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H1 setup
• electron proton collisions from 

HERA at                    

,       



• data shown here recorded in 
2003-2007, corresponding to 




• focus on higher  
range

s = 319 GeV
Ee = 27.6 GeV
Ep = 920 GeV

ℒ = 351.6 pb−1

Q2 > 150 GeV2

3H1 1-jettiness measurement in DIS DIS22

The H1 experiment at HERA
HERA electron-proton collider at DESY 

DESY, Hamburg, Germany

● HERA I: 1994 – 2000 
HERA II:  2003 – 2007

● Ee=27.6 GeV,  Ep=920GeV
√s = 300 or 319 GeV

H1 experiment at HERA

GEANT simulation of
the H1 experiment

'multi-purpose' detector
● Asymmetric design with trackers, calorimeter, 

solenoid, muon-chambers, forward & backward 
detectors, …

● More on H1 in talks by: 
H. Klest. V. Mikuni, M. Mondal, M. Arratia
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DIS kinematics

6

▪ Exchanged boson virtuality - Q2

▪ Sets hard scale of process

▪ Bjorken x 

▪ Fraction of proton’s momentum carried by 
struck quark*

▪ Bounded between 0 and 1

▪ Inelasticity – y

▪ Fraction of electron’s energy transferred to 
parton in proton rest frame

▪ The DIS kinematic variables can be 

measured with the scattered electron, 

hadronic final state, or combination of both

𝑄2 = 𝑠𝑥𝑦

* In the proton-infinite-momentum frame

DEEP INELASTIC SCATTERING KINEMATICS

• Photon virtuality 


• scale of perturbative process


• Bjorken  


• momentum fraction (infinite 
momentum frame) of proton


• Inelasticity 


• energy fraction (proton rest frame) 
transferred from electron to parton

Q2 = − q2

xB =
Q

2P ⋅ q

y =
P ⋅ q
P ⋅ k
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Breit frame
• define by 


• reference vectors                                 
                           




• two hemispheres (analogous to thrust 
hemispheres in ):


•  current hemisphere   


•  beam hemisphere     

qμ = (0,0,0, − Q)

n+ = (1,0,0,1)
n− = (1,0,0, − 1)

e+e−

ℋC pi ⋅ n+ > pi ⋅ n−

ℋB pi ⋅ n+ < pi ⋅ n−

2 Observables

2.1 Breit Frame

The Breit frame is the frame of reference where the incoming parton (at Born-level)

has its momentum reversed after the collision with the virtual boson. The proton

remnant-going direction is defined as ⌘ = +1 while the struck parton-going direction

is defined as ⌘ = �1. The region ⌘ > 0 is known as the remnant hemisphere (RH),

while the ⌘ < 0 region is known as the current hemisphere (CH). In the Breit frame,

the scattered electron tends to fall at midrapidity.

Figure 1: Illustration of the Born-level process in DIS. Image from Ref. [2].

The Breit frame is defined as the frame where

2x~P + ~q = 0

holds. Here ~P and ~q are defined as the four-momenta of the incoming proton beam

and the exchanged virtual boson. The boost from the lab frame to the Breit frame

thus depends on x and ~q, both of which can be reconstructed via any of the standard

kinematic reconstruction methods.

In the Breit frame, the maximum available longitudinal momentum is Q/2. At

Born-level, the Breit frame pT of the scattered parton is zero. Events with large amounts

of transverse momentum in the Breit frame are produced by multi-jet topologies. An

example of this is QCD compton scattering, where the quark recoils from an emitted

hard gluon and gains a non-zero pT .

2.2 Grooming Procedure

The Centauro jet algorithm uses an asymmetric clustering measure to preferentially

create a jet out of radiation in the current hemisphere of the Breit frame. This allows

– 3 –

[Makris ’21]
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1-jettiness

• 


• equivalently                                                                 

(in Breit frame)  thrust in DIS


• manifestly global (sensitive to radiation everywhere in phase space)


• equivalency allows measurement based on current hemisphere particles

τ1 =
1
Q ∑ min(pi ⋅ n+, pi ⋅ n−)

τ1 = 1 −
2
Q ∑

i∈ℋC

pz,i

→
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kinematic reconstruction methods.

In the Breit frame, the maximum available longitudinal momentum is Q/2. At

Born-level, the Breit frame pT of the scattered parton is zero. Events with large amounts

of transverse momentum in the Breit frame are produced by multi-jet topologies. An

example of this is QCD compton scattering, where the quark recoils from an emitted
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2.2 Grooming Procedure

The Centauro jet algorithm uses an asymmetric clustering measure to preferentially

create a jet out of radiation in the current hemisphere of the Breit frame. This allows
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[Makris ’21]

see also [Antonelli, Dasgupta, Salam ’00], 

[Dasgupta Salam ‘02]

see also [Stewart, Tackmann, Waalewijn ’10]

[Kang, Mantry, Qiu ’12] 

[Kang, Liu, Mantry  ‘13]
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H1 results
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H1 results
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• measured 
distributions in 
several  bins


• initial comparison 
to several parton 
shower MCs


• none provide a 
perfect description 
everywhere


• goal of 
[arXiv:2306.17736]: 
provide (matched) 
NLL results, and 
parton shower 
matching + merging

Q2, y

https://inspirehep.net/literature/2673388
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Calculation setup - Cliff notes
• CAESAR formalism for soft gluon resummation at NLL


• available as implementation in Sherpa


• multiplicative matching (  NLL’ accurate)


