Measurements involving jets and extraction of fundamental SM parameters in CMS

Valentina Guglielmi on behalf of CMS collaboration

QCD@LHC 2023, Durham, 6.9.2023

HELMHOLTZ

Jets as a probe of QCD

• Test of QCD model: sensitive to α_S and PDFs

- Extract α_s
- Improve PDF precision

Jets production at LHC

- **Recent CMS measurements at** $\sqrt{s} = 13$ **TeV:**
 - Substructure
 - Energy correlators: <u>CMS-PAS-SMP-22-015</u>
 - Lund Jet plane: <u>CMS-PAS-SMP-22-007</u>
 - High energy jets
 - Azimuthal correlations: CMS-PAS-SMP-22-005
 - Inclusive jets: <u>JHEP 02 (2022) 142</u> + <u>Addendum (Nov. 2022)</u>
 - Multi-differential dijets: <u>CMS-PAS-SMP-21-008</u>

• Jets reconstructed using **anti-** k_T algorithm using $\Delta R = 0.8$ or (ak8) or 0.7 (ak7) or 0.4 (ak4) and **unfolded** to particle level

Measurement of energy correlators inside jets

Energy flow within a jet: jet energy correlators

$$E2C = \frac{d\sigma}{dx_L} = \sum_{i,j}^n d\sigma \frac{E_i E_j}{E^2} \delta(x_L - \Delta R_{i,j})$$
$$E3C = \frac{d\sigma}{dx_L} = \sum_{i,j,k}^n d\sigma \frac{E_i E_j E_k}{E^2} \times \delta(x_L - \max(\Delta R_{i,j}, \Delta R_{i,k}))$$

 ΔR : angular distance • Large weight: energetic x_L : maximum ΔR Low weight: soft

 \rightarrow "mapping" of parton stages in jet formation

Measurement of energy correlators inside jets $\rightarrow \alpha_s$

• Theory calculations at NLL, NNLL_{approx} Chen, Moult, Zhang, and Zhu, [arXiv:2004.11381] Lee, Meçaj, and Moult, [arXiv:2205.03414] Chen, Gao, Li, Xu, Zhang, and Zhu, [arXiv:2307.07510]

DESY.

Energy flow within a jet: jet energy correlators

$$E2C = \frac{d\sigma}{dx_L} = \sum_{i,j}^n d\sigma \ \frac{E_i E_j}{E^2} \ \delta(x_L - \Delta R_{i,j})$$

 $E3C = \frac{d\sigma}{dx_I} = \sum_{i=1}^n d\sigma \; \frac{E_i E_j E_k}{E^2} \times \; \delta(x_L - \max(\Delta R_{i,j}, \Delta R_{i,k}, \Delta R_{j,k}))$

• Novel method to extract α_s :

E3C/E2C (at LL) $\propto \alpha_{\rm S}(Q) \ln x_{\rm L} + O(\alpha_{\rm S}^2)$

PRD 102, 054012 (2020)

Illustration of partonic time evolution **MENT** SMP-22-015

• Datasets and trigger strategy:

- $L = 36.3 \, fb^{-1}$ (2016), leading jets with $p_T^{HLT} > 60$ GeV, jets ak4
- Phase space selection:
 - Exactly two jets
 - $|\eta| < 2.1$
 - $97 < p_T^{jet} < 1784 \text{ GeV} (8 \text{ bins})$ $p_T^{particle} > 1 \text{GeV}$
- Detector to particle level: **D'Agostini unfolding in 3D** (x_L , p_T^{jet} , energy weight)

Energy correlator ratio

- **Benefit of ratio:**
 - Suppressed ambiguity in jet quark/ gluon composition
 - **Reduced uncertainty**

 \rightarrow Slope of $\frac{E3C}{E2C}$, sensitive to α_s , vs p_T^{j}

• **Running of** α_s

• $\frac{E3C}{E2C} \propto \alpha_S(Q) \ln x_L + O(\alpha_S^2)$: ratio slope proportional to $\alpha_S(Q^2)$

> **Observation of running of** α_s **probing relatively low scales**

Energy correlator results

- Unfolded E3C/E2C vs NNLL_{approx}
 - Fit data to NNLL_{approx} with different $\alpha_{s}(m_{z})$

 $\alpha_S(m_Z) = 0.1229^{+0.0040}_{-0.0050} (< 4.1 \% \text{ rel})$

Most precise $\alpha_s(M_Z)$ from substructure

9

Measurement of Lund Jet Plane

Measurement of azimuthal correlations among jets

Topologies with at least 3 jets (~ α_s^3) (LO) $R_{\Delta\phi}(p_T) = \frac{\sum_{i=1}^{N_{jet}(p_T)} N_{nbr}^{(i)}(\Delta\phi, p_{Tmin}^{nbr})}{N_{jet}(p_T)} = \frac{N_{jet}(p_T)}{N_{jet}(p_T)}$ Inclusive jets (~ α_s^2) (LO)

