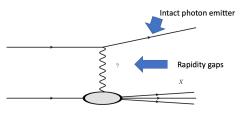


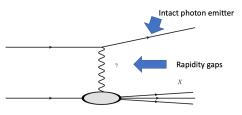




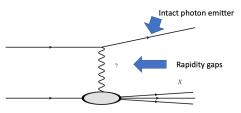
# Inclusive quarkonium photoproduction in ultra-peripheral collisions

#### Kate Lynch

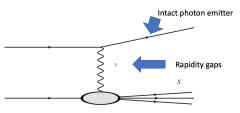

Jean-Philippe Lansberg (IJCLab), Charlotte Van Hulse (UAH) & Ronan McNulty (UCD)


QCD@LHC Durham

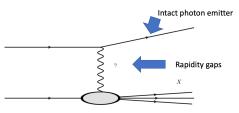



This project is supported by the European Union's Horizon 2020 research and innovation programme under Grant agreement no. 824093

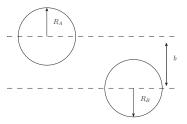
K. Lynch (IJCLab & UCD) Inclusive UPC September 5<sup>th</sup>, 2023 1/



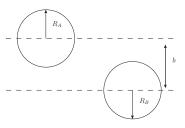




- electron-proton collisions are
  - dominated by photon-exchange

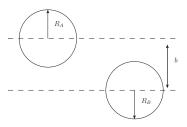



- electron-proton collisions are
  - dominated by photon-exchange
- proton-proton, proton-ion, or ion-ion collisions are
  - dominated by hadronic exchange
  - however, the LHC is an excellent source of photons!

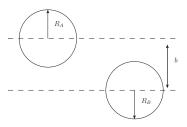



- electron-proton collisions are
  - dominated by photon-exchange
- proton-proton, proton-ion, or ion-ion collisions are
  - dominated by hadronic exchange
  - however, the LHC is an excellent source of photons!
- Can we isolate photon interactions at the LHC?

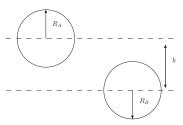



- electron-proton collisions are
  - dominated by photon-exchange
- proton-proton, proton-ion, or ion-ion collisions are
  - dominated by hadronic exchange
  - however, the LHC is an excellent source of photons!
- Can we isolate photon interactions at the LHC?
- In ultra-peripheral collisions, interactions are mediated over distances larger than charge radius and so, electromagnetic exchange becomes dominant




UPC: interaction mediated over distances larger than charge radius ( $b > R_A + R_B$ )




Fewer particles than in hadronic interactions (rapidity gaps)



- Fewer particles than in hadronic interactions (rapidity gaps)
- ullet Coherent emission: wavelength of emitted photon is larger than charge radius of emitting object, therefore  $\gamma$ -emitter remains intact.



- Fewer particles than in hadronic interactions (rapidity gaps)
- Coherent emission: wavelength of emitted photon is larger than charge radius of emitting object, therefore  $\gamma$ -emitter remains **intact**.
  - proton-lead:  $\sqrt{s_{NN}}=8.16~{\rm TeV} 
    ightarrow rac{W_{\gamma N}^{max}}{}pprox 1.5~{\rm TeV}$
  - proton-proton:  $\sqrt{s_{NN}} = 13 \text{ TeV} \rightarrow W_{\gamma N}^{max} \approx 5 \text{ TeV}$



- Fewer particles than in hadronic interactions (rapidity gaps)
- Coherent emission: wavelength of emitted photon is larger than charge radius of emitting object, therefore γ-emitter remains intact.
  - proton-lead:  $\sqrt{s_{NN}}=8.16~{\rm TeV} \rightarrow \frac{W_{\gamma N}^{max}}{\sim} \approx 1.5~{\rm TeV}$
  - proton-proton:  $\sqrt{s_{NN}}=13~{\rm TeV} 
    ightarrow W_{\gamma N}^{max} pprox 5~{\rm TeV}$
  - electron-proton:
    - HERA:  $\sqrt{s_{ep}} = 320 \text{ GeV}$
    - EIC:  $\sqrt{s_{ep}} = 45 140 \text{ GeV}$



• Quarkonia are bound states of heavy quarks  $c\bar{c}$  or  $b\bar{b}$ 

- Quarkonia are bound states of heavy quarks  $c\bar{c}$  or  $b\bar{b}$ 
  - in principle the simplest QCD bound states

- Quarkonia are bound states of heavy quarks  $c\bar{c}$  or  $b\bar{b}$ 
  - in principle the simplest QCD bound states
  - however, production mechanism remains an open question... Colour Singlet Model vs. Colour Octet Mechanism and NRQCD vs. Colour Evaporation Model

- Quarkonia are bound states of heavy quarks  $c\bar{c}$  or  $b\bar{b}$ 
  - in principle the simplest QCD bound states
  - however, production mechanism remains an open question... Colour Singlet Model vs. Colour Octet Mechanism and NRQCD vs. Colour Evaporation Model
- Photoproduction processes are in general simpler than hadroproduction

- Quarkonia are bound states of heavy quarks  $c\bar{c}$  or  $b\bar{b}$ 
  - in principle the simplest QCD bound states
  - however, production mechanism remains an open question... Colour Singlet Model vs. Colour Octet Mechanism and NRQCD vs. Colour Evaporation Model
- Photoproduction processes are in general simpler than hadroproduction
  - however, resolved-photon interactions introduce the photon PDF



direct and resolved photons

- Quarkonia are bound states of heavy quarks  $c\bar{c}$  or  $b\bar{b}$ 
  - in principle the simplest QCD bound states
  - however, production mechanism remains an open question... Colour Singlet Model vs. Colour Octet Mechanism and NRQCD vs. Colour Evaporation Model
- Photoproduction processes are in general simpler than hadroproduction
  - however, resolved-photon interactions introduce the photon PDF

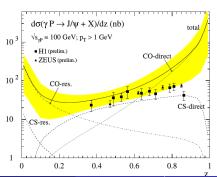


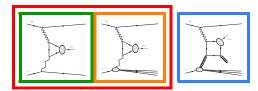


direct and resolved photons

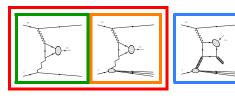
Measuring inclusive quarkonium photoproduction presents the opportunity to capture a discriminant variable...

