Vector boson plus heavy flavour at the LHC

Mathieu PELLEN

University of Freiburg

QCD@LHC Durham, United Kingdom

6th of September 2023

Vector boson plus heavy flavour at the LHC The flavours of the LHC

Mathieu PELLEN

University of Freiburg

QCD@LHC Durham, United Kingdom

6th of September 2023

What this talk is **NOT**:

 \rightarrow Topics covered during the conference:

Quarkonium production
 → See talks by [Flett], [Sridhar], [Lynch]

• W + b \overline{b} \rightarrow See talk by [Hartanto]

top associated production
 → See talks by [Generet], [Stremmer]

Outline:

$$\rightarrow$$
 Introduction:
Flavours of the LHC

• pp
$$\rightarrow$$
 Z + b

• pp
$$\rightarrow$$
 W + c

• pp \rightarrow Z + c

Triumph of the Standard Model!

- V + jets among the largest cross sections at LHC
 - \rightarrow very well measured / standard candle
 - \rightarrow background to many SM processes / BSM searches
- Test of the SM and QCD in particular
- V + flavoured jets:
 - \rightarrow often related to PDF content of the proton
 - \rightarrow interesting processes on their own

Why **flavoured** jets are interesting?

- Beyond NLO in QCD, no IR-safe definition of jets for anti- $k_{\rm T}$
 - ightarrow Flavour $k_{
 m T}$ algorithm [Banfi, Salam, Zanderighi; hep-ph/0601139]
 - ightarrow Modified $k_{
 m T}$ algorithm to account for soft wide-angle $qar{q}$

 $\underline{\wedge}$ introduces mismatch with respect to experimental treatment

Why **flavoured** jets are interesting?

- Beyond NLO in QCD, no IR-safe definition of jets for anti- $k_{\rm T}$
 - ightarrow Flavour $k_{
 m T}$ algorithm [Banfi, Salam, Zanderighi; hep-ph/0601139]
 - ightarrow Modified $k_{
 m T}$ algorithm to account for soft wide-angle $qar{q}$

 $\underline{\wedge}$ introduces mismatch with respect to experimental treatment

• Many recent proposals ...

[Czakon, Mitov, Poncelet; 2205.11879], [Gauld, Huss, Stagnitto; 2208.11138], [Caletti, Larkoski, Marzani, Reichelt; 2205.01109, 2205.01117], [Caola et al.; 2306.07314]

• Vast topic! Flavoured jet algorithms at the LHC [Scyboz]

$\bullet \ pp \to Z + {\color{black}{b}}$

$pp \rightarrow Z + b \text{ [Gauld et al.; 2005.03016]}$

• NNLO QCD in 5 flavours (5fs) combined with NLO QCD in 4 flavours (4fs)

$$\mathrm{d}\sigma^{\mathrm{FONLL}} = \mathrm{d}\sigma^{\mathrm{5fs}} + \left(\mathrm{d}\sigma_{m_b}^{\mathrm{4fs}} - \mathrm{d}\sigma_{m_b \to 0}^{\mathrm{4fs}}\right)$$

• Allows to incorporate exact b-mass effects

Flavour jet

- Flavour $k_{\rm T}$ algorithm used [Banfi, Salam, Zanderighi; hep-ph/0601139]
- But experimental data [CMS; 1611.06507]
 - reconstruction of jets with anti- $k_{\rm T}$ algorithm
 - identification of flavour of these jets
- Unfolding procedure via computation of non-perturbative correction to data ($\sim 12\%)$

Flavour jet

- Flavour $k_{\rm T}$ algorithm used [Banfi, Salam, Zanderighi; hep-ph/0601139]
- But experimental data [CMS; 1611.06507]
 - reconstruction of jets with anti- $k_{\rm T}$ algorithm
 - identification of flavour of these jets
- \bullet Unfolding procedure via computation of non-perturbative correction to data ($\sim 12\%)$
- Applying non perturbative correction to the data gives

$$\sigma_{
m Fiducial, f-k_T}^{
m CMS} = 3.134 \pm 0.214^{+0.013}_{-0.025}\,{
m pb}$$

• At $\mathcal{O}(\alpha_s^3)$, the FONLL prediction is

$$\sigma_{
m FonLL}^{
m FONLL}(m_b^{
m phys.}) = 3.490^{+0.078}_{-0.078}(
m scales)$$
 pb

NB:

$$\delta\sigma \left(\mathrm{PDF}, lpha_{\mathrm{s}}
ight) = \pm$$
0.074 pb estimated at NLO

