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For related recent results from  
Sherpa/ALARIC group,  

see talk by Daniel Reichelt this 
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see also work by Herwig & Deductor 
groups
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4 Event selection and jet substructure extraction
Jets with pT > 700 GeV and |y| < 1.7 are selected for the measurement. For such a rapidity
selection requirement, both AK4 and AK8 jets are fully contained in the tracker acceptance. To
construct the primary Lund jet plane, we follow the prescription described in Section 1. The
anti-kT jet constituents are reclustered using the CA algorithm. While the original anti-kT jet is
clustered using neutral and charged particle-flow candidates, the Lund jet plane is calculated
using only its charged-particle constituents. Due to the approximate isospin symmetry of the
strong force, the salient features of the substructure of the jet do not depend on the electric
charge of the final-state hadrons. Although the charged-particle jet substructure is not infrared
and collinear safe, this choice does not affect the comparison to theoretical calculations of the
primary Lund jet plane density [12]. For the measurement of the Lund jet plane, the charged-
particle constituents are required to have pT > 1 GeV to further suppress the contributions
of residual pileup particles and to avoid the decrease in track reconstruction efficiency below
1 GeV. In Fig. 3, we show two distinct slices of the primary Lund jet plane density measured in
data. The detector-level predictions of HERWIG7 CH3 and PYTHIA8 CP5 are shown in the same
panel. Their detector-level predictions envelop the measured distribution.
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Figure 3: Detector-level distributions of data and Monte Carlo simulated events generated with
PYTHIA8 CP5 and HERWIG7 CH3. The lower panels show the ratio of the predictions with
respect to the data. Only statistical uncertainties are included here.

Are showers good enough?

➤ showers do an amazing job on 
many observables  

➤ but various places see 10–30% 
discrepancies between showers 
and data 

➤ feeds into many analyses (e.g. via 
jet-energy scale) 

➤ as machine learning makes use of 
ever more information in jets & 
whole event, we want 
simulations to get it right
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Lund Plane  
(Recent CMS results; also ATLAS & ALICE)

HERWIG7 CH3

PYTHIA8 CP5

detector level
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Step 1: design guaranteed NLL showers
A Matrix Element condition 

➤ correctly reproduce -parton tree-level matrix element for arbitrary configurations, 
so long as all emissions well separated in the Lund diagram 

➤ supplement with unitarity, 2-loop running coupling & cusp anomalous dimension 

Resummation condition: reproduce NLL results for all standard resummations 

➤ global event shapes  
➤ non-global observables  
➤ fragmentation functions 
➤ multiplicities 
➤ … 

n

8

Dasgupta, Dreyer, Hamilton, Monni, GPS ’18 
ibid + Soyez ‘20
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1. Recoil: the core of any shower
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qq̄

1~
Dipole showers conserve momentum at each step. Traditional dipole-local recoil:

pendix A), the kinematic mappings (Appendix B), the analytic expectations for our colour

tests (Appendix C) and the derivation of the spin branching amplitudes (Appendix D).

The validation of our approach at all-orders across many observables and a presentation of

the associated all-order testing methodology are to be found in a separate publication [1].

2 Basics of hadron-collision dipole showers

In this section we will highlight common features of dipole showers and formulate a generic

standard dipole shower, which will be used as a convenient reference for a LL-accurate

shower throughout this work and our companion article [1]. We will concentrate on colour-

singlet production in proton-proton collisions, specifically qq̄ ! Z and gg ! H, with a

hadron-hadron centre-of-mass energy
p
s and a colour-singlet Born four-momentum Q

µ.

2.1 Generic formulation of a hadron-collider shower

Standard dipole showers and the PanScales hadron-collider showers that we develop later

in Section 4 have a number of characteristics in common. These include the final and

initial-state splitting probabilities, as well as the generic structure of recoil for emission of

a parton from a dipole. In this work, all partons are considered to be massless and we will

often refer to the colour singlet as the “hard system”.

First, we consider a final-state parent parton ı̃ that radiates a collinear emission k. The

post-branching momentum of the parent is denoted by i. The phase-space of the emission

k is parameterised by its transverse momentum k?, its longitudinal momentum fraction

z (relative to the pre-branching parent) and its azimuthal angle '. In the collinear limit

(✓ik ⌧ 1), the di↵erential branching probability then reads

epi
pk ' zepi

pi ' (1� z)epi

! dPFS
ı̃!ik

=
↵s(k2?)

2⇡

dk2?
k
2
?

dz

z

d'

2⇡
N

sym
ik

[zPı̃!ik(z)] ,

(2.1)

with ↵s the strong coupling and N
sym
ik

a symmetry factor that is equal to 1/2 for g !

gg splittings, and 1 otherwise. We use symbols with a tilde to indicate pre-branching

partons and their momenta, and symbols without any decoration to indicate post-branching

partons. The DGLAP splitting functions Pı̃!ik are provided in Appendix A. A well-known

feature of Eq. (2.1) is its singular behaviour in the soft (z ! 0) collinear limit for flavour-

conserving emissions (i.e. Pg!gg and Pq!qg), and in the hard (z ⇠ 1) collinear limit for

every type of emission. The soft and collinear singularities compensate the smallness of

↵s in the corresponding regions of phase space, resulting in the large logarithms that the

shower resums.

In hadronic collisions, final-state radiation is to be supplemented with emissions from

the incoming partons. Over three decades ago, it was realised that a backwards evolution

– 4 –
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Figure 3: (a) Illustration of the modification of the transverse momentum (upper panel)

and rapidity (lower panel) of gluon 1 after emission of gluon 2, shown as a function of

the rapidity of gluon 2. Prior to emission of gluon 2, gluon 1 originally has a rapidity

⌘g1 ' 2.3 and transverse momentum ep?,g1 = v1 = 10�6
Q (v1 = 10�6

Q and 1 � z1 =

10�5). Gluon 2 has v2 = 1
2v1 and is emitted parallel in azimuth to gluon 1. To help

guide the eye, four regions of gluon 2 rapidity are labelled according to the identity of the

parton that branches and that of the spectator. The results have been obtained using a

numerical implementation of the kinematic maps of section 2. The transverse momentum

shifts in (a) can be reinterpreted in terms of the e↵ect they have on the e↵ective matrix

element for double-soft emission. Plot (b) shows the ratio of this e↵ective matrix element

to the true one, as a function of the azimuthal angle between the two emissions and their

transverse-momentum ratio (in a specific “diamond” region of widely separated rapidities,

cf. Appendix A). For simplicity, the matrix-element ratio is given in the large-Nc limit.

that this issue with subleading Nc terms will also a↵ect those double logarithms. We will

investigate this in section 4.1.