• Elasticity 
$$z = \frac{P_{\psi} \cdot P_{\rho}}{P_{\gamma} \cdot P_{\rho}}$$

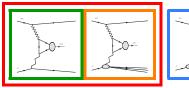

- Quarkonia are bound states of heavy quarks  $c\bar{c}$  or  $b\bar{b}$ 
  - in principle the simplest QCD bound states
  - however, production mechanism remains an open question... Colour Singlet Model vs. Colour Octet Mechanism and NRQCD vs. Colour Evaporation Model
- Photoproduction processes are in general simpler than hadroproduction
  - however, resolved-photon interactions introduce the photon PDF




direct and resolved photons

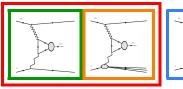

Measuring inclusive quarkonium photoproduction presents the opportunity to capture a discriminant variable...

• Elasticity  $z = \frac{P_{\psi} \cdot P_{p}}{P_{\gamma} \cdot P_{p}}$ 



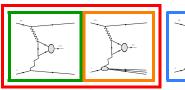



• Data exists for diffractive (exclusive and proton-disassociative) & inclusive photoproduction @ HERA  $\sqrt{s}=320~{\rm GeV}$ 



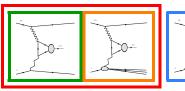

- Data exists for diffractive (exclusive and proton-disassociative) & inclusive photoproduction @ HERA  $\sqrt{s}=320~{\rm GeV}$
- In diffractive production only the CSM contributes






- Data exists for diffractive (exclusive and proton-disassociative) & inclusive photoproduction @ HERA  $\sqrt{s}=320~{\rm GeV}$
- In diffractive production only the CSM contributes
- In inclusive production can test the quarkonium production mechanism






- Data exists for diffractive (exclusive and proton-disassociative) & inclusive photoproduction @ HERA  $\sqrt{s}=320~{\rm GeV}$
- In diffractive production only the CSM contributes
- In inclusive production can test the quarkonium production mechanism
- Different contributions separated using experimental cuts ...
  - Diffractive region:  $p_T < 1 \text{ GeV}$  z > 0.9 additional constraints on activity separate exclusive and proton-disassociative
  - Inclusive region:  $p_T > 1 \text{ GeV}$  z < 0.9





- Data exists for diffractive (exclusive and proton-disassociative) & inclusive photoproduction @ HERA  $\sqrt{s}=320~{\rm GeV}$
- In diffractive production only the CSM contributes
- In inclusive production can test the quarkonium production mechanism
- $\bullet$  Different contributions separated using experimental cuts  $\dots$ 
  - Diffractive region:  $p_T < 1 \text{ GeV}$  z > 0.9 additional constraints on activity separate exclusive and proton-disassociative
  - Inclusive region:  $p_T > 1 \text{ GeV}$  z < 0.9
- Each contribution is found to be comparable  $\sigma_{excl.} \simeq \sigma_{diss.} \simeq \sigma_{incl.}$  ... exclusive measurements have been made via UPC at the LHC therefore we expect there is an inclusive signal...





- Data exists for diffractive (exclusive and proton-disassociative) & inclusive photoproduction @ HERA  $\sqrt{s}=320~{\rm GeV}$
- In diffractive production only the CSM contributes
- In inclusive production can test the quarkonium production mechanism
- Different contributions separated using experimental cuts ...
  - Diffractive region:  $p_T < 1 \text{ GeV}$  z > 0.9 additional constraints on activity separate exclusive and proton-disassociative
  - Inclusive region:  $p_T > 1 \text{ GeV}$  z < 0.9
- Each contribution is found to be comparable  $\sigma_{excl.} \simeq \sigma_{diss.} \simeq \sigma_{incl.}$  ... exclusive measurements have been made via UPC at the LHC therefore we expect there is an inclusive signal...

We propose inclusive **photoproduction** is measured at the LHC; opportunity to extend  $p_{T^-} \& W_{\gamma p}$ -reach, capture a variety of quarkonium species & improve statistical accuracy of existing data

#### Table of Contents

- Feasibility
- Set-up
- 3 Tuning and validation
- 4 Reducing background
  - Method I: far-forward activity
  - Method II: forward activity
  - Method III: central activity
- 5 Reconstructing kinematics

Why? Next e-p data taking possible at the EIC ( $\sim$ 10 years)

Why? Next e-p data taking possible at the EIC ( $\sim$ 10 years) How? In p-p/p-A/A-A collisions photoproduction is tagged via an **intact photon emitter** (UPC)

Why? Next e-p data taking possible at the EIC ( $\sim$ 10 years) How? In p-p/p-A/A-A collisions photoproduction is tagged via an **intact photon emitter** (UPC) ... p-Pb is the ideal system since...

- no ambiguity as to which beam particle emits the photon [p-p or Pb-Pb]
- negligible neutron emission probability from Pb-ion means a clean tag of the intact  $\gamma$ -emitter (later...) [ $\mathcal{O}(0.5)$  in Pb-Pb ATLAS-CONF-2022-021]
- less hadronic activity than in Pb-Pb

Why? Next e-p data taking possible at the EIC ( $\sim$ 10 years) How? In p-p/p-A/A-A collisions photoproduction is tagged via an **intact photon emitter** (UPC) ... p-Pb is the ideal system since...

- no ambiguity as to which beam particle emits the photon [ρ-ρ or Pb-Pb]
- negligible neutron emission probability from Pb-ion means a clean tag of the intact  $\gamma$ -emitter (later...) [ $\mathcal{O}(0.5)$  in Pb-Pb ATLAS-CONF-2022-021]
- less hadronic activity than in Pb-Pb

How do **intact** (photoproduction) vs. **broken lead-ion** (hadroproduction) contributions compare?