• necessary extensions for jet observables… :


• modified wide angle behaviour


• non-global logs


• … and for soft drop grooming


• CEASAR style formulas available

⇒

[Banfi, Salam, Zanderighi ’04]


[Gerwick, Höche, Marzani, Schumann ’15] 

[Baberuxki, Preuss, DR, Schumann ’19]


[Dasgupta, Khelifa-Kerfa, Marzani, Spannowski ‘12]

[Caletti, Fedkevych, Marzani, DR, Schumann, Soyez, Theeuwes ’21]


 [DR, Caletti, Fedkevych, Marzani, Schumann, Soyez ‘22]


[Dasgupta, Salam ’01]


[Larkoski, Marzani, Soyez, Thaler ’14]


[Baron, DR, Schumann, Schwanemann, Theeuwes ‘20]

https://inspirehep.net/literature/655163
https://inspirehep.net/literature/1330322
https://inspirehep.net/literature/1771860
https://inspirehep.net/literature/1121578
https://inspirehep.net/literature/1858240
https://inspirehep.net/literature/1993727
https://inspirehep.net/literature/555905
https://inspirehep.net/literature/1281068
https://inspirehep.net/literature/1837131
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Calculation setup - details
• master formula for rIRC save observable: [Banfi, Salam, Zanderighi ’04]


• ingredients known analytically in this case


• matching:


• note  included  using “projection to Born” technique in Sherpa 


• cross sections / normalisation correct to NNLO, distributions at NLO       
 overall label as (N)NLO

Σ(2)
fo →

→

the expansion of a leading order approximation. This of course introduces additional e↵ects beyond our
considered logarithmic accuracy. We argue it is safe to ignore those, given the generally small numerical
size of these contributions as seen for example in [28]. We here for the first time apply the CAESAR

implementation in SHERPA to an observable that is sensitive to the PDF ratio (note this only applies to
the ungroomed version of thrust) and at the same time match to the (N)NLO calculation. We hence
need to take care of the expansion to one order higher. Following [27], the numerator of Eq. (23) can to
NLL accuracy be written and expanded in powers of ↵s as

f(x, e
�2L/(a+b)

µ
2

F ) = exp


�T

✓
L

a + b

◆
P⌦
�
f(x, µ

2

F )

⇠ 1 �
✓

T
(1)

✓
L

a + b

◆
+ T

(2)

✓
L

a + b

◆◆
P ⌦ f(x, µ

2

F )

+
1

2

✓
T

(1)

✓
L

a + b

◆◆2

P ⌦ P ⌦ f(x, µ
2

F ) + O
�
↵
3

s

�
, (24)

where T
(i) denotes the ith term obtained by expanding the integrated strong coupling

T (L) = � 1

⇡�0

ln(1 � 2↵s�0L) (25)

in powers of ↵s. The bold-faced symbols represent matrices (of splitting functions, P) and vectors
(f = (fu, fd, fs, . . . )) in flavour space, and the convolution is given by

P ⌦ f(x, µ
2

F ) =

Z
1

x

dz

z
P
⇣

x

z

⌘
f(z, µ

2

F ) . (26)

New terms at O(↵2

s
) hence originate from the higher order expansion of T , mixed terms with other

parts of the resummation multiplying the leading order expansion, and the convolution of two splitting
functions with the PDF in the last line of Eq. (24). The last one is the only one that requires a non-trivial
implementation. We use the expressions from [84] for convoluted splitting functions, and solve the final
integral for the convolution with the PDF through Monte Carlo integration, as done at leading order.

We match our resummed calculation in the multiplicative matching scheme along the lines of [83],
which we briefly recap here. The matching to fixed order is done at the level of cumulative distributions
⌃(v). Note that we have dropped the label for the partonic channel since in our case there is a single
one only. We expand the inclusive cross section �fo as well as the fixed-order and resummed cumulative
distributions, ⌃fo and ⌃res in series of ↵s:

�fo = �
(0) + �

(1)

fo
+ �

(2)

fo
+ . . . , (27)

⌃fo(v) = �
(0) + ⌃(1)

fo
(v) + ⌃(2)

fo
(v) + . . . , (28)

⌃res(v) = �
(0) + ⌃(1)

res
(v) + ⌃(2)

res
(v) + . . . , (29)

where the number in parentheses indicates the respective order in ↵s, and �
(0) denotes the Born-level

cross section. Our final matched expression for the cumulative distribution, with the dependencies on
the observable value suppressed, reads:

⌃matched = ⌃res

 
1 +

⌃(1)

fo
� ⌃(1)

res

�(0)
+

⌃(2)

fo
� ⌃(2)

res

�(0)
� ⌃(1)

res

�(0)

⌃(1)

fo
� ⌃(1)

res

�(0)

!
. (30)

Note that, compared to our earlier works, we use ⌃(2) directly, thus reproducing the inclusive cross section

to one order higher, what requires the calculation of �
(2)

fo
. Importantly, the resummed NLL result ⌃res is

multiplied by

⌃(1)

fo
� ⌃(1)

res

�(0)
! ↵s

2⇡
C1 as v ! 0 , (31)

9

4 (N)NLO + NLL0 resummation for 1-jettiness in DIS

The 1-jettiness observable considered here is equivalent to thrust in DIS, which has originally been
resummed at NLL accuracy in [24, 75]. The more general n-jettiness was suggested in [76], and has been
resummed to NNLL accuracy [77]. For 1-jettiness, analytic fixed order results at LO have been presented
in [78], and the NLL calculation has been matched to fixed order at NLO accuracy in [79]. The resummed
calculations in this formalism for event shapes in DIS were extended to N3LL in [80]. Grooming for DIS
has first been suggested in [41] based on jets defined with the CENTAURO jet algorithm [42]. The same
Ref. [41] also provided NNLL results for both 1-jettiness and jet mass after soft drop grooming. Non-
perturbative corrections have there been modelled through a two-parameter shape function [81, 82]. To
our knowledge there are no published results studying these observables including matching to fixed order
or using a fixed order calculation alone.