We should note that issues with the attribution of colour factors beyond leading NC in

dipole showers have been highlighted in a range of previous work, e.g. Refs. [36, 53, 79, 80].

Our analysis in this subsection is close in particular to that of Ref. [53]. We also note

that approaches to obtain the correct subleading colour factor for at least the main soft-

collinear divergences have existed for some time. The classification that is implied by

angular ordering (see also Ref. [52]) provides a guide in this direction, as was articulated

for a dipole shower in Ref. [53] and found to be relevant for particle multiplicities at LHC

energies [54]. Another proposal is that of Ref. [79].

– 15 –

ratio of effective shower 
matrix element to exact one

Shower initially generated matrix element for  
particle , whose momentum differs (by ~ 50%)  
from final particle 1.  

Matrix element is incorrect wrt final momentum 1. 
First observed: Andersson, Gustafson, Sjogren ’92 
Closely related effect present for Z pt: Nagy & Soper 0912.4534 
Impact on log accuracy across many observables: Dasgupta, Dreyer, Hamilton, Monni, GPS, 1805.09327 

1̃

pt1

pt2

ΔΦ12

|y1 − y2 | ≫ 1

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/1805.09327
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design principle for new showers: 

recoil & other shower design should respect  
absence of cross-talk between disparate scales 

(e.g. angles), i.e. QCD factorisation

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/1805.09327
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R&D for UPGRADE 
Dasgupta, El Menoufi, 2109.07496 

Medves, Soto Ontoso, Soyez, 2205.02861, 2212.05076  
Banfi, Dreyer, Monni, 2104.06416,  2111.02413


van Beekveld, Dasgupta, El-Menoufi, Helliwell, Monni, 2307.15734


’24

https://arxiv.org/abs/2109.07496
https://arxiv.org/abs/2205.02861
https://arxiv.org/abs/2212.05076
https://arxiv.org/abs/2104.06416
https://arxiv.org/abs/2111.02413
https://arxiv.org/abs/2307.15734
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PanLocal 
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PanGlobal 
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kt kt θ

⊥

e+e–: Dasgupta, Dreyer, Hamilton, Monni, GPS & Soyez, 
2002.11114; pp: van Beekveld, Ferrario Ravasio, GPS, 

Soto Ontoso, Soyez, Verheyen, 2205.02237; 
& pp tests, ibid + Hamilton: 2207.09467; 

DIS+VBF, van Beekveld, Ferrario Ravasio 2305.08645

Colour 

nested ordered 
double soft 

(NODS) 
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ensure LL are 

full colour 
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NLL at full 
colour)

Hamilton, Medves, GPS, 
Scyboz, Soyez, 2011.10054
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structure in 
collinear and 

soft→collinear 

[Collins-Knowles 
extended to soft 

sector]
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Verheyen, 2011.10054; 

ibid + Hamilton, 2111.01161
& pp extensions: van Beekveld et al, 2205.02237
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Figure 11: NLL global event-shape tests of the segment and NODS colour schemes,

showing NLL agreement for � = 1/2 PanScales showers and for the � = 0 PanGlobal

shower. In contrast to the NLL-LC tests of Ref. [12], the Pythia 8 �obs > 0 results here

are coloured green rather than amber, because our colour code does not incorporate the

information about failure of exponentiation in fixed-order tests, tests that we have not

explicitly repeated for this paper.

of the slice [22, 59] (see also Ref. [60]). The full-colour resummation for such observables is

sensitive to arbitrarily complex colour correlators, both in the real emissions and the virtual

corrections, which need to be evaluated at amplitude level. The resulting subleading-

colour single-logarithmic corrections go far beyond the scope of the colour schemes that we

introduced in sections 3 and 4. In particular, we expect the segment scheme to be correct

at full colour only up to order ↵sL, and the NODS scheme to be correct at full colour up to

order ↵2
sL

2. Recall that leading-colour all-order single-logarithmic accuracy for PanScales

showers was demonstrated in Ref. [12].
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(a) (b)

Figure 12: NLL (single-logarithmic) tests for a non-global observable. (a) Fraction of

events whose energy flow in a central slice of rapidity is less than e�|L|Q, shown in the

limit ↵s ! 0 for fixed ↵sL, as a function of ⌧(↵s, L), defined in Eq. (7.10). Our results

are shown for the PanScales antenna shower with �PS = 1/2, with three di↵erent colour

schemes: leading-Nc (with CF = CA/2 = 3/2), segment and NODS. They are compared

to the full-colour Hatta-Ueda (“finite-Nc (exact)”) result [28]. (b) Ratio of the same set

of results to the NODS result, illustrating apparent consistency of the segment and NODS

schemes with the Hatta-Ueda result, to within its statistical uncertainty. The agreement is

potentially surprising given that our schemes do not achieve NLL-FC (↵n
sL

n) accuracy for

non-global observables. The thin band for our results represents the statistical uncertainty

added in quadrature to estimates of systematics obtained using the di↵erence between our

default runs (⌘max = 10 and ↵s = 0.7⇥10�8) and runs with ⌘max = 8 and ↵s = 1.4⇥10�8.

Our results for other showers with the same colour schemes are very similar, as is to be

expected.

methods. Recall that those methods are not expected to work beyond order � and �2

respectively. However in Fig. 12 (left) they are indistinguishable from the full-Nc Hatta-

Ueda result. To further probe this observation, the right hand plot shows ratios to a

reference, which we take to be the PanLocal-antenna � = 1/2 NODS (the specific choice

is largely immaterial, since our aim is to compare di↵erent predictions on this ratio plot).

One sees that the di↵erence between the full-Nc Hatta-Ueda result and our leading-Nc

result is about 23% at ⌧ = 0.4. Remarkably, both our segment and NODS methods seem

to be in good agreement with the Hatta-Ueda result across the full range of ⌧ : the whole

range is within two standard deviations of the Hatta-Ueda result, and in much of the range

the agreement is within one standard deviation. Some caution is needed in interpreting

these results: firstly, they correspond to one specific choice of slice size. Secondly, when

using a finite-resolution angular grid (as in the Hatta-Ueda approach), there are inevitably

original paper and providing us with the corresponding numerical results.
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(a) (b)

Figure 5: Ratio of the cumulative distribution for the colour-singlet transverse momentum

to the NLL analytic result, in the ↵s ! 0 limit, for (a) qq̄ ! Z and (b) gg ! H events. The

results are shown for Dipole-kt with local (red dashed line) and global recoil (green dotted

line), PanGlobal with �PS = 0 (blue solid line) and �PS = 0.5 (blue circles), and PanLocal

with �PS = 0.5, both for the antenna (black triangles) and dipole (black squares) variants.