- Hadroproduction contribution is larger than photoproduction;  $\sigma_{had.} \gg \sigma_{photo.}$
- In *p*-Pb the relative size of these contributions is strongly rapidity-dependent
- In order to make a measurement we must be able to reduce the hadroproduction contribution... we will call this background

#### Table of Contents

- Feasibility
- 2 Set-up
- 3 Tuning and validation
- 4 Reducing background
  - Method I: far-forward activity
  - Method II: forward activity
  - Method III: central activity
- 5 Reconstructing kinematics

### Generating samples

Comput.Phys.Commun. 184 (2013) 2562-2570

- Use HELAC-Onia to generate MC samples [in the NRQCD framework]
- Use MC samples to model the signal and background
  - Signal  $[\gamma g o J/\psi(^3S^1_1)g$  ] and  $[\gamma g o J/\psi(^1S^8_0)g$  ]
  - Background [ $gg o J/\psi(^3S_1^1)g$  ] and [ $gg o J/\psi(^3S_1^8)g$  ]
- Use PYTHIA to shower partonic events
- The  $p_T$  distribution is not well described by leading order NRQCD so we tune the samples to experimental data
  - photoproduction signal H1 ep 320 GeV data
     10.1140/epjc/s10052-010-1376-5; 10.1007/s10052-002-1009-8
  - hadroproduction background LHCb 5 TeV pp data 10.1007/JHEP11(2021)181

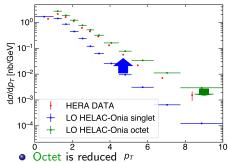
#### Table of Contents

- Feasibility
- Set-up
- Tuning and validation
- 4 Reducing background
  - Method I: far-forward activity
  - Method II: forward activity
  - Method III: central activity
- 5 Reconstructing kinematics

# Tuning: photoproduction signal

Tune MC to HERA data @  $\sqrt{s} = 320$  GeV;

- $60 < W_{\gamma p} < 240 \text{ GeV}$
- 0.3 < z < 0.9



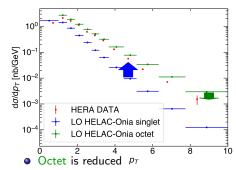

- Octet is reduced PT
- Singlet is increased

### Tuning: photoproduction signal

Tune MC to HERA data @  $\sqrt{s} = 320$  GeV;

- $60 < W_{\gamma p} < 240 \text{ GeV}$
- 0.3 < z < 0.9




- Singlet is increased

| p⊤ bin [GeV]        | LO tuning factors   |                   |
|---------------------|---------------------|-------------------|
|                     | ${}^{3}S_{1}^{(1)}$ | $^{1}S_{0}^{(8)}$ |
| $0.0 < p_T < 1.0$   | 0.8                 | -                 |
| $1.0 < p_T < 1.45$  | 1.5                 | 0.8               |
| $1.45 < p_T < 1.87$ | 1.9                 | 0.9               |
| $1.87 < p_T < 2.32$ | 2.5                 | 0.9               |
| $2.32 < p_T < 2.76$ | 2.6                 | 0.8               |
| $2.76 < p_T < 3.16$ | 3.8                 | 0.9               |
| $3.16 < p_T < 3.67$ | 4.6                 | 0.9               |
| $3.67 < p_T < 4.47$ | 5.0                 | 8.0               |
| $4.47 < p_T < 5.15$ | 6.0                 | 0.7               |
| $5.15 < p_T < 6.32$ | 7.1                 | 0.6               |
| $6.32 < p_T < 7.75$ | 10.9                | 0.6               |
| $7.75 < p_T < 10.0$ | 12.4                | 0.5               |

#### Tuning: photoproduction signal

Tune MC to HERA data @  $\sqrt{s} = 320$  GeV;

- $60 < W_{\gamma p} < 240 \text{ GeV}$
- 0.3 < z < 0.9

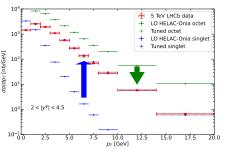


| • | Singl  | et | is | increased |
|---|--------|----|----|-----------|
| _ | Jiligi | CL | 13 | mercasea  |

| p⊤ bin [GeV]        | LO tuning factors |                   |  |  |  |
|---------------------|-------------------|-------------------|--|--|--|
|                     | $^{3}S_{1}^{(1)}$ | $^{1}S_{0}^{(8)}$ |  |  |  |
| $0.0 < p_T < 1.0$   | 0.8               | -                 |  |  |  |
| $1.0 < p_T < 1.45$  | 1.5               | 8.0               |  |  |  |
| $1.45 < p_T < 1.87$ | 1.9               | 0.9               |  |  |  |
| $1.87 < p_T < 2.32$ | 2.5               | 0.9               |  |  |  |
| $2.32 < p_T < 2.76$ | 2.6               | 8.0               |  |  |  |
| $2.76 < p_T < 3.16$ | 3.8               | 0.9               |  |  |  |
| $3.16 < p_T < 3.67$ | 4.6               | 0.9               |  |  |  |
| $3.67 < p_T < 4.47$ | 5.0               | 8.0               |  |  |  |
| $4.47 < p_T < 5.15$ | 6.0               | 0.7               |  |  |  |
| $5.15 < p_T < 6.32$ | 7.1               | 0.6               |  |  |  |
| $6.32 < p_T < 7.75$ | 10.9              | 0.6               |  |  |  |
| $7.75 < p_T < 10.0$ | 12.4              | 0.5               |  |  |  |
| 161/                |                   |                   |  |  |  |

**NOTE**: no tuning factor for octet in  $0 < p_T < 1$  GeV as cross section is divergent. However, tuning factors can be computed using distributions from PYTHIA where events are smeared into the  $0 < p_T < 1$  GeV region.

Tune MC to rapidity integrated data (LHCb data @ 5 TeV).


Assumptions:

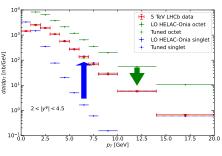
- Tuning is y independent
- 2 Tuning is  $\sqrt{s}$  independent

Tune MC to rapidity integrated data (LHCb data @ 5 TeV).