4.1 NLL resummation in the CAESAR approach

To perform the NLL resummation of logarithms L of event shapes in DIS we use the implementation
of the CAESAR formalism [27] available in the SHERPA framework [28, 83]. For a recursive infrared and
collinear (rIRC) safe observable, the cumulative cross section for observable values up to v = exp(�L)
can be expressed to all orders, in general as a sum over partonic channels �, as follows:

⌃res(v) =
X

�

⌃�
res

(v) , with

⌃�
res

(v) =

Z
dB�

d��

dB�
exp

"
�
X

l2�

R
B�
l (L)

#
PB�(L)SB�(L)FB�(L)H�(B�) ,

(20)

where d��
dB�

is the fully di↵erential Born cross section for channel � and H implements the kinematic cuts
applied to the Born phase space B. For a 2-jet observable like thrust in DIS, there is only one relevant
partonic Born channel, corresponding to an incoming and an outgoing quark. This also implies that the
soft function S, which implements colour evolution, is trivial in our case. Further, since we are dealing with
an additive observable, the multiple emission function F is simply given by F(L) = e

��ER0
/�(1 + R

0),
with R

0(L) = @R/@L and R(L) =
P

l2� Rl(L). The collinear radiators Rl for the hard legs l were
computed in [27] for a general observable V scaling for the emission of a soft-gluon of relative transverse

momentum k
(l)
t and relative rapidity ⌘

(l) with respect to leg l as

V (k) =

 
k
(l)
t

µQ

!a

e
�bl⌘

(l)

dl (µQ) gl (�) . (21)

For the case of 1-jettiness we are focusing on in this publication, we have a = bl = 1, and fixing µ
2

Q = Q
2

also dlgl = 1 since there is no dependence on the azimuthal angle �. The precise form of the logarithm
can be varied according to

L ! ln
h
xL

v
� xL + 1

i
! ln

xL

v
as v ! 0 , (22)

to estimated the impact of sub-leading logarithms, while leaving the distribution at the kinematic endpoint
v ⇠ 1 unchanged. Note this implies an additional contribution to Rl(L) to restore NLL accuracy.

The PDF factor P, in our study applicable only to the hadronic beam, is here given by

P =
fq(x, e

�2L/(a+b)
µ
2

F )

fq(x, µ
2

F )
, (23)

corrects for the true initial-state collinear scale. We thereby account for the full DGLAP evolution by
calculating a simple ratio. For the purpose of matching to a fixed order calculation, we also need the
expansion of the ratio to a given order in ↵s. We generally follow the approach of [27] to implement

8

[Höche, Kuttimalai, Li ’18]
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Non-perturbative corrections

dσHL

dv
=

dσMC,HL /dv

dσMC,PL /dv

dσPL

dv

Z+jet, anti-kt, R = 0.4
pT,jet 2 [120, 150] GeV
charged particles

CMS data
NLO + NLL0 ⇥ HL/PL
NLO + NLL0 ⌦ T(HL|PL)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1
ds

/d
p T

d2 s
dp

T
dl

1 0.
5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Groomed LHA l1
0.5

Th
eo

ry
/D

at
a

Z+jet, anti-kt, R = 0.8
pT,jet 2 [120, 150] GeV
charged particles

CMS data
NLO + NLL0 ⇥ HL/PL
NLO + NLL0 ⌦ T(HL|PL)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1
ds

/d
p T

d2 s
dp

T
dl

1 0.
5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Groomed LHA l1
0.5

Th
eo

ry
/D

at
a

Figure 5: Hadron-level predictions for the groomed Les Houches Angularity �
1

0.5 in Z+jet production,
measured on the charged hadrons in R = 0.4 (left) and R = 0.8 (right) jets with pT,jet 2 [120, 150]GeV.
Results are obtained based on the NLO + NLL0 perturbative predictions including NP correction using
the HL/PL ratio (⇥HL/PL) and the new transfer-matrix approach (⌦T (HL|PL)).

groomed charged-tracks jets, was compared to analytical predictions at NLL0 accuracy obtained from
SCET [48, 49]. Two techniques for correcting the analytic predictions for NP e↵ects and the selection of
charged-particle jets were considered. The first being based on “folding” the NLL0 result with a response
matrix extracted from MC simulations that maps parton-level jets with (pPL

T ,�
PL) to hadron-level jets

with (pHL

T ,�
HL), thereby accounting for hadronisation corrections only. To incorporate UE e↵ects an

additional bin-wise correction has been applied. As an alternative a NP shape-function approach [49] to
simultaneously correct for hadronisation and the UE has been employed. We refer to [54] for additional
details.

4 Results for jet angularities in dijet and Z+jet production

In this section, we present the results obtained from the calculation detailed in section 3, i.e NLO+NLL0

accurate predictions accounting for NP corrections through the transfer-matrix approach. We start in
section 4.1 with a few considerations at the purely perturbative level. In section 4.2, we then discuss our
results with NP corrections included, and present full hadron-level predictions at NLO QCD accuracy
from SHERPA.