For clarity, the PanLocal antenna (dipole) points have been slightly shifted towards the

left (right), with respect to the values actually used, which coincide with the PanGlobal

�ps = 0.5 ones.

It is useful to recall the structure of the standard b-space result for the resummation

of the transverse-momentum distribution [15, 59, 60],

d⌃

dp2
tX

=

Z 1

0

db

2
bJ0(bptX)⌃V (b0/b) , (5.1)

with b0 = 2e��E , ⌃V the b-space resummed distribution, and J0 the Bessel function of

the first kind and order 0. Observe that for ptX ! 0 the result tends to a non-zero

constant, whose value can be straightforwardly obtained by replacing J0(bptX) ! 1 in

Eq. (5.1). Fig. 6a shows the small-ptX behaviour of the distribution for Z production, in

four showers. Three of them, PanGlobal, PanLocal and Dipole-kt(global), indeed tend to

a non-zero constant. In contrast the variant of Dipole-kt with local recoil for IF dipoles

tends to zero in this limit, i.e. it has the wrong scaling behaviour. This is because, after

the first emission, the event consists of two IF dipoles, and from that point onwards, no

further transverse recoil is taken by the Z boson. Therefore the only mechanism for ptZ to

be small is Sudakov suppression of the first emission, which is a much stronger suppression

than the vector cancellation.13

13For processes such as gg ! H with two II dipoles, one does recover the correct power-dependence of

the scaling (i.e. the plateau), because the Higgs recoil induced by an emission o↵ one II dipole can have a

vector cancellation with recoil induced by an emission o↵ the other II dipole. However the normalisation

of the plateau is still expected to be wrong, as is the whole shape of the distribution for ↵sL ⇠ 1.
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Figure 4: Summary of deviations from NLL for several global observables for the process

qq̄ ! Z and � = �0.5. Red squares denote a clear NLL failure; amber triangles indicate a

NLL fixed-order failure that is masked at all orders; green circles are used when the shower

passed both the numerical NLL tests and the fixed-order recoil tests. The ↵s ! 0 result is

obtained by quadratically extrapolating the shower results at ↵s = 0.00625, 0.003125 and

0.0015625, and includes a systematic error that is evaluated as the change in the ↵s ! 0

extrapolation when one uses ↵s = 0.0125 instead of ↵s = 0.003125. The showers include a

dynamic cuto↵ � = 18, which functions as discussed in our earlier e+e� tests [8, 11].

and the PanScales showers, so as to concentrate on the impact of recoil. In contrast,

standard dipole showers choose the colour factor according to whether the emitting dipole

end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).

This results in incorrect terms already at LL, in analogy with the final-state discussion in

Ref. [10]. The numerical impact will be the same as in the all-order final-state study [8].

5 The transverse momentum of the colour-singlet system

The next observable that we discuss is the cumulative distribution for the transverse mo-

mentum of a massive colour singlet (here, Z or H boson) produced in proton collisions. It

has wide relevance for LHC phenomenology, and for example its understanding is critical

forW mass extractions [40–42].10 It is also widely used in matching showers and fixed-order

calculations [44, 54–56].

10One should keep in mind, that in many applications parton showers are reweighted so that the colour-

singlet transverse momentum distribution agrees with high-order matched resummed and fixed order predic-

tions, such as [43–53]. Still, even if such a procedure results in a correct colour-singlet transverse momentum

distribution for the reweighted shower, it will not in general correctly account for correlations between the

colour singlet and the full pattern of hadronic energy deposition. We leave the detailed study of such

questions to future, more phenomenological work.
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Figure 8: Extrapolation of Nshower�NNDL
NNDL�NDL

to ↵s = 0 at a fixed value of ⇠ = ↵sL2 for all

showers, two di↵erent energies (
p
s = 5mX , left, and

p
s = 1000mX , right), and the two

processes under study, i.e. pp ! Z and pp ! H.

⌃ rather than ln⌃. The analogue of Eq. (4.1) for such non-exponentiating observables is

⌃(L) = h1(↵sL
2) +

p
↵sh2(↵sL

2) + . . . , (7.1)

where the NkDL function ↵k/2
s hk+1(↵sL2) resums terms of ↵n

sL
2n�k. That is, the function

h1 captures the double logarithmic (DL) enhancement, h2 the next-to-double-logarithmic

(NDL) contribution and so on. In the multiplicity case, the logarithm that needs to be

resummed is L = ln(kt,cut/mX), where, up to NDL accuracy, kt,cut may be either a shower

transverse momentum cuto↵ (for particle multiplicities) or a jet algorithm transverse mo-

mentum cut for a suitably defined subjet multiplicity.

Recently, the subjet multiplicity in colour singlet production has been computed up

to NDL accuracy [69] (earlier calculations gave similar structures [70–72]). In a shower

context, up to NDL, it applies equally well to the number of particles in the event (Nshower)

when one sets the strong coupling to zero below a given value of kt,cut.

To test the NDL terms in Eq. (7.1), we compute the following ratio

Nshower �NNDL

NNDL �NDL
, (7.2)

which vanishes in the ↵s ! 0 limit if the shower is correct at NDL accuracy.16 The result

of computing Eq. (7.2) with all showers, at two di↵erent energies and for two di↵erent hard

processes (pp ! Z and pp ! H) is shown in Fig. 8. We observe that all showers are con-

sistent with the full-colour NDL expectation, within the small statistical errors. Relative

16Practically, we run the shower for di↵erent values of kt,cut, i.e. ln kt,cut = {�31.25,�62.5,�125,�1000},

keeping ⇠ ⌘ ↵sL
2 = 5 fixed (L = ln kt,cut/mX) and use all four points to perform a cubic polynomial

extrapolation down to ↵s ! 0. The error that we quote on Nshower is purely statistical.
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Figure 17: All-order comparison of the toy shower and di↵erent PanScales showers, for �⇤
! qq̄

events. The two observables shown are the azimuthal angle, � 12, between a primary and
secondary splitting planes in Lund declustering, and the di↵erence in angle � between the
(ij)k and ij planes in the EEEC (Eq. (12)). The results are obtained in the limit ↵s ! 0 for
fixed � = ↵sL = �0.5. For the Lund declustering � 12 we consider events with kt,2/Q > e