Assumptions:

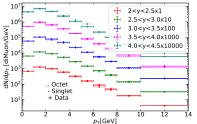
- Tuning is y independent
- 2 Tuning is  $\sqrt{s}$  independent




- Octet is reduced
- Singlet is increased

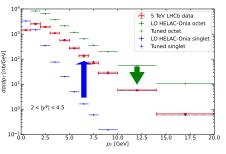
Tune MC to rapidity integrated data (LHCb data @ 5 TeV).

Assumptions:


Tuning is y independent

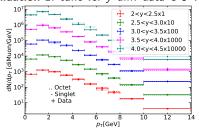
2 Tuning is  $\sqrt{s}$  independent



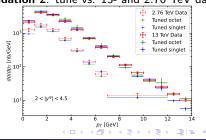

- Octet is reduced
- Singlet is increased

#### **Validation 1**: tune vs. *y*-diff. data @ 5 TeV.




Tune MC to rapidity integrated data (LHCb data @ 5 TeV). Assumptions:

- Tuning is y independent
- 2 Tuning is  $\sqrt{s}$  independant

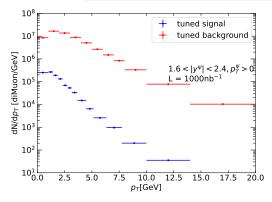



- Octet is reduced
- Singlet is increased

**Validation 1**: tune vs. *y*-diff. data @ 5 TeV.

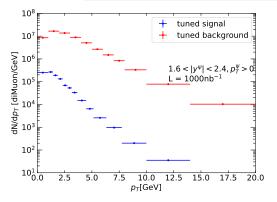


Validation 2: tune vs. 13- and 2.76 TeV data.




# Signal-over-background in detector acceptance

|             | LHCb                    | CMS typical        | CMS low $p_T$                              | ATLAS              | ALICE                  |  |
|-------------|-------------------------|--------------------|--------------------------------------------|--------------------|------------------------|--|
|             |                         | detec              | tor acceptance:                            |                    |                        |  |
|             | $2 < y^{\psi} < 4.5$    | $ y^{\psi}  < 2.1$ | $1.2 >  y^{\psi}  p_T^{\psi} > 6.5$        | $ y^{\psi}  < 2.1$ | $2.5 <  y^{\psi}  < 4$ |  |
|             |                         | $p_T^{\psi} > 6.5$ | $1.2 <  y^{\psi}  < 1.6 \; p_T^{\psi} > 2$ | $p_T^{\psi} > 8.5$ |                        |  |
|             |                         |                    | $1.6 <  y^{\psi}  < 2.4 \; p_T^{\psi} > 0$ |                    |                        |  |
|             | Signal-over-background: |                    |                                            |                    |                        |  |
| Pbp         | $3 \cdot 10^{-3}$       | $9 \cdot 10^{-4}$  | $1 \cdot 10^{-2}$                          | $6 \cdot 10^{-4}$  | $3 \cdot 10^{-3}$      |  |
| <i>p</i> Pb | $1\cdot 10^{-2}$        | $9 \cdot 10^{-4}$  | $1\cdot 10^{-2}$                           | $6 \cdot 10^{-4}$  | $1\cdot 10^{-2}$       |  |

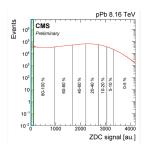

# Signal-over-background in detector acceptance

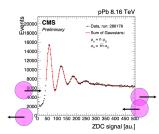
|     | LHCb                    | CMS typical        | CMS low $p_T$                              | ATLAS              | ALICE                  |  |
|-----|-------------------------|--------------------|--------------------------------------------|--------------------|------------------------|--|
|     |                         | detec              | tor acceptance:                            |                    |                        |  |
|     | $2 < y^{\psi} < 4.5$    | $ y^{\psi}  < 2.1$ | $1.2 >  y^{\psi}  p_T^{\psi} > 6.5$        | $ y^{\psi}  < 2.1$ | $2.5 <  y^{\psi}  < 4$ |  |
|     |                         | $p_T^{\psi} > 6.5$ | $1.2 <  y^{\psi}  < 1.6 \; p_T^{\psi} > 2$ | $p_T^{\psi} > 8.5$ |                        |  |
|     |                         |                    | $1.6 <  y^{\psi}  < 2.4 \; p_T^{\psi} > 0$ |                    |                        |  |
|     | Signal-over-background: |                    |                                            |                    |                        |  |
| Pbp | $3 \cdot 10^{-3}$       | $9 \cdot 10^{-4}$  | $1 \cdot 10^{-2}$                          | $6 \cdot 10^{-4}$  | 3 · 10 <sup>-3</sup>   |  |
| pPb | $1\cdot 10^{-2}$        | $9 \cdot 10^{-4}$  | $1\cdot 10^{-2}$                           | $6 \cdot 10^{-4}$  | $1 \cdot 10^{-2}$      |  |



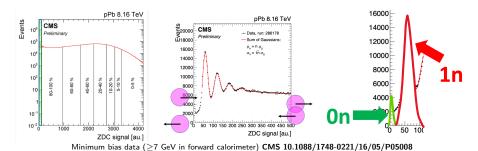
# Signal-over-background in detector acceptance

|             | LHCb                    | CMS typical                                               | CMS low $p_T$                              | ATLAS              | ALICE                  |  |  |
|-------------|-------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------|------------------------|--|--|
|             | detector acceptance:    |                                                           |                                            |                    |                        |  |  |
|             | $2 < y^{\psi} < 4.5$    | $ y^{\psi}  < 2.1$ $1.2 >  y^{\psi}  \; p_T^{\psi} > 6.5$ |                                            | $ y^{\psi}  < 2.1$ | $2.5 <  y^{\psi}  < 4$ |  |  |
|             |                         | $p_T^{\psi} > 6.5$                                        | $1.2 <  y^{\psi}  < 1.6 \; p_T^{\psi} > 2$ | $p_T^{\psi} > 8.5$ |                        |  |  |
|             |                         |                                                           | $1.6 <  y^{\psi}  < 2.4 \; p_T^{\psi} > 0$ |                    |                        |  |  |
|             | Signal-over-background: |                                                           |                                            |                    |                        |  |  |
| Pbp         | $3 \cdot 10^{-3}$       | $9 \cdot 10^{-4}$                                         | $1 \cdot 10^{-2}$                          | $6 \cdot 10^{-4}$  | $3 \cdot 10^{-3}$      |  |  |
| <i>p</i> Pb | $1 \cdot 10^{-2}$       | $9 \cdot 10^{-4}$                                         | $1\cdot 10^{-2}$                           | $6 \cdot 10^{-4}$  | $1 \cdot 10^{-2}$      |  |  |