4.1 Selected parton-level results

As discussed in section 3.2, the implementation of the CAESAR resummation in the SHERPA plugin [56]
relies on a separation into di↵erent flavour channels �. Since we obtain fully exclusive parton-level events
from COMIX, we can easily apply the (BSZ) flavour-clustering algorithm from Ref. [83] so as to identify
the flavour assignment of a given phase-space point. We use this algorithm iteratively, following the
procedure introduced in [51] for the leading jet in the Z+jet case. This can trivially be extended to the
central/forward jet in dijet production. It allows us to talk about the flavour of a particular anti-kt jet
of radius R in an IR-safe way. Note that in practice we run the bland variant of the algorithm whereby
each jet gets identified as either quark- or gluon-like. While flavour identification is a necessity in the
context of our matching scheme (at least at LO in the angularity distribution), these results also provide
a well defined way to analyse the flavour decomposition of jet cross sections. Such truth-level flavour

14

 examples from [DR, 
Caletti, Fedkevych, 

Marzani, Schumann, 
Soyez ‘22]

• earlier approach:
 • here, extract transition matrix 
between parton- and hadron level 
bins in  and observable pT v

dmσHL

dvh,1…dvh,m
= ∫ dm ⃗vp 𝒯( ⃗vh | ⃗vp)

dmσPL

dvp,1…dvp,m

https://inspirehep.net/literature/1993727
https://inspirehep.net/literature/1993727
https://inspirehep.net/literature/1993727
https://inspirehep.net/literature/1993727
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(N)NLO+NLL’+HAD results
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Figure 2: Distributions of ungroomed 1-jettiness in selected y � Q
2 bins, at di↵erent stages of the

calculation, at NLO + NLL0 accuracy, including the normalisation at NNLO ((N)NLO + NLL0) accuracy,
and including non-perturbative corrections. All results correspond to DIS kinematics with y 2 [0.4, 0.7]
and the plots represent from left to right regions of Q

2
/GeV2 2 [150, 200], [440, 700], and [3500, 8000],

respectively. The lower panels present the ratio to the plain NLO + NLL0 result.
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Figure 3: Distributions of 1-jettiness in selected y � Q
2 bins, i.e. y 2 [0.4, 0.7] and, from left to right,

Q
2
/GeV2 2 [150, 200], [440, 700], and [3500, 8000], respectively. Shown are hadron level MEPS@NLO

predictions from SHERPA and results at (N)NLO + NLL0 + NP accuracy. The lower panels present the
ratio to the MEPS@NLO result.

We now turn to the presentation of the hadron level results from MEPS@NLO simulations with
SHERPA as outlined in Sec. 3 and compare those to the (N)NLO + NLL0 + NP predictions. In Fig. 3
we compare the respective results for the three considered kinematic regions. We observe an overall
fair agreement between the matrix element improved shower simulations at hadron level obtained from
SHERPA and the resummed and matched calculation at (N)NLO+NLL0+NP accuracy, corrected for non-
perturbative e↵ects. In general the merged prediction features a somewhat harder spectrum, i.e. favours
somewhat larger observable values. This might also be attributed to the inclusion of the exact tree-
level three- and four-jet matrix elements, see Eq. (11). These contributions feature LO scale dependence
and are thus the source for the somewhat enlarged theoretical uncertainties in the shower simulation
towards larger values of ⌧ . However, the regions of small 1-jettiness agree within uncertainties for all
three kinematic regions, up until the peak of the respective distribution. Towards the kinematic endpoint,
the two approaches tend to agree again, with both calculations predicting very similar cross sections for
events with ⌧ ⇠ 1.

Besides the plain 1-jettiness event shape we here also consider the e↵ect of soft-drop grooming the
hadronic final state. In Fig. 4 we show resummed predictions for groomed 1-jettiness, referred to as
⌧
SD in what follows, integrated over the full Q

2 range, i.e. Q
2 2 [150, 20000] GeV2, and the inelasticity

region y 2 [0.2, 0.7]. We compiled predictions for three commonly considered values of zcut, namely
zcut = 0.05, 0.1, 0.2, thereby always assuming the angular grooming parameter � = 0. As seen for the
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• 1-jettiness with  at “low”, mid and high 


• small corrections from NNLO normalisation


• large non-perturbative corrections!

0.4 < y < 0.7 Q2
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Sherpa MEPS@NLO - setup
• using Sherpa 3.0.0 


• MC@NLO matching, CKKW 
merging to include


• tuning of beam-fragmentation 
parameters in DIS


• replica tunes to estimate related 
uncertainty

β

parameter parameter tag tuning range central tune uncertainty variation

↵B ALPHA B [-1, 20] 14.2 [13.9, 14.8]
�B BETA B [0.5, 4] 1.59 [1.14, 1.60]
�B GAMMA B [1, 20] 8.11 [8.06, 9.47]

Table 1: AHADIC++ model parameters considered in the tuning. Quoted are the initial parameter interval,
the obtained central-tune value, and uncertainty ranges extracted from 7 replica tunes.
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Figure 1: SHERPA predictions for the hadronisation tune, for observables measured by the H1 and ZEUS
experiments at

p
s = 296 GeV. Shown is the transverse energy flow (left) [69], thrust ⌧

0 (center) [9] and
the charged particle multiplicity nch (right) [71]. Note, the statistical uncertainties of the simulated data
is small compared to the non-perturbative tuning uncertainties indicated by the blue band.

requires an initial set of Monte Carlo runs, that are then used to generate a polynomial, bin-wise ap-
proximation of the Monte Carlo response with respect to changes in the hadronisation-model parameters.
The predictions for the grid points are generated using the calculational setup described in Sec. 3.1.