�|L|

and for the EEEC � we consider events with ✓S > e
�|L|.
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Figure 9: The ptZ distribution as predicted in a variety of parton showers. The plots use

a semi-physical setup, for a pp centre-of-mass energy 13.6 TeV. The Born events involve

dd̄ scattering with a Z rapidity of zero, and the showers use 5-flavour toy PDFs defined

through the initial condition of Eq. (A.6) at a scale of 0.5 GeV. The top panel shows the ptZ
distribution with the PanGlobal (�ps = 0) shower and the remaining panels show the ratio

to that distribution for each of several showers. For each shower, the band corresponds to

the envelope of the renormalisation scale (xr) variations (dashed lines) and factorisation

scale (xf) variations (dotted lines), as described in the text.
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DIS + Vector-boson fusion
➤ Conserves vector boson momenta — may 

facilitate inclusion of higher order 
corrections via project-to-Born type 
approaches 

➤ Plot shows 3rd jet η distribution, with 
correct dip behaviour in the middle

18

van Beekveld  & Ferrario Ravasio, 
2305.08645

Figure 12: As Fig. 11 but for ⌘j3 (top), and pT,j3 (bottom). For the latter we only show

the result after applying the VBF cuts, and the right bottom panel shows a magnification

of the (relatively) small transverse-momentum region.

showers for future work.

7 Conclusions

In this work, we have introduced new NLL-accurate dipole showers for processes involving

the exchange of a colour-singlet in the t-channel, such as DIS, VBF and VBS. The latter

two processes are handled following a factorised approach, i.e. neglecting non-factorisable

corrections between the two hadronic sectors. The main novelty of these showers, with

respect to the PanScales showers for hadron collisions introduced in Refs. [43, 44], is that

the transverse-momentum recoil due to initial-state radiation is smoothly redistributed

primarily to partons in the current hemisphere (i.e. anti-parallel to the direction of the

incoming proton in the Breit frame). This feature ensures that partons in the remnant

hemisphere remain mostly una↵ected, which is required from colour coherence. Further-
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NLO matching  and logarithmic accuracy
➤ Proof of concept explored for  

@ NLO 

➤ some matching schemes supplement shower 
with pure , e.g. MC@NLO, KrKNLO, 
MAcNLOPS:  
Shower log accuracy easy to maintain 

➤ in other schemes, first emission is generated 
by an external program (POWHEG, 
MINNLO, Geneva, etc.): 
Shower log accuracy subtle to maintain 

➤ NB: concern is not just kinematic mismatch, 
but also any mismatch in partitioning 
functions

e+e− → 2 jets

𝒪(αs)

19

Hamilton, Karlberg, GPS, 
Scyboz, Verheyen, 2301.09645

log 1/θ

log kt

Lund plane

HEG contour
shower contour

double  
counting

cf also Corke, Sjostrand, 1003.2384 

https://arxiv.org/abs/2301.09645
https://arxiv.org/abs/1003.2384


Figure 9: Thrust (left), Cambridge ln y23 (middle) and SoftDrop ln kt/Q (right) distri-

butions, unmatched (red) and matched (blue). They are obtained with a LL shower (our

PanScales implementation of the Pythia 8 shower (PSPythia 8, top row)) and two NLL

showers: PanGlobal with �ps = 0 (middle row) and PanLocal �ps =
1
2 (bottom row). The

last row also shows the impact of HEG-style matching without the veto discussed in sec-

tion 3.3. Dotted lines show xhard variation, while dashed lines show xr variations.

The top row of Fig. 9 shows results for our implementation of the Pythia 8 shower.

Recall that since this shower is LL rather than NLL we do not include the scale compen-

sation terms of Eq. (5.1) when varying the renormalisation scale (neither in the shower
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Matching & log-accuracy
➤ Done correctly, matching augments 

accuracy of shower from NLL to  
NLL + NNDL (for event shapes) 

➤ Done wrongly, it breaks exponentiation 
structure of shower (impact depends on 
observable) 

➤ example with significant impact is 
SoftDrop transverse momentum  
(i.e. jet substructure)

20

unmatched

wrongly-matched

correctly matched

for standard dipole showers with observables such as the thrust. Below, when we summarise

matched shower results together with their logarithmic accuracy, we will use the notation

NLL, to remind the reader that the formal NLL accuracy has been lost. One subtlety,

however, is that the di↵erence between Eqs. (3.6b) and (3.4b) is always of relative order

↵s. This has the consequence that in numerical NLL tests with ↵s ! 0 for fixed ↵sL, this

di↵erence would mimic a NNLL term, i.e. NLL accuracy would appear to be preserved

despite the presence of spurious super-leading logarithms.

There are, nevertheless, observables that see a larger relative e↵ect. One example

is the invariant mass or transverse momentum of the first SoftDrop splitting when using

�SD = 0 [47, 48]. The special characteristic of this observable is that it is not a standard

global event shape, and its resummation does not have double-logarithmic terms, i.e. it

starts from g2 in Eq. (1.1). In the fixed-coupling approximation that we have e↵ectively

used in this section, the SD cross section has the following single-logarithmic structure,

⌃SD(L) = e↵̄cL , (3.12)

where c is a constant that depends on SoftDrop’s zcut parameter, which we take to be

small. Using the same strategy as above, one can explore how Eq. (3.12) is modified in

HEG/shower combinations with a hard-collinear mismatch. Keeping �ps = 0 for simplicity,

one finds

⌃SD(L) = e↵̄cL�↵̄� + e�↵̄L
2
(1� e�↵̄�) , (3.13)

where the coe�cient � that parameterises the impact of the HEG/shower contour mis-

match now depends on zcut. As with Eq. (3.11), this generates spurious ↵n
sL

2n�2 terms. If

we examine the derivative of ⌃SD (as we will do below in our phenomenology plots),

@L⌃SD(L) = ↵̄c e↵̄cL�↵̄�
� 2↵̄Le�↵̄L

2
(1� e�↵̄�) , (3.14)

we observe that there is a region, L ⇠ 1/
p
↵s, where the second term is suppressed relative

to the first only by
p
↵s. Thus in this region, the impact of the HEG/shower mismatch is

parametrically larger than the relative O (↵s) correction seen in Eq. (3.6b).