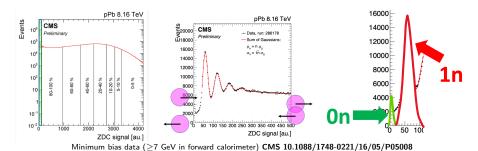


Must impose cuts to enhance signal with respect to background!

### Table of Contents

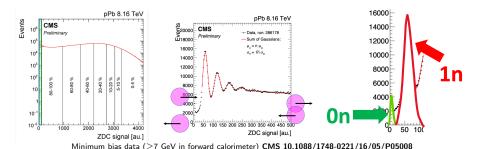

- Feasibility
- Set-up
- 3 Tuning and validation
- Reducing background
  - Method I: far-forward activity
  - Method II: forward activity
  - Method III: central activity
- 5 Reconstructing kinematics

• Far-forward detectors close to beam-pipe; used to classify centrality

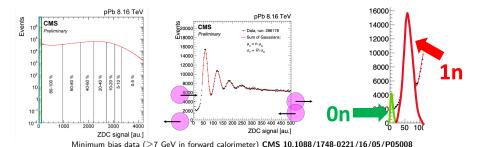





• Far-forward detectors close to beam-pipe; used to classify centrality




- Can resolve single to few neutron emissions
- All of the signal is in the 0-neutron bump [signal with neutron emission is negligible]
- ≥ 1-neutron region is all background
- Efficiency  $(\epsilon)$  for detecting 1n is > 98% cms, 2102.06640; ALICE, 1203.2436

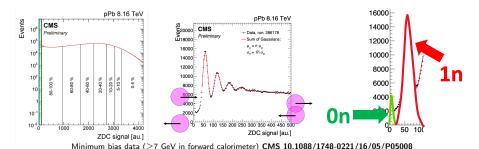

• Far-forward detectors close to beam-pipe; used to classify centrality



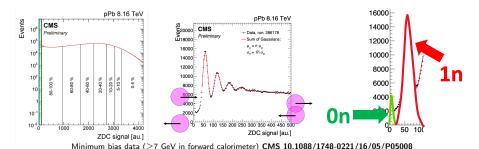

- Can resolve single to few neutron emissions
- All of the signal is in the 0-neutron bump [signal with neutron emission is negligible]
- ≥ 1-neutron region is all background
- Efficiency  $(\epsilon)$  for detecting 1n is > 98% cms, 2102.06640; ALICE, 1203.2436
  - Therefore maximally 2% of 1n events look like 0n events



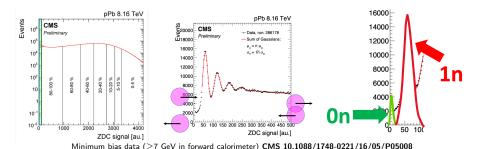

**Assume** that the minimum bias and inclusive  $J/\psi$  ZDC spectra are similar.







- From the figure above;  $N_{0n} = 45000$ ;  $N_{1n} = 560000$ .
- The true 1n peak has  $\frac{N_{1n}}{1-\epsilon}$  events.




- From the figure above;  $N_{0n} = 45000$ ;  $N_{1n} = 560000$ .
- The true 1n peak has  $\frac{N_{1n}}{1-\epsilon}$  events.
- The number of true 1n events that leak into the 0n region is  $\frac{\epsilon N_{1n}}{1-\epsilon}$



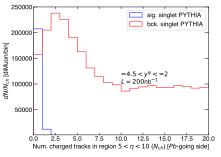
- From the figure above;  $N_{0n} = 45000$ ;  $N_{1n} = 560000$ .
- The true 1n peak has  $\frac{N_{1n}}{1-\epsilon}$  events.
- ullet The number of true 1n events that leak into the 0n region is  $\frac{\epsilon N_{1n}}{1-\epsilon}$
- This corresponds to a signal-over-background ratio in the 1n region of...

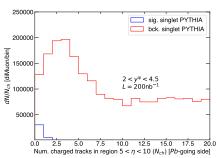


- From the figure above;  $N_{0n} = 45000$ ;  $N_{1n} = 560000$ .
- The true 1n peak has  $\frac{N_{1n}}{1-\epsilon}$  events.
- ullet The number of true 1n events that leak into the 0n region is  $\frac{\epsilon N_{1n}}{1-\epsilon}$
- This corresponds to a signal-over-background ratio in the 1n region of...
  - 3 with  $\epsilon = 0.02$  and 7 with  $\epsilon = 0.01$

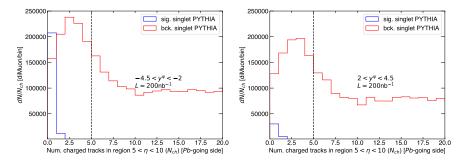


**Assume** that the minimum bias and inclusive  $J/\psi$  ZDC spectra are similar.


So, let us use this to estimate the signal-over-background ratio in the 0n region!