The selection of observables considered for the tuning includes classic variables sensitive to hadroni-
sation. In particular, we use event-shape distributions like thrust and jet broadening [9], energy flows
and charged particle spectra [69, 70] and multiplicities [71, 72], as well as quark fragmentation func-
tions [73, 74]. Further details on the used analyses and observables are provided in App. A.

Given we consider model parameters newly introduced that have not been tuned before, we have
little prior knowledge about their preferred values and thus need to start out with rather wide parameter
ranges. To narrow these down, we make an initial pass to get a rough idea of the relevant regions. The
corresponding ranges are outlined in Tab. 1. For a second run we restrict the tuning ranges using the
results of the exploration run, resulting in an iterative procedure to further narrow down the considered
parameter intervals. The initial run, with largely unconstrained parameter values also serves the purpose
of filtering out the most sensitive observables from the considered analyses. Observables or observable
regions that remain unchanged under the variation of the tuning parameters are not suited for the
following tunes and therefore dropped.

Similar to the procedure described in Ref. [26], we generate a set of equivalent tunes that only di↵er
by the Monte Carlo runs used to construct the polynomial approximations as described above. The tunes
are thus fully equivalent and can be used to estimate the non-perturbative model-parameter uncertainties
as illustrated in Fig. 1 for a selection of data from the HERA experiments. We call these alternative
parameter sets replica tunes. To reflect the uncertainty associated with the three beam-fragmentation
parameters we here consider seven such replicas, cf. Tab. 1 for the resulting uncertainty variations.

7

3 DIS Monte Carlo simulations with SHERPA

We derive hadron-level predictions for the DIS event shapes using a pre-release version of SHERPA-3.0 [43],
that will supersede the current SHERPA-2.2 series [44]. This major release features extended physics-
modelling capabilities, including, for example, the automated evaluation of electroweak (EW) corrections
at the one-loop order [45–47] or in the Sudakov approximation [48, 49], a complete reimplementation
of the cluster hadronisation model [25], as well as an improved user interface based on Yaml [50]. To
analyse our simulated event samples we employ the RIVET analysis package [51]. For jet clustering we
use the CENTAURO plugin [42] within the FASTJET framework [52].

3.1 MEPS@NLO predictions for DIS

The basics of simulating DIS processes by merging parton-shower evolved higher-multiplicity tree-level
matrix elements within the SHERPA framework have been presented in [34]. We here lift this to next-to-
leading order (NLO) accurate QCD matrix elements. To this end, we consider the massless single and
dijet production channels in neutral current DIS at NLO, and three- and four-jets at leading order (LO),
i.e.

e
�

p ! e
� + 1, 2 j @ NLO + 3, 4 j @ LO, (11)

where we consider u, d, s quarks to be massless and add additional LO processes for the remaining mas-
sive quarks. The massless and massive channels get matched to the SHERPA Catani–Seymour dipole
shower [53] and merged according to the MEPS@NLO [54] and MEPS@LO [55] truncated shower for-
malism, respectively. The contributing one-loop amplitudes are obtained from OPENLOOPS [56], that
employs the COLLIER library [57] for the evaluation of tensor and scalar integrals. All tree-level matrix
elements are provided by COMIX [58], and PDFs are obtained from LHAPDF [59].

To determine the perturbative scales entering the calculation, the final states of the multi-parton
final states get clustered to a two-to-two core process [55]. For the reconstructed core the factorisation,
renormalisation, and parton shower starting scale are set to

µF = µR = µQ := µcore . (12)

For jet-associated DIS three configurations need to be distinguished [34]:

(i) virtual photon exchange, i.e. ej ! ej, where µ
2

core
= Q

2,

(ii) interaction of the virtual photon with a QCD parton, i.e. �
⇤
j ! j1j2, with µ

2

core
= m?,1m?,2

defined as the product of the two jet transverse masses m?,i =
q

m
2

i + p
2

?,i relative to the beam

axis,

(iii) and pure QCD channels, i.e. jj ! jj, where µ
2

core
= � 1

p
2

�
s
�1 + t

�1 + u
�1

��1

is a scaled harmonic

mean of the Mandelstam variables s, t, u.

Beyond the core process, the arguments of the strong-coupling factors are determined by the clustering
algorithm [55]. The merging-scale parameter, separating the di↵erent jet-multiplicity contributions, is
dynamically set to

Qcut =
Q̄cutp

1 + Q̄
2
cut

/Q2
, using Q̄cut = 5GeV . (13)

As parton density functions we use the NNLO PDF4LHC21 40 pdfas set [60] with ↵S(M2

Z)=0.118.
To estimate perturbative uncertainties, we consider 7-point variations of the factorisation (µF ) and

renormalisation (µR) scales in the matrix element and the parton shower that get evaluated on-the-fly [61],
i.e.

{( 1
2
µR,

1

2
µF), ( 1

2
µR, µF), (µR,

1

2
µF), (µR, µF), (µR, 2µF), (2µR, µF), (2µR, 2µF)} . (14)

The resummation scale µQ we keep fixed.