[Gauld et al.; 2005.03016]

Fit to data:

•
$$\chi^2/N_{dat}(\alpha_s^2, p_{T,b}) = 23.4/14$$

• $\chi^2/N_{dat}(\alpha_s^2, p_{T,b}) = 21.5/14$

• pp
$$\rightarrow$$
 W + c

• pp
$$\rightarrow$$
 W + c

- Direct link between W+c measurements and strange PDF
- Test of (perturbative) QCD
 - $\rightarrow {\rm s}{\text{-}}\bar{\rm s}$ asymmetry predicted at 3-loop in QCD

[Catani, de Florian, Rodrigo, Vogelsang; hep-ph/0404240]

[Czakon, Mitov, MP, Poncelet; 2011.01011] + [ATLAS; 1402.6263]

•
$$R_{W\pm j_c} = \frac{\sigma_{W+j_c}}{\sigma_{W-i}} \sim \left(|V_{cs}|^2 \bar{s} + |V_{cd}|^2 \bar{d} \right) / \left(|V_{cs}|^2 s + |V_{cd}|^2 d \right)$$

• PDF uncertainty dominant over NNLO scale uncertainty

 \rightarrow Open questions addressed in $_{\rm [Czakon,\ Mitov,\ MP,\ Poncelet;\ 2212.00467]}$

- Difference in the jet algorithms (flavoured k_{T} vs. anti- k_{T})
 - \rightarrow Estimated to be 12% in Z + b [Gauld et al.; 2005.03016] ...
 - ... difficult translation to W+c<3% for OS selection

 \rightarrow Open questions addressed in [Czakon, Mitov, MP, Poncelet; 2212.00467]

- \bullet Difference in the jet algorithms (flavoured $k_{\rm T}$ vs. anti- $k_{\rm T})$
 - \rightarrow Estimated to be 12% in Z + b [Gauld et al.; 2005.03016] ...
 - ... difficult translation to W+c<3% for OS selection
- Lack of higher-order QCD corrections to the off-diagonal CKM matrix element \sim few per cent 3%

 \rightarrow Open questions addressed in [Czakon, Mitov, MP, Poncelet; 2212.00467]

- Difference in the jet algorithms (flavoured k_{T} vs. anti- k_{T})
 - \rightarrow Estimated to be 12% in Z + b [Gauld et al.; 2005.03016] ...
 - ... difficult translation to W+c<3% for OS selection
- Lack of higher-order QCD corrections to the off-diagonal CKM matrix element \sim few per cent 3%
- Absence of EW corrections \sim few per cent -1.9%

 \rightarrow Open questions addressed in $_{\rm [Czakon,\ Mitov,\ MP,\ Poncelet;\ 2212.00467]}$

- Difference in the jet algorithms (flavoured k_{T} vs. anti- k_{T})
 - \rightarrow Estimated to be 12% in Z + b [Gauld et al.; 2005.03016] ...
 - ... difficult translation to W+c<3% for OS selection
- Lack of higher-order QCD corrections to the off-diagonal CKM matrix element \sim few per cent 3%
- Absence of EW corrections \sim few per cent -1.9%
- PDF uncertainty $\sim \pm 4\%$ (NNPDF variation) Or > 10% (spread between sets) ?

 \rightarrow Open questions addressed in [Czakon, Mitov, MP, Poncelet; 2212.00467]

- Difference in the jet algorithms (flavoured $k_{\rm T}$ vs. anti- $k_{\rm T}$)
 - \rightarrow Estimated to be 12% in Z + b [Gauld et al.; 2005.03016] ...
 - ... difficult translation to W+c<3% for OS selection
- Lack of higher-order QCD corrections to the off-diagonal CKM matrix element \sim few per cent 3%
- Absence of EW corrections \sim few per cent -1.9%
- PDF uncertainty $\sim \pm 4\%$ (NNPDF variation) or > 10% (spread between sets) ?
- Definition of the experimental measurement 2 > 10-15%

 \rightarrow Open questions addressed in $_{\rm [Czakon,\ Mitov,\ MP,\ Poncelet;\ 2212.00467]}$

- Difference in the jet algorithms (flavoured $k_{\rm T}$ vs. anti- $k_{\rm T}$)
 - \rightarrow Estimated to be 12% in Z + b [Gauld et al.; 2005.03016] ...
 - ... difficult translation to W+c<3% for OS selection
- Lack of higher-order QCD corrections to the off-diagonal CKM matrix element \sim few per cent 3%
- Absence of EW corrections \sim few per cent -1.9%
- PDF uncertainty $\sim \pm 4\%$ (NNPDF variation) or > 10% (spread between sets) ?
- Definition of the experimental measurement 2 > 10-15%

▲ per-cent precision apart from PDF!

