QCD@LHC 2023

Towards automation of inclusive quarkonium production in

MadGraph5_aMC@NLO

Chris A. Flett

In collaboration with Jean-Philippe Lansberg, HuaSheng Shao \& Alice Colpani-Serri

Université Paris-Saclay CNRS, IJCLab,
Orsay, France

Introduction - why quarkonia?

Charmonium hierarchy
Rev.Mod.Phys. 90 (2018) 1, 015003

Quarkonia: bound states of heavy c, b, quarks ${ }^{1}$
${ }^{1}$ bound states analogous to those of positronium

Introduction - why quarkonia?

Charmonium hierarchy
Rev.Mod.Phys. 90 (2018) 1, 015003
 $\psi(4 \mathrm{~S})$

Quarkonia: bound states of heavy c, b, quarks ${ }^{1}$

$$
\begin{array}{ll}
\mathrm{J} / \psi: & \mathrm{S}=1 \text { (spin triplet) }, \\
\mathrm{L}=0(S \text { wave }), \mathrm{J}=1
\end{array}
$$

e.g. gluon PDF constraints at low mom. fractions and res. scales

Exclusive

Inclusive
${ }^{1}$ bound states analogous to those of positronium

Introduction - why quarkonia?

Charmonium hierarchy
Rev.Mod.Phys. 90 (2018) 1, 015003

Motivation

Quarkonia:

- offer complementary information on quarkonium production mechanisms and fundamentals of QCD when measured in distinct inclusive and exclusive experimental channels
- are expected to underpin the search for gluon saturation at the upcoming EIC and provide constraints on e.g. the QGP.

Quarkonium production

Factorisation:

$$
\begin{aligned}
\sigma(p p \rightarrow Q+X)= & \sum_{i, j, n} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i / p}\left(x_{1}\right) f_{j / p}\left(x_{2}\right) \\
& \times \hat{\sigma}(i j \rightarrow Q \bar{Q}[n]+X)\left\langle\mathcal{O}_{n}^{Q}\right\rangle
\end{aligned}
$$

Typical quarkonium production mechanisms

- Colour Singlet Model (CSM) ${ }^{1}$
- Colour Evaporation Model (CEM) Phys. Lett. в 390 (1997), pp. 323-328.
- Non-Relativistic QCD (NRQCD) Phys. Rev. D 51 (1995). [Erratum: Phys.Rev.D 55, 5853 (1997)], pp. 1125-1171

Quarkonium production

Factorisation:

$$
\begin{aligned}
\sigma(p p \rightarrow Q+X)= & \sum_{i, j, n} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i / p}\left(x_{1}\right) f_{j / p}\left(x_{2}\right) \\
& \times \hat{\sigma}(i j \rightarrow Q \bar{Q}[n]+X)\left\langle\mathcal{O}_{n}^{Q}\right\rangle
\end{aligned}
$$

NRQCD:

expansion in rel. velocity v of constituent heavy quarks allows one to systematically build up the quarkonium spectrum
e.g. zeroth order term $\mathcal{O}\left(v^{0}\right)$ in expansion for $J / \psi\left(={ }^{3} S_{1}\right.$ state) couples to $\chi^{\dagger}(0) \sigma_{i} \phi(0)$ and the corresponding LDME can be fixed by the

QED di-leptonic decay width

Automation of quarkonium cross sections

Facilitates:

- Global data/theory comparisons
- Physics cases for future experimental facilities
- Global NRQCD fits

Automation of quarkonium cross sections

Facilitates:

- Global data/theory comparisons
- Physics cases for future experimental facilities
- Global NRQCD fits

Automation of quarkonium cross sections

Facilitates:

- Global data/theory comparisons
- Physics cases for future experimental facilities
- Global NRQCD fits

In public matrix element generators/event generators:

- Interfacing of e.g. HERWIG or PYTHIA with e.g. MG5_aMC1

Facilitates complete computation
Versatility and enhanced physics simulation capabilities...
...but integration complexity, computational overhead, code compatibility and increased learning requirements.

1 e.g. cross sections with jets with identified hadrons JHEP 06 (2016) 121

Automation of quarkonium cross sections cont.

Motivated:

Tool

- MadOnia

Artoisenet, Maltoni, Stelzer

- Helac-Onia Shao

Features

(Deprecated) module within MadGraph4 was not ported to current version (v5)
Phenomenology limited to single particle production

One or more S-wave and/or P-wave heavy quarkonia production based on tree-level helicity amplitudes

Limited to LO but not easily extendable to NLO (no NLO matrix element, no phase space integrator for NLO,...)

MadGraph5_aMC@NLO

Only automated matrix element generator at LO and NLO + parton showering JHEP 07 (2014) 079

- Flexibility to support SM, BSM and large number of particle physics models

- But no quarkonia final states -- Why?