- From the figure above;  $N_{0n} = 45000$ ;  $N_{1n} = 560000$ .
- The true 1n peak has  $\frac{N_{1n}}{1-\epsilon}$  events.
- The number of true 1n events that leak into the 0n region is  $\frac{\epsilon N_{1n}}{1-\epsilon}$
- This corresponds to a signal-over-background ratio in the 1n region of...
  - 3 with  $\epsilon = 0.02$  and 7 with  $\epsilon = 0.01$
- This background reduction technique can be used in CMS, ALICE & ATLAS.

ullet HeRSCheL detectors at forward and backward rapidity in the region 5 <  $|\eta|$  < 10


- ullet HeRSCheL detectors at forward and backward rapidity in the region  $5<|\eta|<10$
- Use MC samples to count the number of charged tracks in HeRSCheL region

- ullet HeRSCheL detectors at forward and backward rapidity in the region  $5<|\eta|<10$
- Use MC samples to count the number of charged tracks in HeRSCheL region



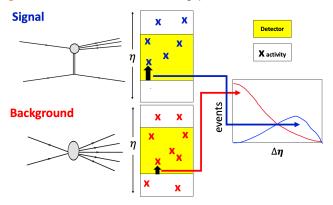


- ullet HeRSCheL detectors at forward and backward rapidity in the region 5 <  $|\eta|$  < 10
- Use MC samples to count the number of charged tracks in HeRSCheL region



If we take 5 tracks as our cut value; we expect to retain  $\mathcal{O}(100\%)$  of the signal and remove  $\mathcal{O}(95\%)$  the background.

### Method III: central activity; rapidity gaps

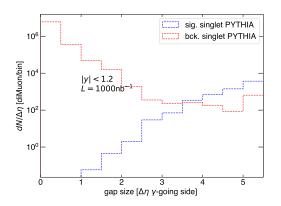

Characterise the central activity and exploit the difference between signal and background event topologies to cut background events

- Signal: more events with larger gaps
- Background: more events with smaller gaps

### Method III: central activity; rapidity gaps

Characterise the central activity and exploit the difference between signal and background event topologies to cut background events

- Signal: more events with larger gaps
- Background: more events with smaller gaps

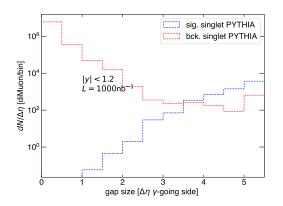



### Method III: Rapidity gap distributions in CMS acceptance

- Rapidity-gap-type observables are ideal where there is a wide rapidity coverage, i.e., CMS and ATLAS
- Different rapidity gap definitions will have different efficiencies

### Method III: Rapidity gap distributions in CMS acceptance

- Rapidity-gap-type observables are ideal where there is a wide rapidity coverage, i.e., CMS and ATLAS
- Different rapidity gap definitions will have different efficiencies

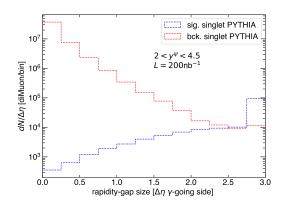



Most background events have a small gap size.

Most signal events have large gap size.

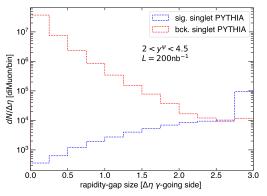
### Method III: Rapidity gap distributions in CMS acceptance

- Rapidity-gap-type observables are ideal where there is a wide rapidity coverage, i.e., CMS and ATLAS
- Different rapidity gap definitions will have different efficiencies




Most background events have a small gap size.

Most signal events have large gap size.


If we take a cut value of  $\Delta \eta = 2$ ; we expect to retain  $\mathcal{O}(99\%)$  of the signal and remove  $\mathcal{O}(99\%)$  the background.

### Method III: Rapidity gap distributions in LHCb acceptance



If we take a cut value of  $\Delta \eta = 2$ ; we expect to retain  $\mathcal{O}(40-80\%)$  of the signal and remove  $\mathcal{O}(99\%)$  the background.

### Method III: Rapidity gap distributions in LHCb acceptance



If we take a cut value of  $\Delta \eta = 2$ ; we expect to retain  $\mathcal{O}(40-80\%)$  of the signal and remove  $\mathcal{O}(99\%)$  the background.

• Gap size can be chosen to achieve desired purity and statistics in a given sample

| LH                | lCb                     | <b>CMS</b> low $p_T$ |  |  |  |
|-------------------|-------------------------|----------------------|--|--|--|
| Pb <i>p</i>       | р <i>Рb</i>             |                      |  |  |  |
| Sign              | Signal-over-background: |                      |  |  |  |
| $3 \cdot 10^{-3}$ | $1 \cdot 10^{-2}$       | $1\cdot 10^{-2}$     |  |  |  |

|          | LHCb              |                  | <b>CMS</b> low $p_T$ |
|----------|-------------------|------------------|----------------------|
|          | Pb <i>p</i>       | р <i>Рb</i>      |                      |
|          | Sigr              | nal-over-ba      | ckground:            |
|          | $3 \cdot 10^{-3}$ | $1\cdot 10^{-2}$ | $1\cdot 10^{-2}$     |
| Method I | _                 | _                | 6                    |

|           | LHCb                                |                  | <b>CMS</b> low $p_T$ |
|-----------|-------------------------------------|------------------|----------------------|
|           | Pb <i>p</i>                         | р <i>Рb</i>      |                      |
|           | Signal-over-ba                      |                  | ckground:            |
|           | $3 \cdot 10^{-3}$ $1 \cdot 10^{-2}$ |                  | $1 \cdot 10^{-2}$    |
| Method I  | -                                   | -                | 6                    |
| Method II | $1\cdot 10^{-1}$                    | $3\cdot 10^{-1}$ | -                    |