Comparison against recent data

[CMS; 2308.02285] based on [Czakon, Mitov, MP, Poncelet; 2212.00467]

- Perfect agreement between theory and data
 - \rightarrow going beyond this precision will be a challenge!
 - \rightarrow at 1% accuracy everything is relevant!

- Th. vs. Data [ATLAS; 1402.6263] @ 7 TeV
- $\bullet~$ Useful comparison between W $+\,\mathrm{D}$ and W $+\,c$
 - \rightarrow Estimate of $[\mathsf{W}+\mathrm{D}]\rightarrow[\mathsf{W}+\mathsf{c}]$ effects

 $\underline{\text{NB:}}$ Also comparison $_{[\text{CMS; 1811.10021}]}$ for $W+\mathrm{D}$ @ 13 TeV

- Comparison between $p_{T,c}$ and p_{T,j_c}
- Non trivial (and different) effect of parton shower
- Up to 10% differences between various parton showers

• Underlying Event and hadronisation can have large effects \rightarrow Different between $p_{T,c}$ and p_{T,j_c}

• Th. vs. Data [CMS; 1811.10021] @ 13 TeV

- ightarrow both signature separately and their sum
- \rightarrow Large th. and exp. uncertainties \rightarrow agreement!

• pp
$$\rightarrow$$
 Z + c

• pp \rightarrow Z + c

Sensitive to charm PDF

[Lipatov, Lykasov, Stepanenko, Bednyakov; 1606.04882], [Bailas, Goncalves; 1512.06007], [Boettcher, Ilten, Williams; 1512.06666]

 \rightarrow especially at forward kinematic (like LHCb [LHCb; 2109.08084]])

Probe of instrinsic charm

[Brodsky, Hoyer, Peterson, Sakai; Phys. Lett. B 93 (1980) 451-455], [Brodsky et al.; 1504.06287], [Ball et

al.; 2208.08372], [Hou et al.; 1707.00657], [Guzzi et al.; 2211.01387]

- (10 20)% corrections @ NNLO QCD
 - \rightarrow perturbative convergence improved with $p_{T,Z+j} < p_{T,j}$
- $\bullet\,$ Coherent picture between NNLO QCD and NLO QCD + PS

Mathieu PELLEN

Vector boson plus heavy flavour at the LHC

• $R_j^c = \sigma(Z + c - jet) / \sigma(Z + jet)$ \rightarrow Same (flavour) algorithm for both computations

[Gauld, Huss, Stagnitto; 2208.11138]

- Large MPI corrections for Z + c
 - → no comparison to data [LHCb; 2109.08084]
 - ∧ different flavour tagging in exp. vs. th.

a IRC-safe definition of jet flavour. Only a joint effort of both communities, theory and experimental, will enable to exploit in the best way the huge amount of data that LHC will provide us in the next decades, better enabling the use flavour signatures as a powerful window into short-distance interactions from GeV to TeV energy scales.

[Gauld et al.; 2302.12844]

Summary

New computations available:

- Z+b [Gauld et al.; 2005.03016]
- W+C [Czakon, Mitov, MP, Poncelet; 2011.01011, 2212.00467], [Bevilacqua, Garzelli, Kardos, Toth; 2106.11261], [Ferrario Ravasio, Oleari; 2304.13791]
- Z+c [Gauld et al.; 2302.12844]

New computations available:

- Z+b [Gauld et al.; 2005.03016]
- W+C [Czakon, Mitov, MP, Poncelet; 2011.01011, 2212.00467], [Bevilacqua, Garzelli, Kardos, Toth; 2106.11261], [Ferrario Ravasio, Oleari; 2304.13791]
- Z+c [Gauld et al.; 2302.12844]
- Decisive information for SM measurements/BSM searches \rightarrow Precision programme at the LHC
- Crucial interplay between theory and experiment
 - \rightarrow Big impact on physics results

New computations available:

- Z+b [Gauld et al.; 2005.03016]
- W+C [Czakon, Mitov, MP, Poncelet; 2011.01011, 2212.00467], [Bevilacqua, Garzelli, Kardos, Toth; 2106.11261], [Ferrario Ravasio, Oleari; 2304.13791]
- Z+c [Gauld et al.; 2302.12844]
- Decisive information for SM measurements/BSM searches \rightarrow Precision programme at the LHC
- Crucial interplay between theory and experiment
 - \rightarrow Big impact on physics results