3.2 Additional subtleties for gluon splitting

The purpose of this section is to discuss an issue that can arise even when we have a

HEG/shower combination whose kinematic contours (for a fixed value of the evolution

variable) are aligned not just in the soft-collinear region, but for any single-emission phase-

space point that is soft and/or collinear. The issue is connected with the fact that the

g ! gg splitting function

1

2!
Pgg(⇣) = CA

✓
⇣

1� ⇣
+

1� ⇣

⇣
+ ⇣(1� ⇣)

◆
, (3.15)

has two soft divergences, one for ⇣ ! 0 and the other for ⇣ ! 1. This is a consequence of

the inherent symmetry ⇣ $ (1 � ⇣), which stems from the fact that g ! gg corresponds

to splitting to two identical particles (hence also the 1/2! factor). However, dipole showers

break this symmetry, through the concept of an emitting particle (the “emitter”) and a

– 12 –
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First comparisons to data
➤ we’re starting with  data 

➤ aiming to understand nature of residual 
perturbative shower uncertainties 

➤ and interplay with non-perturbative 
tuning 

➤ plot includes preliminary treatment of 
heavy-quark masses 

Medium term: making proper use of LEP 
data for tuning almost certainly requires 
NLO 3-jet accuracy.
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Latest development: first steps towards NNLL accuracy [PanGlobal only]
Initial focus is on soft emission — i.e. inclusion of double-soft current + associated virtual 
corrections 

➤ any pair of soft emissions with commensurate energy and angles should be produced with the correct 
[double-soft] matrix element  

➤ subsequent (much softer) emissions from that soft pair should also come with the correct matrix 
element 

➤ probability for any single soft emission should be NLO accurate 
➤ NB: Vincia and Sherpa groups have also explored inclusion of such terms; part of novelty here is doing 

so in context of shower that satisfies PanScales principles, as needed to get the log-accuracy benefit.  
This should maintain NLL accuracy and further achieve 

➤ NNDL accuracy for [subjet] multiplicities, i.e. terms , ,  

➤ Next-to-Single-Log (NSL) accuracy for non-global logarithms, e.g. energy in a slice, all terms  
and  (at leading- ) 

NB: done using adapted PanGlobal showers [cf. backup], without spin correlations for now

αn
s L2n αn

s L2n−1 αn
s L2n−2

αn
s Ln

αn
s Ln−1 Nc

22
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1. Get the double-soft matrix element

➤ a given two-emission configuration can 
come from four histories (two emission 
orderings × two colour orderings) 

➤ accept a given emission with true 
double-soft  divided by shower’s 
effective double-soft matrix element 
summed over the histories, h, that could 
have produced that configuration

|M2 |
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by

dPn!n+1

d ln v
=

X

{ı̃,|̃}2dip

Z
d⌘̄

d�

2⇡

↵s(kt)

⇡

✓
1 +

↵s(kt)Kcmw

2⇡

◆

⇥ [f(⌘̄)akPı̃!ik(ak) + f(�⌘̄)bkP|̃!jk(bk)] . (2)

Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡

2
/6

�
CA � 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
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ds , then we swap the colour connection
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|
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P
h |Mshower,h|
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. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-
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ds for the full
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F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
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ds , then we swap the colour connection

with probability

Pswap =
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|
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P
h |Mshower,h|
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. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
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shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 5. Left: rate of emission before (dashed-dot red) and after (solid blue) double-soft matrix-element corrections at O(↵2
s).

Right: decomposition in terms of colour flows and flavour channels.

Finally, the contribution to the total e↵ective squared shower matrix element arising from the a12b colour ordering,P
h2a12b |M

(12)
shower,h|

2, is given by swapping a $ b everywhere on the right-hand side of Eq. (12).

b. Real double-soft matrix-element corrections

In Fig. 5 (left) we provide an illustration of one of the matrix element tests that we have carried out. It is shown for
the PGsdf

�=0 shower. We start with a dipole ab with an opening angle of ✓ab = ⇡� 2 in the event centre-of-mass frame.
From that system, we generate two soft emissions, and select those configurations where the higher-kt emission (1)
is in a window �12 < ln kt1/Q < �11 and 1 < y1 < 3, while the lower-kt emission (2) satisfies ln kt2/kt1 > �1. We
determine transverse momenta and rapidities in the dipole centre-of-mass frame and, for the purpose of Fig. 5, restrict
our attention to configurations for which, in that frame, the two emissions are both in the ab dipole’s primary Lund
plane [12]. The upper panel shows the di↵erential distribution of the rapidity di↵erence between the two emissions,
�y21 = y2 � y1.

The results in Fig. 5 have been normalised to 2(↵sCA/⇡)2 which is the expected result for large �y21, at large-Nc,
as long as particle 2 is still soft. The red (dot-dashed) curve shows the default shower, without any double-soft
correction, while the black curve shows the actual double-soft matrix element. Both are shown averaged over �2, the
azimuth of particle 2. The shower and exact double-soft matrix element di↵er for �y21 in the vicinity of zero. The
red dot-dashed curve in the lower panel shows the ratio of the two curves, illustrating the need for O (1) corrections
at small and moderate �y12 values. As |�y21| becomes larger, all curves tend to the same limit corresponding to
independent emission. Once particle 2 starts to become hard, and the physical phase space boundary is approached,
�y21 & 6, all three predictions begin to depart from that of the independent emission picture, with small technical
kinematic cuts also playing a role in that region. Crucially, however, throughout this hard-collinear region the shower
predictions with and without double-soft corrections are seen to be in perfect agreement.

When the shower is run with the (fully-di↵erential) double-soft correction factor (upper panel, blue solid line), one
sees that it agrees perfectly with the double-soft matrix element for moderate �y21. One important point is that at
large positive �y21, the correction factor does not modify the shower, even though the shower and the double-soft
matrix element di↵er: in that limit, where the hard-collinear splitting function corrections are relevant, the shower
already provides the correct answer, and it is important to maintain that correct answer.

The right-hand plot shows the same di↵erential distribution but broken into flavour and colour channels. Let us
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|
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. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
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with probability
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
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ds , then we swap the colour connection

with probability

Pswap =
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F
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with probability
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability
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where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.
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collinear region, as required for NLL accuracy for global
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the same configuration of momenta, also taken into account
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so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡

2
/6

�
CA � 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 5. Left: rate of emission before (dashed-dot red) and after (solid blue) double-soft matrix-element corrections at O(↵2
s).

Right: decomposition in terms of colour flows and flavour channels.

Finally, the contribution to the total e↵ective squared shower matrix element arising from the a12b colour ordering,P
h2a12b |M

(12)
shower,h|

2, is given by swapping a $ b everywhere on the right-hand side of Eq. (12).

b. Real double-soft matrix-element corrections

In Fig. 5 (left) we provide an illustration of one of the matrix element tests that we have carried out. It is shown for
the PGsdf

�=0 shower. We start with a dipole ab with an opening angle of ✓ab = ⇡� 2 in the event centre-of-mass frame.
From that system, we generate two soft emissions, and select those configurations where the higher-kt emission (1)
is in a window �12 < ln kt1/Q < �11 and 1 < y1 < 3, while the lower-kt emission (2) satisfies ln kt2/kt1 > �1. We
determine transverse momenta and rapidities in the dipole centre-of-mass frame and, for the purpose of Fig. 5, restrict
our attention to configurations for which, in that frame, the two emissions are both in the ab dipole’s primary Lund
plane [12]. The upper panel shows the di↵erential distribution of the rapidity di↵erence between the two emissions,
�y21 = y2 � y1.