5
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Figure 2: Distributions of ungroomed 1-jettiness in selected y � Q
2 bins, at di↵erent stages of the

calculation, at NLO + NLL0 accuracy, including the normalisation at NNLO ((N)NLO + NLL0) accuracy,
and including non-perturbative corrections. All results correspond to DIS kinematics with y 2 [0.4, 0.7]
and the plots represent from left to right regions of Q

2
/GeV2 2 [150, 200], [440, 700], and [3500, 8000],

respectively. The lower panels present the ratio to the plain NLO + NLL0 result.
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Figure 3: Distributions of 1-jettiness in selected y � Q
2 bins, i.e. y 2 [0.4, 0.7] and, from left to right,

Q
2
/GeV2 2 [150, 200], [440, 700], and [3500, 8000], respectively. Shown are hadron level MEPS@NLO

predictions from SHERPA and results at (N)NLO + NLL0 + NP accuracy. The lower panels present the
ratio to the MEPS@NLO result.

We now turn to the presentation of the hadron level results from MEPS@NLO simulations with
SHERPA as outlined in Sec. 3 and compare those to the (N)NLO + NLL0 + NP predictions. In Fig. 3
we compare the respective results for the three considered kinematic regions. We observe an overall
fair agreement between the matrix element improved shower simulations at hadron level obtained from
SHERPA and the resummed and matched calculation at (N)NLO+NLL0+NP accuracy, corrected for non-
perturbative e↵ects. In general the merged prediction features a somewhat harder spectrum, i.e. favours
somewhat larger observable values. This might also be attributed to the inclusion of the exact tree-
level three- and four-jet matrix elements, see Eq. (11). These contributions feature LO scale dependence
and are thus the source for the somewhat enlarged theoretical uncertainties in the shower simulation
towards larger values of ⌧ . However, the regions of small 1-jettiness agree within uncertainties for all
three kinematic regions, up until the peak of the respective distribution. Towards the kinematic endpoint,
the two approaches tend to agree again, with both calculations predicting very similar cross sections for
events with ⌧ ⇠ 1.

Besides the plain 1-jettiness event shape we here also consider the e↵ect of soft-drop grooming the
hadronic final state. In Fig. 4 we show resummed predictions for groomed 1-jettiness, referred to as
⌧
SD in what follows, integrated over the full Q

2 range, i.e. Q
2 2 [150, 20000] GeV2, and the inelasticity

region y 2 [0.2, 0.7]. We compiled predictions for three commonly considered values of zcut, namely
zcut = 0.05, 0.1, 0.2, thereby always assuming the angular grooming parameter � = 0. As seen for the
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• compared to resummed results (see previous slide)


• agreement in soft and very hard regions, differences in “interpolation 
region”
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▪ Whole event is clustered into 
one “jet”
– Use asymmetric Centauro jet 

clustering algorithm suited for 
asymmetric DIS

▪ Iteratively de-cluster until 
grooming condition is passed
– Removes particles unlikely to be 

associated with struck parton

▪ Groomed e+p events are similar 
to groomed jets!

▪ Does grooming improve the 
model description of the data?

p+p Soft Drop condition DIS grooming condition 

Full event

Groomed 
eventEVENT GROOMING

14

Soft drop method

bl = 1

� = 0� = 2

soft-quark grooming (final state)

ln
(k

(l
)

t
/µ

Q
)

⌘(l)

• popular jet substructure technique:                            
[Larkoski, Marzani, Soyez, Thaler ’14]


• decluster given jet


• go through sequence, remove softer branch 
if too soft (relative to parameter )zcut

idea: avoid  
soft wide-angle 
phase space

• extended to DIS in


• based on Centauro jet measure


• calculation based on implementation in

[Makris ’21]
[Arratia, Makris, Neill, 

Ringer, Sato ’21]

[Baron, DR, Schumann, Schwanemann, Theeuwes ’21]

http://www.apple.com/uk
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Non-perturbative corrections with SD
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(N)NLO+NLL’+HAD results
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Figure 4: Distributions of groomed 1-jettiness, at di↵erent stages of the calculation, at NLO+NLL0 accu-
racy, including the normalisation at NNLO ((N)NLO + NLL0) accuracy, and including non-perturbative
corrections. From left to right the plots represent predictions for the grooming parameter zcut =
0.05, 0.1, 0.2, respectively. The lower panels present the ratio to the plain NLO + NLL0 result.
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Figure 5: Distributions of groomed 1-jettiness. Shown are hadron level MEPS@NLO predictions from
SHERPA and results at (N)NLO + NLL0 + NP accuracy. From left to right the plots represent predictions
for the grooming parameter zcut = 0.05, 0.1, 0.2, respectively. The lower panels present the ratio to the
MEPS@NLO result.

ungroomed case, we note rather small e↵ects of the NNLO normalisation corrections compared to the
NLO+NLL0 calculation. Also the systematic uncertainties hardly change from NLO to NNLO. However,
the size of the non-perturbative corrections is significantly reduced relative to the ungroomed case, staying
below 50% and being largely flat over a wide range of ⌧

SD, apart from very low values of 1-jettiness and
at the endpoint ⌧

SD ⇠ 1. This confirms the potential of soft-drop grooming to mitigate hadronisation
e↵ects for event shape observables also in DIS, seen before in e

+
e
� [38, 39] and pp collisions [40].