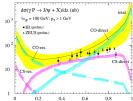
|            | LHCb                                |                  | <b>CMS</b> low $p_T$ |
|------------|-------------------------------------|------------------|----------------------|
|            | Pb <i>p</i> p <i>Pb</i>             |                  |                      |
|            | Signal-over-bac                     |                  | ckground:            |
|            | $3 \cdot 10^{-3}$ $1 \cdot 10^{-2}$ |                  | $1\cdot 10^{-2}$     |
| Method I   | -                                   | -                | 6                    |
| Method II  | $1\cdot 10^{-1}$                    | $3\cdot 10^{-1}$ | -                    |
| Method III | 2                                   | 8                | 2                    |

|              | LHCb                                |                  | <b>CMS</b> low $p_T$ |
|--------------|-------------------------------------|------------------|----------------------|
|              | Pb <i>p</i> p <i>Pb</i>             |                  |                      |
|              | Sigr                                | nal-over-bad     | ckground:            |
|              | $3 \cdot 10^{-3}$ $1 \cdot 10^{-2}$ |                  | $1\cdot 10^{-2}$     |
| Method I -   |                                     | -                | 6                    |
| Method II    | $1\cdot 10^{-1}$                    | $3\cdot 10^{-1}$ | -                    |
| Method III   | 2                                   | 8                | 2                    |
| Method I-III | 14                                  | 80               | 1400                 |

### Table of Contents

- Feasibility
- Set-up
- Tuning and validation
- 4 Reducing background
  - Method I: far-forward activity
  - Method II: forward activity
  - Method III: central activity
- 6 Reconstructing kinematics

#### Kinematic reconstruction


We are interested in reconstructing...

 $W_{\gamma p}$  : to know the collision energy

z: discriminant variable for quarkonium production mechanism (singlet vs. octet) and allows us to control the resolved-photon contribution

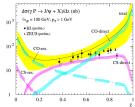
Both variables depend on exchanged photon energy!

#### KRAMER, hep-ph/016120



### Kinematic reconstruction

We are interested in reconstructing...


 $W_{\gamma p}$  : to know the collision energy

z: discriminant variable for quarkonium production mechanism (singlet vs. octet) and allows us to control the resolved-photon contribution

Both variables depend on exchanged photon energy!

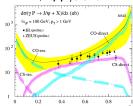
- In e-p collisions if the scattered lepton is...
  - measured the photon energy is known
  - not measured the photon energy must be reconstructed from the final state

#### KRAMER, hep-ph/016120



### Kinematic reconstruction

We are interested in reconstructing...


 $W_{\gamma p}$  : to know the collision energy

z : discriminant variable for quarkonium production mechanism (singlet vs. octet) and allows us to control the resolved-photon contribution

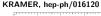
Both variables depend on exchanged photon energy!

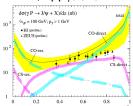
- In e-p collisions if the scattered lepton is...
  - measured the photon energy is known
  - not measured the photon energy must be reconstructed from the final state
- At the LHC the scattered photon-emitter is in the beam-pipe and **cannot** be measured. To learn about the photon energy must examine the final-state system.

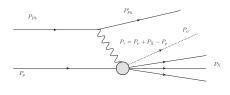
#### KRAMER, hep-ph/016120



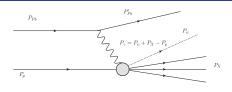
### Kinematic reconstruction


We are interested in reconstructing...

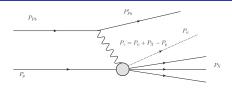

 $W_{\gamma p}$ : to know the collision energy


z: discriminant variable for quarkonium production mechanism (singlet vs. octet) and allows us to control the resolved-photon contribution

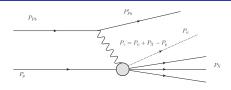
Both variables depend on exchanged photon energy!


- In e-p collisions if the scattered lepton is...
  - measured the photon energy is known
  - not measured the photon energy must be reconstructed from the final state
- At the LHC the scattered photon-emitter is in the beam-pipe and cannot be measured. To learn about the photon energy must examine the final-state system.
  - In the exclusive case this is simple; detected particle gives the photon energy
  - This is not true for the inclusive case... how well can we reconstruct the final state?





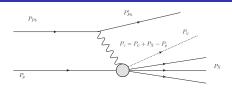




- Lead-ion moving forward with positive rapidity  $(P_{Pb} \simeq \frac{1}{2} P_{Pb}^+ \eta_-)$
- Proton moving backward with negative rapidity  $(P_p \simeq \frac{1}{2} P_p^- \eta_+)$
- $P_X$  is a sum over particle momenta  $\left(P_X = \sum_i^N P_i\right)$

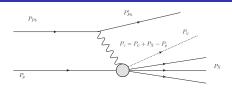


- Lead-ion moving forward with positive rapidity  $(P_{Pb} \simeq \frac{1}{2} P_{Pb}^+ \eta_-)$
- Proton moving backward with negative rapidity  $(P_p \simeq \frac{1}{2}P_p^-\eta_+)$
- $P_X$  is a sum over particle momenta  $\left(P_X = \sum_i^N P_i\right)$
- By momentum conservation  $P_{\gamma} = P_{\psi} + \stackrel{\sim}{P}_{X} P_{p}$   $z = \frac{P_{p} \cdot P_{\psi}}{P_{p} \cdot (P_{\psi} + P_{X} P_{p})} \simeq \frac{P_{\psi}^{+}}{P_{X}^{+} + P_{\psi}^{+}}$




- Lead-ion moving forward with positive rapidity  $(P_{Pb} \simeq \frac{1}{2} P_{Pb}^+ \eta_-)$
- Proton moving backward with negative rapidity  $(P_p \simeq \frac{1}{2}P_p^-\eta_+)$
- $P_X$  is a sum over particle momenta  $\left(P_X = \sum_{i}^{N} P_i\right)$
- By momentum conservation  $P_{\gamma} = P_{\psi} + \stackrel{\triangleright}{P}_{X} P_{p}$   $z = \frac{P_{p} \cdot P_{\psi}}{P_{p} \cdot (P_{\psi} + P_{X} P_{p})} \simeq \frac{P_{\psi}^{+}}{P_{X}^{+} + P_{\psi}^{+}}$
- A particle *i* collinear to the proton does not contribute to *z* since  $P_i^+ = 0$