The results in Fig. 5 have been normalised to 2(↵sCA/⇡)2 which is the expected result for large �y21, at large-Nc,
as long as particle 2 is still soft. The red (dot-dashed) curve shows the default shower, without any double-soft
correction, while the black curve shows the actual double-soft matrix element. Both are shown averaged over �2, the
azimuth of particle 2. The shower and exact double-soft matrix element di↵er for �y21 in the vicinity of zero. The
red dot-dashed curve in the lower panel shows the ratio of the two curves, illustrating the need for O (1) corrections
at small and moderate �y12 values. As |�y21| becomes larger, all curves tend to the same limit corresponding to
independent emission. Once particle 2 starts to become hard, and the physical phase space boundary is approached,
�y21 & 6, all three predictions begin to depart from that of the independent emission picture, with small technical
kinematic cuts also playing a role in that region. Crucially, however, throughout this hard-collinear region the shower
predictions with and without double-soft corrections are seen to be in perfect agreement.

When the shower is run with the (fully-di↵erential) double-soft correction factor (upper panel, blue solid line), one
sees that it agrees perfectly with the double-soft matrix element for moderate �y21. One important point is that at
large positive �y21, the correction factor does not modify the shower, even though the shower and the double-soft
matrix element di↵er: in that limit, where the hard-collinear splitting function corrections are relevant, the shower
already provides the correct answer, and it is important to maintain that correct answer.

The right-hand plot shows the same di↵erential distribution but broken into flavour and colour channels. Let us

9

FIG. 5. Left: rate of emission before (dashed-dot red) and after (solid blue) double-soft matrix-element corrections at O(↵2
s).

Right: decomposition in terms of colour flows and flavour channels.

Finally, the contribution to the total e↵ective squared shower matrix element arising from the a12b colour ordering,P
h2a12b |M

(12)
shower,h|

2, is given by swapping a $ b everywhere on the right-hand side of Eq. (12).

b. Real double-soft matrix-element corrections

In Fig. 5 (left) we provide an illustration of one of the matrix element tests that we have carried out. It is shown for
the PGsdf

�=0 shower. We start with a dipole ab with an opening angle of ✓ab = ⇡� 2 in the event centre-of-mass frame.
From that system, we generate two soft emissions, and select those configurations where the higher-kt emission (1)
is in a window �12 < ln kt1/Q < �11 and 1 < y1 < 3, while the lower-kt emission (2) satisfies ln kt2/kt1 > �1. We
determine transverse momenta and rapidities in the dipole centre-of-mass frame and, for the purpose of Fig. 5, restrict
our attention to configurations for which, in that frame, the two emissions are both in the ab dipole’s primary Lund
plane [12]. The upper panel shows the di↵erential distribution of the rapidity di↵erence between the two emissions,
�y21 = y2 � y1.

The results in Fig. 5 have been normalised to 2(↵sCA/⇡)2 which is the expected result for large �y21, at large-Nc,
as long as particle 2 is still soft. The red (dot-dashed) curve shows the default shower, without any double-soft
correction, while the black curve shows the actual double-soft matrix element. Both are shown averaged over �2, the
azimuth of particle 2. The shower and exact double-soft matrix element di↵er for �y21 in the vicinity of zero. The
red dot-dashed curve in the lower panel shows the ratio of the two curves, illustrating the need for O (1) corrections
at small and moderate �y12 values. As |�y21| becomes larger, all curves tend to the same limit corresponding to
independent emission. Once particle 2 starts to become hard, and the physical phase space boundary is approached,
�y21 & 6, all three predictions begin to depart from that of the independent emission picture, with small technical
kinematic cuts also playing a role in that region. Crucially, however, throughout this hard-collinear region the shower
predictions with and without double-soft corrections are seen to be in perfect agreement.

When the shower is run with the (fully-di↵erential) double-soft correction factor (upper panel, blue solid line), one
sees that it agrees perfectly with the double-soft matrix element for moderate �y21. One important point is that at
large positive �y21, the correction factor does not modify the shower, even though the shower and the double-soft
matrix element di↵er: in that limit, where the hard-collinear splitting function corrections are relevant, the shower
already provides the correct answer, and it is important to maintain that correct answer.

The right-hand plot shows the same di↵erential distribution but broken into flavour and colour channels. Let us

matrix-element test,  
a12b colour ordering

a b a b a b



Gavin P. Salam QCD@LHC, Durham, September 2023

3. NLO accurate single-soft emissions
In soft-collinear region, showers already 
have NLO soft-emission intensity, 
thanks to  

 

For most PanScales showers this is not 
sufficient in the soft large-angle region.  

So we must include additional  
term in emission intensity (a bit like 
POWHEG/MC@NLO  term, using 
shower soft-collinear region as 
counterterm)

αs + α2
s KCMW/2π

α2
s ΔK/2π

B

25
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.

3

non-trivial ⌘̄ dependence in Eq. (2) and the way in which
it connects with the overall event momentum Q. There-
fore we need to generalise Kcmw ! K(�1̃,ab), where the

full K is a function of the kinematics of 1̃ and of the
opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct NLO normalisa-
tion for the emission is given by

K(�1̃,ab) = V (�1̃,ab) +

Z
d�ps

12/1̃|M
(ps)

12/1̃
|
2
��(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

d�ps
12/1̃

|M
(ps)

12/1̃
|
2 is the product of shower phase space and

matrix element associated with real 1̃ ! 12 branching,

including double-soft corrections; and �(ps,1)

1̃
is the co-

e�cient of ↵s/(2⇡) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(�1̃,ab) we make use of two main elements: firstly, in
the soft-collinear limit,K(�1̃,ab) ! Kcmw; secondly, both

V (�1̃,ab) and �(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for �(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +�K, with

�K =

Z

r
d�(ps)

12/1̃
|M

(ps)

12/1̃
|
2
�

Z

rsc

d�(ps)

12/1̃sc
|M

(ps)

12/1̃sc
|
2
. (6)

In the second term, 1̃sc is at the same shower scale v

as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(�1̃sc,ab

) ! Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |�y12| <

�ymax. In practice we tabulate �K as a function of
✓ab, ⌘̄1̃, and �1̃, though one could also envisage on-the-
fly evaluation. We incorporate �K in Eq. (2), through
a multiplicative factor 1 + tanh[↵s

2⇡ �K(1� ak)(1� bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side e↵ects. Details
are given in the supplemental material [60], § 1.