MadGraph5_aMC@NLO

Only automated matrix element generator at LO and NLO + parton showering JHEP 07 (2014) 079

- Flexibility to support SM, BSM and large number of particle physics models

- But no quarkonia final states -- Why?
-For colour octet configurations, very many more diagrams
-Final state IR divergence cancellation issues (different NRQCD Fock states contribute)
-Feynman integral reduction to master integral basis using standard tools fails

MadGraph5_aMC@NLO + quarkonium

Aim:

Produce automation of LO quarkonium in MG5_aMC with NLO in sight

To date:
Towards single and multiple S-wave inclusive
quarkonium (and associated) production at LO

- Colour projectors

$$
\mathcal{C}_{1}=\delta_{i j} / \sqrt{N_{c}} \quad \mathcal{C}_{8}=\sqrt{2} T_{i j}^{c}
$$

- Spin projectors
- Interface
- Phase space adaptation

Metacode: implement formalism in .py that produces .f code to perform numerical manipulations

Amplitude generation \& spin projectors

- MG5 organises amplitude into colour basis 'JAMPs'

Efficiency: For given process, may have large \# of diagrams but colour basis will be much smaller
E.g. generate LO g g c c colour singlet (CS) and colour octet (CO)

(a)

(b)

(c)

CS : $c_{1}=\operatorname{Tr}\left(t^{a} t^{b}\right)$

Amplitude generation \& spin projectors

- MG5 organises amplitude into colour basis 'JAMPs'

Efficiency: For given process, may have large \# of diagrams but colour basis will be much smaller
E.g. generate $\mathrm{LO} \mathrm{g} g>\mathrm{c} c \sim$ colour singlet (CS) and colour octet (CO)

(a)

(b)

(c)

$$
\begin{array}{rlr}
& \mathcal{A}=A_{a}+A_{b}+A_{c} & \mathrm{JAMP}_{1}=A_{11}+A_{31} \propto c_{1} \\
& A_{a}=c_{1} A_{11} & \mathrm{JAMP}_{2}=A_{22}+A_{32} \propto c_{2} \\
\mathrm{CO}: c_{1}=\operatorname{Tr}\left(t^{a} t^{b} t^{c}\right) & A_{b}=c_{2} A_{22} & \\
c_{2}=\operatorname{Tr}\left(t^{b} t^{a} t^{c}\right) & A_{c}=c_{1} A_{31}+c_{2} A_{32} & |\mathcal{A}|^{2}=\sum_{i, j=1,2} \mathrm{JAMP}_{\mathrm{i}}^{*}\left\langle c_{i} \mid c_{j}\right\rangle \mathrm{JAMP}_{\mathrm{j}}
\end{array}
$$

Amplitude generation \& spin projectors

Generic quarkonium spin projector:

$$
\sum_{\lambda_{1}, \lambda_{2}=-1 / 2}^{1 / 2} \bar{v}\left(p_{2}, \lambda_{2}\right) \Gamma_{S} \frac{\not P+M}{2 M} u\left(p_{1}, \lambda_{1}\right)
$$

$S=0, \gamma_{5} ; 1, \notin(P)$
Generic fermion line:

$$
\bar{u}\left(p_{1}, \lambda_{1}\right) \Gamma_{1} \ldots \Gamma_{2} \nu\left(p_{2}, \lambda_{2}\right)
$$

**

$$
\sum_{\lambda_{2}=-1 / 2}^{1 / 2} \bar{v}\left(p_{2}, \lambda_{2}\right) \Gamma_{S} \frac{P+M}{2 M}\left(\not p_{1}-m_{1}\right) \Gamma_{1} \ldots \Gamma_{2} \nu\left(p_{2}, \lambda_{2}\right)
$$

$$
\sim \sum_{\lambda=-1 / 2}^{1 / 2} \Gamma_{2}\left(\not p_{2}-m_{2}\right) \frac{\Gamma_{S}}{2 M} u(P, \lambda) \bar{u}(P, \lambda)\left(\not p_{1}-m_{1}\right) \Gamma_{1}
$$

$$
\bar{\nu}_{\mathrm{eff}}(P, \lambda)
$$

$$
u_{\mathrm{eff}}(P, \lambda)
$$

Amplitude generation \& spin projectors

$$
\begin{gathered}
\sim \sum_{\lambda=-1 / 2}^{1 / 2} \Gamma_{2}\left(\not p_{2}-m_{2}\right) \frac{\Gamma_{S}}{2 M} u(P, \lambda) \bar{u}(P, \lambda)\left(\not p_{1}-m_{1}\right) \Gamma_{1} \\
\bar{\nu}_{\mathrm{eff}}(P, \lambda) \\
u_{\mathrm{eff}}(P, \lambda)
\end{gathered}
$$

Motivation: MG5 recursively generates diagrams by carefully merging legs to avoid a double counting
-- leads to problem after spin projector applied because it 'glues' the two external quarkonium wfs.

Counteract: we introduce new effective wavefunctions

Summary \& Outlook

Summary

- Implementation of LO inclusive quarkonium + associated production for S wave Fock states in MG5. Finalise user interface and incorporation into EU virtual access project NLOAccess

Outlook

- Extension to states with leading \mathbf{P} wave Fock states --> global NRQCD picture and/or BSM
- Ultimately NLO in mind with few caveats.