- **Datasets and trigger strategy** • $L = 134 \, fb^{-1}$ (2016-2018), leading jets with $p_T^{HLT} > 40$ GeV, jets ak7
- **Phase space selection:** • $p_{T \min}^{nbr} > 100 \text{ GeV and } \frac{2\pi}{3} < \Delta \phi < \frac{7\pi}{8}$

neighbouring jets need to exceed

 $\Delta \phi$: azimuthal angle separation

Results of azimuthal correlations among jets

- Unfolded results vs QCD predictions (NLOJet++ × fastNLO) using different PDFs
- **Unfolded observable:**

$$R_{\Delta\phi}(p_T) = \frac{\sum_{n=0}^{\infty} nN(p_T, n)}{\sum_{n=0}^{\infty} N(p_T, n)}$$

Scales
$$\mu_r = \mu_f = \hat{H}_T/2$$
;
(\hat{H} = sum of parton energies)

- Scale uncertainty dominant
- **PDF uncertainty reduced in the ratio**

Results azimuthal correlations among jets

 $\mathsf{R}_{\Delta \phi}(\mathsf{p}_{\mathsf{T}})$

DESY.

р_т (GeV)

Results of azimuthal correlations among jets

DESY.

Using different PDFs: Sensitivity to $\alpha_S(m_Z)$

set	$\alpha_{S}(M_{Z})$	Exp	NP	PDF	EW	S
IP16	0.1197	0.0008	0.0007	0.0007	0.0002	+0 -0
8	0.1159	0.0013	0.0009	0.0014	0.0002	$+0 \\ -0$
HT20	0.1166	0.0013	0.0008	0.0010	0.0003	+(_(
PDF31	0.1177	0.0013	0.0011	0.0010	0.0003	$+0 \\ -0$

Spread in results due to PDF choice: ±0.0020 (PDF choice)

Results of azimuthal correlations among jets

DESY.

Summary of NLO results:

CDF 1.96 TeV (1j) ZEUS 320 GeV (1j) D0 1.96 TeV (1j) Mal.&Star. 7 TeV (1j) H1 319 GeV (1j) CMS 7 TeV (1j)		Inclusive iets
CMS 8 TeV (1j) Britzger (1j) CMS 8 TeV (2j) ZEUS 318 GeV (R32) D0 1.96 TeV (RdR)		diiets
CMS 7 TeV (R32) CMS 7 TeV (m3j) ATLAS 7 TeV (TEEC) ATLAS 7 TeV (ATEEC) H1 319 GeV (nj) ATLAS 8 TeV (TEEC)		multi-iets
ATLAS 8 TeV (ATEEC) ATLAS 8 TeV (RΔφ(HT)) CMS 13 TeV (RΔφ(pT)) 0.09 0.095 0.1 0.105	0.11 0.115 0.12 0.125 0.13 α _s (Ν	3 7 1 ² 2

Azimuthal correlations among jets: running of α_s

Inclusive jet production

- Cross section measurement of inclusive jets
 - For each jet of each event, p_T and y are measured

$$\frac{d^2\sigma}{dp_T dy} = \frac{N_{jets}^{eff}}{\mathscr{L}^* \Delta p_T^* \Delta y}$$

- Datasets and trigger strategy:
 - $L \sim 35 \, fb^{-1}$ (2016), leading jets with $p_T^{HLT} > 40$ GeV, jets ak4 and ak7
- Data compared to NNLO QCD corrected by non-perturbative and electroweak effect
- Addendum with NNLO interpolation grids

Inclusive jet production in details

PDFs dominate theory uncertainty \rightarrow **PDFs can be constrained using these data!**

QCD FIT @ NNLO (xFitter)

• Simultaneous fit at NNLO: PDFs and α_s

• Datasets:

- *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
- CMS inclusive jets at 13 TeV [arXiv:2111.10431]
- NNLO fast grids NNLOJet+applFast

• Improved precision of gluon PDF at high x

• Precision extraction of α_s at percent-level

$$\alpha_{S}(m_{Z}) = 0.1166 \pm 0.0017$$

$$0.0014_{fit} \pm 0.0007_{model} \pm 0.0004_{scale} \pm 0.0001_{param}$$

DESY.

Summary of NNLO results:

	332			
		H1 multijets at low Q ² : EPJC 67:1 (2010)		
		ZEUS incl. jets in γ^* p : NPB 864:1 (2012)		
		H1 multijets at high Q ² : arXiv 1406.4709 (2014)		
		H1+ZEUS (NC, CC, jets) : EPJC 75:580 (2015)		
NNLO		H1 incl. & dijet : EPJC 77:791 (2017)		
		CDF Incl. Jets : PRL 88:042001 (2002)		
	·•	D0 incl. jets : PRD 80:111107 (2009)		
	· · · · · · · · · · · · · · · · · · ·	D0 ang. correl. : PLB 718:56 (2012)		
N3LO	.	CDF Z p _T : arXiv:2203.05394 (2022)		
	·•	Malaescu & Starovoitov (ATLAS Incl. Jets 7TeV) EPJC 72:2041 (2012)		
	• •	ATLAS N ₃₂ 7TeV : ATLAS-CONF-2013-041 (2013)		
		ATLAS TEEC 7TeV : PLB 750:427 (2015)		
		ATLAS TEEC 8TeV : EPJC 77:872 (2017)		
	⊢●	ATLAS azimuth. decor. 8TeV : PRD 98:092004 (2018)		
	·•	CMS R ₃₂ 7TeV : EPJC 73:2604 (2013)		
NNLO		CMS tt cross section 7TeV : PLB 728:496 (2014)		
		CMS 3-Jet mass 7TeV : EPJC 75:186 (2015)		
	· · · · · · · · · · · · · · · · · · ·	CMS Incl. Jets 7TeV : EPJC 75:288 (2015)		
	· · · · ·	CMS Incl. Jets 8TeV : JHEP 03:156 (2017)		
	• •• •	CMS R ₃₂ 8TeV : CMS-PAS-SMP-16-008 (2017)		
NNLO	• • •	CMS tt cross section 13TeV : EPJC 79:368 (2019)		
	H H H	CMS multi-diff tt 13TeV : EPJC 80:658 (2020)		
NNLO	H	CMS Incl. Jets 13TeV : JHEP 22:142 (2022)		
		World Average : Prog. Theor. Exp. Phys. 083C01(2020)		
01	0 12			
$CMS Summary \qquad 0.14 \qquad 0.10 \qquad 0.10 \qquad 0.2$				

World Average: $\alpha_S(m_Z) = 0.1179 \pm 0.0009$

20

Jets as a probe of new physics

- **Probe BSM: New phenomena** described in **Effective Field Theory (EFT):**
 - 4-quark "contact interactions" (CI)

 $L_{SMEFT} = L_{SM} + \frac{4\pi}{2\Lambda^2} \sum c_n O_n$

• Check BSM effects are not absorbed into PDFs \rightarrow fit PDFs simultaneously with c_n

 c_n : Wilson Coefficient O_n : dimension-6 operators Λ : energy scale of new physics

SMEFT FIT @ NLO (xFitter)

- Simultaneous fit at NLO: c_1 + PDFs + $\alpha_s(m_Z) + m_t^{pole}$
- Datasets:
 - *ep* inclusive DIS cross sections (HERA) [arXiv:1506.06042]
 - CMS inclusive jets at 13 TeV [arXiv:2111.10431]
 - <u>CMS 3-D *tī* cross sections</u> [arXiv:1904.05237]:
- Predictions for jet x-sections: QCD
 NLO+NLL + EFT 4-quark CI (LL, VV, A-V models)

PDFs in SMEFT and SM fits agree

- **Results in SMEFT and SM fits agree**
 - QCD parameters agree with SM fit:

•
$$\alpha_S(m_Z) = 0.1187 \pm 0.0033$$

• $m_t^{pole} = 170.4 \pm 0.7 \text{ GeV}$

• **CI** parameters ($\Lambda_{NP} = 10$ TeV):

•
$$c_1^L = -0.07 \pm 0.02_{exp} \pm 0.01_{mod+par}$$

LL: $\Lambda > 24$ TeV V: $\Lambda > 32$ TeV AV: $\Lambda > 31$ TeV

Multi-differential 2-jet production

- **2-D cross sections** vs rapidity of the outermost jet $|y_{max}|$ and di-jet invariant mass m_{12} 3D bins 2D bins **Idea:** probe x_1 and x_2 using different event topologies ..5 **Datasets and trigger strategy** • $L \sim 35 \, fb^{-1}$ (2016), single-jet (di-jets) HLT selections $p_T^{HLT} > 40$ 0.5 for 2-D (3-D), jets ak4 and ak8 1.5
- 3-D cross sections: vs m_{12} or $\langle p_T \rangle_{1,2}$, rapidity separation $y^* = \frac{1}{2} |y_1 y_2|$ and boost

$$y_b = \frac{1}{2} |y_1 + y_2|$$

- Event Selection
 - <u>Dijet system</u>

Data compared to NNLO QCD corrected by non-perturbative and electroweak effect Simultaneous fit using interpolation grids at **NNLO:** PDFs and α_{s}

DESY.

Preliminary 2-D (similar results with 3-D)

$\alpha_{\rm S}(m_{\rm Z}) = 0.1201 \pm 0.0021$

 $0.0012_{fit} \pm 0.0008_{model} \pm 0.0008_{scale} \pm 0.0005_{param}$

Summary and Conclusions

• Presented recent and new CMS measurements at $\sqrt{s} = 13$ TeV:

- Substructure
 - ► Energy correlators → Running α_s at low energy scale, most precise measurement of α_s(M_Z) in substructure measurement at NNLL
 ► Lund Jet Plane → benchmark next generation of parton showers with resummation beyond LL accuracy
- High energy jets
 - ► Azimuthal correlations → First demonstration of running of α_S up to 2 TeV at NLO ► Inclusive jets → Most precise measurement of $\alpha_s(m_Z)$ to date in CMS at NNLO, Full
 - ► Inclusive jets \rightarrow Most precise measu SMEFT fit at NLO
 - ► Multi-differential dijets → Disentanglement of x_1 and x_2 using different event topologies, extract $\alpha_s(m_Z)$

Thank you