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an ↵s ! 0 extrapo-
lation based on four finite ↵s values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ⇠ kt✓

� with
� = 0 (PG�=0) and 1/2 (PG�=1/2), and also a “split-
dipole-frame” � = 0 variant (PGsdf

�=0), which replaces

f(±⌘̄) ! f(±⌘) in Eq. (2), with ⌘ = 1
2 log ak/bk. The

⌘ = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ ! 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in �K = 0. Illustrative plots of �K

and its impact are given in Ref. [60], § 2 c.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [70], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [71, 72] are turned o↵, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [73] for global observables and
multiplicities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the

shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e

+
e
�

! qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cuto↵ kt, the subjet multiplicity
has a double-logarithmic resummation structure ↵

n
sL

2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL ↵

n
sL

2n�1. The addition of the
double-soft corrections and matching [70] is expected to
bring NNDL accuracy, ↵n

sL
2n�2. To test this, in Fig. 2,

we examine

lim
↵s!0

Nps �Nnndl

↵sNdl

����
fixed ↵sL

2

, (7)

where Nps is the parton-shower result and Nnndl (Ndl) is
the known analytic NNDL (DL) result [43]. The ↵s ! 0
limit follows the procedure from earlier work [2]. Eq. (7)
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Log test #1: NNDL Lund subjet multiplicity ➤ NNDL ( ) analytic 
resummation = Medves, 
Soto Ontoso, Soyez, 
2205.02861 

➤  limit to isolate 
NNDL terms (NB  in 
denominator makes this 
harder than NDL/NLL 
tests). 

➤ Showers without double-
soft differ from zero (and 
each other) 

➤ Adding double soft 
brings NNDL agreement
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s L2n−2
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where Nps is the parton-shower result and Nnndl (Ndl) is
the known analytic NNDL (DL) result [43]. The ↵s ! 0
limit follows the procedure from earlier work [2]. Eq. (7)

no double soft with double soft

3

non-trivial ⌘̄ dependence in Eq. (2) and the way in which
it connects with the overall event momentum Q. There-
fore we need to generalise Kcmw ! K(�1̃,ab), where the

full K is a function of the kinematics of 1̃ and of the
opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct NLO normalisa-
tion for the emission is given by

K(�1̃,ab) = V (�1̃,ab) +

Z
d�ps

12/1̃|M
(ps)

12/1̃
|
2
��(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

d�ps
12/1̃

|M
(ps)

12/1̃
|
2 is the product of shower phase space and

matrix element associated with real 1̃ ! 12 branching,

including double-soft corrections; and �(ps,1)

1̃
is the co-

e�cient of ↵s/(2⇡) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(�1̃,ab) we make use of two main elements: firstly, in
the soft-collinear limit,K(�1̃,ab) ! Kcmw; secondly, both

V (�1̃,ab) and �(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for �(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +�K, with

�K =

Z

r
d�(ps)

12/1̃
|M

(ps)

12/1̃
|
2
�

Z

rsc

d�(ps)

12/1̃sc
|M

(ps)

12/1̃sc
|
2
. (6)

In the second term, 1̃sc is at the same shower scale v

as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(�1̃sc,ab

) ! Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |�y12| <

�ymax. In practice we tabulate �K as a function of
✓ab, ⌘̄1̃, and �1̃, though one could also envisage on-the-
fly evaluation. We incorporate �K in Eq. (2), through
a multiplicative factor 1 + tanh[↵s

2⇡ �K(1� ak)(1� bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side e↵ects. Details
are given in the supplemental material [60], § 1.

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an ↵s ! 0 extrapo-
lation based on four finite ↵s values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ⇠ kt✓

� with
� = 0 (PG�=0) and 1/2 (PG�=1/2), and also a “split-
dipole-frame” � = 0 variant (PGsdf

�=0), which replaces

f(±⌘̄) ! f(±⌘) in Eq. (2), with ⌘ = 1
2 log ak/bk. The

⌘ = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ ! 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in �K = 0. Illustrative plots of �K

and its impact are given in Ref. [60], § 2 c.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [70], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [71, 72] are turned o↵, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [73] for global observables and
multiplicities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the

shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e

+
e
�

! qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cuto↵ kt, the subjet multiplicity
has a double-logarithmic resummation structure ↵

n
sL

2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL ↵

n
sL

2n�1. The addition of the
double-soft corrections and matching [70] is expected to
bring NNDL accuracy, ↵n

sL
2n�2. To test this, in Fig. 2,

we examine

lim
↵s!0

Nps �Nnndl

↵sNdl

����
fixed ↵sL

2

, (7)

where Nps is the parton-shower result and Nnndl (Ndl) is
the known analytic NNDL (DL) result [43]. The ↵s ! 0
limit follows the procedure from earlier work [2]. Eq. (7)
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Log test #2: NSL for energy flow in slice ➤ NSL ( ) = Banfi, 
Dreyer, Monni, 2104.06416, 
2111.02413 (“Gnole”) 
[NB: see also Becher, Schalch, Xu, 
2307.02283] 

➤ Semi-blind: only compared 
to Gnole once three 
PanGlobal variants agreed 
with each other 

➤ NSL agreement with Gnole 
for  

➤ By-product: First large-  
full-  results for NSL non-
global logarithms  
(including ref. results for several 
observables, cf. backup)

αn
s Ln−1

nreal
f = 0

Nc
nf

27
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FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define

⌃(ps)
nsl = lim

↵s!0

⌃(ps)
� ⌃sl

↵s

����
fixed ↵sL

, L ⌘ ln
Et,max

Q
. (8)

Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.
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is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
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events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
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ing good agreement, within < 1%. Gnole has nf = 0
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full nf = 5 in the running of the coupling and inclusive
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particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.

no double soft double soft

nreal
f = 0

double soft

full nf
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NSL Pheno outlook
➤ Observable is energy flow 

in slice between two 1 
TeV jets 

➤ Without DS: three 
PanGlobal variants 
actually quite close, but 
large uncertainty band 

➤ With DS: three variants 
still close, reduced 
uncertainty band

28
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rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.
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where the sum is below some Et,max is denoted by ⌃ and
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1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.
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Conclusions
➤ PanScales is first validated NLL shower (with spin & full-colour@LL/NLL) 

➤ benefits of LL → NLL include reduced uncertainties  
(and ability to reliably estimate uncertainties) 

➤ multi-differential soft/collinear observables have enhanced sensitivity to NLL 

➤ NLO matching in place for some simple processes 

➤ for realistic applications we also need massive quarks (in progress) and tuning 

➤ Higher log accuracy is one of the next frontiers 

➤ first results with double-soft (+ virtual) corrections! 