Thank you

BACK-UP

Feature of the (new) computation [Czakon, Mitov, MP, Poncelet; 2212.00467]

- Full CKM dependence up to NNLO QCD
- NLO EW
- Study of flavour-jet algorithm
- Study of experimental definition
- 13 TeV setup

Best predictions @ 13 TeV - Differential distributions

- Good perturbative behaviour for QCD corrections
- Sudakov logarithm for EW corrections

Best predictions @ 13 TeV - cross sections

Order	$\sigma_{\mathrm{W^+j_{c}}}$ [pb]	$\sigma_{\rm W^-j_c}~{\rm [pb]}$	$R_{\rm W\pm j_c}=\sigma_{\rm W^+ j_c}/\sigma_{\rm W^- j_c}$
LO	$113.817(2)^{+12.4\%}_{-9.87\%}$	$119.711(2)^{+12.4\%}_{-9.88\%}$	$0.95076(2)^{+0.013\%}_{-0.021\%}$
NLO	$162.4(1)^{+7.2\%}_{-6.6\%}$	$168.1(1)^{+6.9\%}_{-6.4\%}$	$0.9659(9)^{+0.29\%}_{-0.21\%}$
NNLO	$168.6(8)^{+0.7\%~+3.8\%(\rm PDF)}_{-2.1\%~-3.8\%(\rm PDF)}$	$173.9(1.9)^{+0.6\%~+3.7\%(\rm PDF)}_{-1.8\%~-3.7\%(\rm PDF)}$	$0.96(1)^{+0.2\%~+2.1\%({\rm PDF})}_{-0.3\%~-2.1\%({\rm PDF})}$

• PDF uncertainty dominant at NNLO QCD

Best predictions @ 13 TeV - cross sections

Order	$\sigma_{\mathrm{W^+j_{c}}}$ [pb]	$\sigma_{\rm W^-j_c}~{\rm [pb]}$	$R_{\rm W\pm j_c}=\sigma_{\rm W^+ j_c}/\sigma_{\rm W^- j_c}$
LO	$113.817(2)^{+12.4\%}_{-9.87\%}$	$119.711(2)^{+12.4\%}_{-9.88\%}$	$0.95076(2)^{+0.013\%}_{-0.021\%}$
NLO	$162.4(1)^{+7.2\%}_{-6.6\%}$	$168.1(1)^{+6.9\%}_{-6.4\%}$	$0.9659(9)^{+0.29\%}_{-0.21\%}$
NNLO	$168.6(8)^{+0.7\%~+3.8\%(\rm PDF)}_{-2.1\%~-3.8\%(\rm PDF)}$	$173.9(1.9)^{+0.6\%~+3.7\%(\rm PDF)}_{-1.8\%~-3.7\%(\rm PDF)}$	$0.96(1)^{+0.2\%~+2.1\%(\rm PDF)}_{-0.3\%~-2.1\%(\rm PDF)}$

• PDF uncertainty dominant at NNLO QCD

Order	$\sigma_{\mathrm{W^+j_c}} \mathrm{[pb]}$	$\sigma_{\mathrm{W}^{-}\mathrm{j_{c}}}$ [pb]	$ R_{W^{\pm}j_{c}} = \sigma_{W^{+}j_{c}} / \sigma_{W^{-}j_{c}}$
NLO EW	117.399(2)	111.627(2)	0.95084(2)
$\delta_{ m NLO~EW}$ [%]	-1.93	-1.92	-0.01

• EW corrections null in the ratio

Effect of non-diagonal CKM @ NNLO QCD

- \bullet full CKM / no CKM $\sim 7.5{-}11\%$
- full CKM / $V_{cd}^{
 m LO}
 eq 0 \sim 3\%$
 - \rightarrow Original approximation rather good

 \rightarrow Full CKM dependence up to NNLO QCD for precise predictions

Scale setting

- $\mu_0 = \frac{1}{2} \left(E_{T,W} + p_{T,j_c} \right)$
- For $p_{T,\ell}$, $\mu_0/2$ best / For p_{T,j_c} , μ_0 best / For cross section, $2\mu_0$ best

 $\rightarrow \mu_0$ good choice with good perturbative convergence

PDF uncertainty

- NNPDF3.1 variation $\sim \pm 4\%$
- $\bullet\,$ Spread of various PDF sets $\sim 10\%$
 - \rightarrow PDF error is the largest theoretical uncertainty

