},\gamma\gamma}$:

configurations, which are not modelled well by NLO DIPHOX and benefit significantly from higher-order contributions included in NNLOJET and SHERPA

- DIPHOX fails to describe the data
- NNLOJET gives an improved description of the data, but there are regions in which an even higher-order calculation is needed to describe the data
- SHERPA agrees with the data within the (large) uncertainties

ATLAS Collab, JHEP 11 (2021) 169

Summary: shedding light on QCD @ LHC...

- Measurements of inclusive-photon, photon+jet, photon+2jets and diphoton production and ratios of cross sections from ATLAS and CMS @ $\sqrt{s}=13~{\rm TeV}$ have been presented
 - \rightarrow very precise measurements with smaller uncertainties than in theory
 - \rightarrow very stringent tests of pQCD up to NNLO
 - \rightarrow sensitivity to PDFs \rightarrow potential to constrain further the PDFs
 - \rightarrow tests of colour dynamics
 - \rightarrow tests of underlying production mechanisms

 The most recent results indicate that there are regions of phase space in which even higher-order calculations together with improved PDFs might be needed to improve the description of the precision measurements