➤ brings NNDL multiplicity and NSL non-global logarithms 

➤ We’re on the path towards public code 

➤ exact timeline still fuzzy, but progress being made
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(a) (b)

Figure 2: Schematic illustration of the issue associated with gluon asymmetrisation. (a)

Contours on the Lund plane, in the PanLocal family of showers, highlighting the fact that a

given physical point X in the Lund plane (highlighted with a red cross) can come from two

di↵erent values of v. The shading of the green curves represents the variation in radiation

intensity along the contour. (b) Density plot, at each point in the Lund plane, representing

schematically the fraction of the emission intensity at that point that has been excluded

once the HEG has reached a given v value (v�) without emitting, and an illustration that

as the shower continues there may still be phase-space points (such as that marked with

a cross) where the Sudakov has only been partially accounted for. The implications are

discussed in the text.

radiated particle. In particular, in order to help reproduce the correct pattern of large-

angle soft radiation, dipole showers de-symmetrise the splitting function so that there is a

divergence only when the radiated gluon becomes soft. For example the PanScales showers

use
1

2!
P asym
gg (⇣) = CA


1 + ⇣3

1� ⇣
+ (2⇣ � 1)wgg

�
, (3.16)

where the choice of the wgg parameter fixes arbitrariness that arises in partitioning the finite

part of the splitting function. It is straightforward to verify that P asym
gg (⇣)+P asym

gg (1�⇣) =

2Pgg(⇣).

The hard matrix element generated by the HEG can be de-symmetrised similarly. The

POWHEG-BOX code follows the FKS procedure [40], which introduces so-called S-functions

that are used to partition the soft and collinear singularities. The de-symmetrisation

discussed above is handled by an additional multiplicative factor h(⇣), cf. Eqs. (2.76)–(2.77)

of Ref. [3], with ⇣ for an ı̃ ! ik splitting defined as Ei/(Ei +Ek). One can implement the

scheme of Eq. (3.16) by setting

h(⇣) =
P asym
gg (⇣)

Pgg(⇣)
. (3.17)

The reason that the de-symmetrisation matters is that in many cases the kinematic map

is not symmetric under ⇣ $ (1 � ⇣). This can be seen in Eqs. (3.8), where the only

combination that is symmetric is the PanLocal map for �ps = 0 (this, however, is not NLL

– 13 –
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(zcut = 0.25,�SD = 0) procedure, in a bin �3.1 < ln kt/Q < �3.0.

region. In contrast, with matching methods such as POWHEG that take responsibility

for generating the hardest emission, an extra element is needed, which is to ensure that

the hardest-emission generator and shower align in their generation of phase space in the

full soft and/or collinear regions. Failing to account for this prevents the HEG/shower

combination from attaining NNDL accuracy. Furthermore, it subtly compromises NLL

accuracy, generating spurious super-leading logarithms, Eq. (3.11), that resum in such a

way, Eq. (3.6b), as to vanish in standard numerical NLL accuracy global event-shape tests

(but not necessarily for single logarithmic observables, such as SoftDrop with �SD = 0).

In this paper we used the (standard) approach of vetoing shower steps in order to avoid

double-counting phase space already generated with the HEG. However, thinking forward

to possible approaches to achieving yet higher logarithmic accuracy, it is likely to be ad-

vantageous to consider designing HEG tools such that they have the freedom to mimic the

lowest order soft/collinear phase-space generation of any given shower.

A related and more subtle issue occurs when a given phase-space point can be reached

from more than one value of the HEG or shower ordering variable. In our study, this issue

arose in the context of de-symmetrisation of gluon splitting functions in the hard-collinear

region, cf. section 3.2. However, we expect it to be relevant more generally also in processes

– 28 –
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Matching — augment from NLL to NLL + NNDL?
Two ways of counting logarithms 

 (relevant when ) 

 (relevant when ) 

ln Σ = αn
s Ln+1

LL

+ αn
s Ln

⏟
NLL

+ αn
s Ln−1

NNLL

+ … αsL ∼ 1

Σ = αn
s L2n

⏟
DL

+ αn
s L2n−1

NDL

+ αn
s L2n−2

NNDL

+ … αsL2 ∼ 1

33
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“Split-dipole-frame”
Antenna showers like PanGlobal need to transition between different splitting 
functions at the two dipole ends

34

Default PanGlobal choice:  is a function that makes the transition happen around 
, i.e. the bisector of the dipole in the frame of the hard system (lab-frame for  

collisions) 

Split Dipole Frame choice: replace , with  the rapidity of the emission in 
the dipole centre-of-mass frame. Helps ensure longitudinal boost invariance of shower’s 
effective double-soft current (before inclusion of double-soft ME corrections).

f(η̄)
η̄ = 0 e+e−

f(η̄) → f(η) η
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Recent adaptation of the PanGlobal showers
➤ PanGlobal shower applies a global rescaling 

and boost to ensure momentum conservation 

➤ We discovered this has issues in the triple 
collinear region 

➤ We now instead apply, e.g., a dipole-local 
rescaling to ensure conservation of event 
invariant mass, then apply a global boost 
(affects all , pp, DIS, VBF showers)e+e−

35

for very skewed dipole, in-plane  vector  
has large energy component. Old PanGlobal variant wrongly 

propagated that effect to other partons (violation of PanScales 
conditions, which manifests first at NNLL)

⊥
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.
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FIG. 7. Next-to-single non-global logarithms contributions for the transverse energy in patches of given rapidity and azimuthal
angle range. Each panel corresponds to a fixed rapidity acceptance and shows di↵erent ranges in azimuthal angle (di↵erent
colours) as well as each of the three PanGlobal showers including double-soft corrections (di↵erent line styles).

3. Reference NSL results for non-global logarithms

In this last section, we provide additional results for non-global observables. We consider the transverse energy in
a square patch of fixed extent in rapidity and azimuthal angle. In each case, we study the next-to-single logarithmic
contribution, normalised to the single-logarithmic result, ⌃nsl/⌃sl. We have extracted ⌃nsl using the same variants
of the PanGlobal shower as in the main text. Our results are presented in Fig. 7, showing an excellent degree of
agreement, at the 1-2% level, between the showers across the whole set of observables. These can also serve as
reference results for future studies of non-global logarithms at NSL accuracy.