Event selection(s)

Event selection(s)

- Experiments measure OS-SS
 → More sensitivity to strange PDF
- Many possibilities...
 - \rightarrow most inclusive: at least one c-jet

Event selection(s)

At NLO QCD, differences covered by scale uncertainty

• At NNLO QCD, differences > 10-15%

\rightarrow Freedom in choosing whether cc and $\bar{c}\bar{c}$ are flavoured

Variation of flavour $k_{\rm T}$ algorithm [Banfi, Salam, Zanderighi; hep-ph/0601139]

- flavoured $k_{\rm T}$ algorithm, charge dependent ($k_{\rm T}{\sf CD}$)
- flavoured $k_{\rm T}$ algorithm, charge agnostic ($k_{\rm T}{\sf CA}$)
- flavoured $k_{\rm T}$ algorithm, charge dependent, with beam definition including W momenta ($k_{\rm T}{\rm CDB}$)

Jet algorithm (1)

- No difference at NLO and NNLO for exactly one-jet
- Large differences for exactly one SS c-jet

Jet algorithms - definitions (2)

ightarrow Flavoured anti- $k_{
m T}$ algorithm

 $d_{ij}^{(\textit{flavored})} = d_{ij}^{(\textit{standard})} \times \begin{cases} \mathcal{S}_{ij} \,, & \text{if both } i \text{ and } j \text{ have non-zero flavor of OS,} \\ 1 \,, & \text{otherwise.} \end{cases}$

where

$$S_{ij} = 1 - \theta \left(1 - \kappa_{ij} \right) \cos \left(\frac{\pi}{2} \kappa_{ij} \right) \quad \text{with} \quad \kappa_{ij} \equiv \frac{1}{a} \frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T}^2 \max}$$

[Czakon, Poncelet, Mitov; 2205.11879]

Variation of anti- $k_{\rm T}$ algorithm

- flavoured anti- $k_{\rm T}$ algorithm, charge dependent, with a = 0.2, 0.1, 0.05 (a $k_{\rm T}$ CD-0.2, a $k_{\rm T}$ CD-0.1, a $k_{\rm T}$ CD-0.05)
- flavoured anti- $k_{\rm T}$ algorithm, charge agnostic, with a = 0.1 (a $k_{\rm T}$ CA-0.1).

NB: Alternatives [Caletti, Larkoski, Marzani, Reichelt; 2205.01117, 2205.01109], [Gauld, Huss, Stagnitto; 2208.11138] Mathieu PELLEN Vector boson plus heavy flavour at the LHC

Jet algorithm (2)

• No(small) difference at NLO and NNLO for exactly one-jet

• Large differences for exactly one SS c-jet

Jet algorithm (3) at NLO+PS

• 5–10% differences for at least one c-jet (inclusive)

• Below 5% differences for leading c-jet is OS

Jet algorithm (4) at NLO+PS

- < 3% differences for exactly one OS c-jet
- Huge differences for exactly one SS c-jet
 - \rightarrow exactly one OS c-jet is preferred in this respect

• Charged lepton

$$p_{T,\ell} > 30 \text{ GeV}, \qquad |\eta_\ell| < 2.5.$$

• At least one c-tagged jet

$$p_{{
m T},{
m j}_c} > 20~{
m GeV}, \qquad |\eta_{{
m j}_c}| < 2.5.$$

$\sigma_{\rm NNLO}\;[{\rm pb}]$	full CKM	$V_{cd}^{LO} \neq 0$	no CKM
+	$168.6(8)^{+0.7\%~+3.8\%(\rm PDF)}_{-2.1\%~-3.8\%(\rm PDF)}$	$164.4(8)^{+1.0\%~+3.9\%(\rm PDF)}_{-2.4\%~-3.9\%(\rm PDF)}$	$156.7(8)^{+0.7\%~+4.2\%(\rm PDF)}_{-2.1\%~-4.2\%(\rm PDF)}$
-	$173.9(1.9)^{+0.6\%~+3.7\%(\rm PDF)}_{-1.8\%~-3.7\%(\rm PDF)}$	$168.5(1.9)^{+1.0\%~+3.8\%(\rm PDF)}_{-2.2\%~-3.8\%(\rm PDF)}$	$156.7(1.9)^{+0.5\%~+4.2\%(\rm PDF)}_{-1.6\%~-4.2\%(\rm PDF)}$