The comparison of the (N)NLO + NLL0 + NP results with hadron level simulations at MEPS@NLO
accuracy is presented in Fig. 5. For all the zcut values, we observe good agreement between our SHERPA

simulation and the resummation calculation somewhat better than for the ungroomed case. In all three
cases, the (N)NLO+NLL0 +NP calculation predicts a larger cross section in the ⌧ ⇠ 1 bin, although still
compatible within the uncertainty of the event generator for zcut = 0.05 and the combined uncertainty
for both calculations for zcut = 0.1. Apart from this last bin, for these two zcut values the resummation
calculation is consistently below the SHERPA simulation. In the case of zcut = 0.05, this happens flat over
the full spectrum ⌧

SD
< 1, while for increasing zcut a slight shape develops, with the (N)NLO+NLL0+NP

cross section decreasing faster for ⌧
SD

< zcut than what is seen in the Monte Carlo simulation.
It will be interesting to compare the (N)NLO+NLL0 +NP predictions and the SHERPA MEPS@NLO

simulations with the data of upcoming measurements by the H1 experiment. This will shed light on the
found deviations between the two sets of predictions and possibly guide the development of yet improved
theoretical predictions, e.g. through the inclusion of next-to-next-to-leading logarithmic corrections.
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Figure 2: Distributions of ungroomed 1-jettiness in selected y � Q
2 bins, at di↵erent stages of the

calculation, at NLO + NLL0 accuracy, including the normalisation at NNLO ((N)NLO + NLL0) accuracy,
and including non-perturbative corrections. All results correspond to DIS kinematics with y 2 [0.4, 0.7]
and the plots represent from left to right regions of Q

2
/GeV2 2 [150, 200], [440, 700], and [3500, 8000],

respectively. The lower panels present the ratio to the plain NLO + NLL0 result.
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Figure 3: Distributions of 1-jettiness in selected y � Q
2 bins, i.e. y 2 [0.4, 0.7] and, from left to right,

Q
2
/GeV2 2 [150, 200], [440, 700], and [3500, 8000], respectively. Shown are hadron level MEPS@NLO

predictions from SHERPA and results at (N)NLO + NLL0 + NP accuracy. The lower panels present the
ratio to the MEPS@NLO result.

We now turn to the presentation of the hadron level results from MEPS@NLO simulations with
SHERPA as outlined in Sec. 3 and compare those to the (N)NLO + NLL0 + NP predictions. In Fig. 3
we compare the respective results for the three considered kinematic regions. We observe an overall
fair agreement between the matrix element improved shower simulations at hadron level obtained from
SHERPA and the resummed and matched calculation at (N)NLO+NLL0+NP accuracy, corrected for non-
perturbative e↵ects. In general the merged prediction features a somewhat harder spectrum, i.e. favours
somewhat larger observable values. This might also be attributed to the inclusion of the exact tree-
level three- and four-jet matrix elements, see Eq. (11). These contributions feature LO scale dependence
and are thus the source for the somewhat enlarged theoretical uncertainties in the shower simulation
towards larger values of ⌧ . However, the regions of small 1-jettiness agree within uncertainties for all
three kinematic regions, up until the peak of the respective distribution. Towards the kinematic endpoint,
the two approaches tend to agree again, with both calculations predicting very similar cross sections for
events with ⌧ ⇠ 1.

Besides the plain 1-jettiness event shape we here also consider the e↵ect of soft-drop grooming the
hadronic final state. In Fig. 4 we show resummed predictions for groomed 1-jettiness, referred to as
⌧
SD in what follows, integrated over the full Q

2 range, i.e. Q
2 2 [150, 20000] GeV2, and the inelasticity

region y 2 [0.2, 0.7]. We compiled predictions for three commonly considered values of zcut, namely
zcut = 0.05, 0.1, 0.2, thereby always assuming the angular grooming parameter � = 0. As seen for the
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Reminder: without grooming

Grooming achieves significant 
reduction of non-perturbative 
corrections! 
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Sherpa MEPS@NLO results with SD
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Figure 4: Distributions of groomed 1-jettiness, at di↵erent stages of the calculation, at NLO+NLL0 accu-
racy, including the normalisation at NNLO ((N)NLO + NLL0) accuracy, and including non-perturbative
corrections. From left to right the plots represent predictions for the grooming parameter zcut =
0.05, 0.1, 0.2, respectively. The lower panels present the ratio to the plain NLO + NLL0 result.
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Figure 5: Distributions of groomed 1-jettiness. Shown are hadron level MEPS@NLO predictions from
SHERPA and results at (N)NLO + NLL0 + NP accuracy. From left to right the plots represent predictions
for the grooming parameter zcut = 0.05, 0.1, 0.2, respectively. The lower panels present the ratio to the
MEPS@NLO result.

ungroomed case, we note rather small e↵ects of the NNLO normalisation corrections compared to the
NLO+NLL0 calculation. Also the systematic uncertainties hardly change from NLO to NNLO. However,
the size of the non-perturbative corrections is significantly reduced relative to the ungroomed case, staying
below 50% and being largely flat over a wide range of ⌧

SD, apart from very low values of 1-jettiness and
at the endpoint ⌧

SD ⇠ 1. This confirms the potential of soft-drop grooming to mitigate hadronisation
e↵ects for event shape observables also in DIS, seen before in e

+
e
� [38, 39] and pp collisions [40].

The comparison of the (N)NLO + NLL0 + NP results with hadron level simulations at MEPS@NLO
accuracy is presented in Fig. 5. For all the zcut values, we observe good agreement between our SHERPA

simulation and the resummation calculation somewhat better than for the ungroomed case. In all three
cases, the (N)NLO+NLL0 +NP calculation predicts a larger cross section in the ⌧ ⇠ 1 bin, although still
compatible within the uncertainty of the event generator for zcut = 0.05 and the combined uncertainty
for both calculations for zcut = 0.1. Apart from this last bin, for these two zcut values the resummation
calculation is consistently below the SHERPA simulation. In the case of zcut = 0.05, this happens flat over
the full spectrum ⌧

SD
< 1, while for increasing zcut a slight shape develops, with the (N)NLO+NLL0+NP

cross section decreasing faster for ⌧
SD

< zcut than what is seen in the Monte Carlo simulation.
It will be interesting to compare the (N)NLO+NLL0 +NP predictions and the SHERPA MEPS@NLO

simulations with the data of upcoming measurements by the H1 experiment. This will shed light on the
found deviations between the two sets of predictions and possibly guide the development of yet improved
theoretical predictions, e.g. through the inclusion of next-to-next-to-leading logarithmic corrections.
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• differences significantly reduced compared to ungroomed case  agreement 
within uncertainties for most   values


• some discrepancies appearing around transition point for larger 

→
τ

zcut
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H1 results
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• groomed 1-jettiness, measured in larger  range


• comparison agains several MC generators
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Outlook - groomed mass
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• further measurements:


• mass of groomed Centauro jet


• same techniques apply             
for calculation


• new transfer matrices, NLO 
calculation necessary                   

 work in progress with               
Steffen Schumann,                      
Leon Stöcker

→
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Summary
• Presented preliminary measurements of 1-jettiness and groomed 1-

jettiness with the H1 detector at 


• New calculations


• state-of-the art Monte Carlo predictions with Sherpa at  
MEPS@NLO accuracy: 


• (N)NLO+NLL’+HAD predictions from Sherpa+CAESAR


• renewed interest, both experimentally and theoretically in light of 
upcoming EIC and proposals like LHeC, FCC-eh

s = 319 GeV

3 DIS Monte Carlo simulations with SHERPA

We derive hadron-level predictions for the DIS event shapes using a pre-release version of SHERPA-3.0 [43],
that will supersede the current SHERPA-2.2 series [44]. This major release features extended physics-
modelling capabilities, including, for example, the automated evaluation of electroweak (EW) corrections
at the one-loop order [45–47] or in the Sudakov approximation [48, 49], a complete reimplementation
of the cluster hadronisation model [25], as well as an improved user interface based on Yaml [50]. To
analyse our simulated event samples we employ the RIVET analysis package [51]. For jet clustering we
use the CENTAURO plugin [42] within the FASTJET framework [52].

3.1 MEPS@NLO predictions for DIS

The basics of simulating DIS processes by merging parton-shower evolved higher-multiplicity tree-level
matrix elements within the SHERPA framework have been presented in [34]. We here lift this to next-to-
leading order (NLO) accurate QCD matrix elements. To this end, we consider the massless single and
dijet production channels in neutral current DIS at NLO, and three- and four-jets at leading order (LO),
i.e.

e
�

p ! e
� + 1, 2 j @ NLO + 3, 4 j @ LO, (11)

where we consider u, d, s quarks to be massless and add additional LO processes for the remaining mas-
sive quarks. The massless and massive channels get matched to the SHERPA Catani–Seymour dipole
shower [53] and merged according to the MEPS@NLO [54] and MEPS@LO [55] truncated shower for-
malism, respectively. The contributing one-loop amplitudes are obtained from OPENLOOPS [56], that
employs the COLLIER library [57] for the evaluation of tensor and scalar integrals. All tree-level matrix
elements are provided by COMIX [58], and PDFs are obtained from LHAPDF [59].

To determine the perturbative scales entering the calculation, the final states of the multi-parton
final states get clustered to a two-to-two core process [55]. For the reconstructed core the factorisation,
renormalisation, and parton shower starting scale are set to

µF = µR = µQ := µcore . (12)

For jet-associated DIS three configurations need to be distinguished [34]:

(i) virtual photon exchange, i.e. ej ! ej, where µ
2

core
= Q

2,

(ii) interaction of the virtual photon with a QCD parton, i.e. �
⇤
j ! j1j2, with µ

2

core
= m?,1m?,2

defined as the product of the two jet transverse masses m?,i =
q

m
2

i + p
2

?,i relative to the beam

axis,

(iii) and pure QCD channels, i.e. jj ! jj, where µ
2

core
= � 1

p
2

�
s
�1 + t

�1 + u
�1

��1

is a scaled harmonic

mean of the Mandelstam variables s, t, u.

Beyond the core process, the arguments of the strong-coupling factors are determined by the clustering
algorithm [55]. The merging-scale parameter, separating the di↵erent jet-multiplicity contributions, is
dynamically set to

Qcut =
Q̄cutp

1 + Q̄
2
cut

/Q2
, using Q̄cut = 5GeV . (13)

As parton density functions we use the NNLO PDF4LHC21 40 pdfas set [60] with ↵S(M2

Z)=0.118.
To estimate perturbative uncertainties, we consider 7-point variations of the factorisation (µF ) and

renormalisation (µR) scales in the matrix element and the parton shower that get evaluated on-the-fly [61],
i.e.

{( 1
2
µR,

1

2
µF), ( 1

2
µR, µF), (µR,

1

2
µF), (µR, µF), (µR, 2µF), (2µR, µF), (2µR, 2µF)} . (14)

The resummation scale µQ we keep fixed.
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see also [Banfi, Ravviso, Jäger, Karlberg, Reichenbach, Zanderighi ’23]