- Lead-ion moving forward with positive rapidity  $(P_{Pb} \simeq \frac{1}{2} P_{Pb}^+ \eta_-)$
- Proton moving backward with negative rapidity  $(P_p \simeq \frac{1}{2} P_p^- \eta_+)$
- $P_X$  is a sum over particle momenta  $\left(P_X = \sum_{i}^{N} P_i\right)$
- By momentum conservation  $P_{\gamma} = P_{\psi} + \stackrel{\triangleright}{P_X} P_{\rho}$   $z = \frac{P_{\rho} \cdot P_{\psi}}{P_{\rho} \cdot P_{\psi}} \simeq \frac{P_{\psi}^+}{P_X^+ + P_{\psi}^+}$
- A particle *i* collinear to the proton does not contribute to *z* since  $P_i^+ = 0$ 
  - Exclusive case:  $P_X^+ = 0 \rightarrow z = 1$
  - Diffractive proton-break-up case:  $P_X^+ o 0 o z \simeq 1$



- Lead-ion moving forward with positive rapidity  $(P_{Pb} \simeq \frac{1}{2} P_{Pb}^+ \eta_-)$
- Proton moving backward with negative rapidity  $(P_p \simeq \frac{1}{2} P_p^- \eta_+)$
- $P_X$  is a sum over particle momenta  $\left(P_X = \sum_{i}^{N} P_i\right)$
- By momentum conservation  $P_{\gamma} = P_{\psi} + \stackrel{\triangleright}{P}_{X} P_{p}$   $z = \frac{P_{p} \cdot P_{\psi}}{P_{p} \cdot (P_{\psi} + P_{X} P_{p})} \simeq \frac{P_{\psi}^{+}}{P_{X}^{+} + P_{\psi}^{+}}$
- A particle *i* collinear to the proton does not contribute to *z* since  $P_i^+ = 0$ 
  - Exclusive case:  $P_x^+ = 0 \rightarrow z = 1$
  - Diffractive proton-break-up case:  $P_X^+ \to 0 \to z \simeq 1$
- A particle *i* collinear to the photon emitter has a large  $P_i^+$



- Lead-ion moving forward with positive rapidity  $(P_{Pb} \simeq \frac{1}{2} P_{Pb}^+ \eta_-)$
- Proton moving backward with negative rapidity  $(P_p \simeq \frac{1}{2} P_p^- \eta_+)$
- $P_X$  is a sum over particle momenta  $\left(P_X = \sum_{i}^{N} P_i\right)$
- By momentum conservation  $P_{\gamma} = \frac{P_{\psi} + \stackrel{\triangleright}{P_{X}} P_{p}}{P_{p} \cdot P_{\psi}} \simeq \frac{P_{\psi}^{+}}{P_{\chi}^{+} + P_{\psi}^{+}} \simeq \frac{P_{\psi}^{+}}{P_{\chi}^{+} + P_{\psi}^{+}}$
- A particle *i* collinear to the proton does not contribute to *z* since  $P_i^+ = 0$ 
  - Exclusive case:  $P_X^+ = 0 \rightarrow z = 1$
  - Diffractive proton-break-up case:  $P_X^+ \to 0 \to z \simeq 1$
- A particle *i* collinear to the photon emitter has a large  $P_i^+$ 
  - Resolved photon case: at a given photon energy, increase amount of radiation in the photon direction  $\rightarrow P_{X{
    m res.}}^+ > P_{X{
    m dir.}}^+ \rightarrow z_{{
    m dir.}} > z_{{
    m res.}}$



- Lead-ion moving forward with positive rapidity  $(P_{Ph} \simeq \frac{1}{2} P_{Ph}^+ \eta_-)$
- Proton moving backward with negative rapidity  $(P_n \simeq \frac{1}{2}P_n^-\eta_+)$
- $\bullet$   $P_X$  is a sum over particle momenta  $(P_X = \sum_{i}^{N} P_i)$
- By momentum conservation  $P_{\gamma} = P_{\psi} + P_{X} P_{p}$  $z = \frac{P_p \cdot P_{\psi}}{P_p \cdot (P_{\psi} + P_X - P_p)} \simeq \frac{P_{\psi}}{P_X^+ + P_{\psi}^+}$
- A particle *i* collinear to the proton does not contribute to z since  $P_i^+ = 0$ 
  - Exclusive case:  $P_{\mathbf{x}}^+ = 0 \rightarrow z = 1$
  - Diffractive proton-break-up case:  $P_x^+ \to 0 \to z \simeq 1$
- A particle i collinear to the photon emitter has a large P<sub>i</sub><sup>+</sup>
  - Resolved photon case: at a given photon energy, increase amount of radiation in the photon direction  $\to P_{X {
    m res.}}^+ > P_{X {
    m dir.}}^+ \to z_{
    m dir.} > z_{
    m res.}$

Analogously,  $W_{\gamma p} \simeq \sqrt{2P_p \cdot P_{\gamma}} \simeq \sqrt{P_p^-(P_\psi^+ + P_\chi^+)}$  is only dependent on plus-component momenta.

z-reconstruction depends on the... position of the detectors and kinematics of the event.

z-reconstruction depends on the... position of the detectors and kinematics of the event.

$$z = \frac{1}{1 + \frac{P_X^+}{P_\psi^+}}$$

$$\boxed{z = \frac{1}{1 + \frac{P_{X}^{+}}{P_{Y}^{+}}} \quad \text{where} \quad \frac{P_{X}^{+}}{P_{\psi}^{+}} = \sum_{i}^{N} \frac{P_{i}^{+}}{P_{\psi}^{+}}, \quad z = \frac{1}{1 + \frac{\sum_{i}^{N} P_{i}^{+}}{P_{i}^{+}}}, \quad \text{and} \quad N_{meas.} < N_{true}.}$$

z-reconstruction depends on the... position of the detectors and kinematics of the event.

$$z = \frac{1}{1 + \frac{P_X^+}{P_\psi^+}}$$

$$\frac{P_X^+}{P_{\psi}^+} = \sum_{i}^{N} \frac{P_i^+}{P_{\psi}^+}, \quad z = \frac{1}{1 + \sum_{i=1}^{N} P_i^+}$$

$$z = \frac{1}{1 + \frac{P_X^+}{P_{\psi}^+}} \quad \text{where} \quad \frac{P_X^+}{P_{\psi}^+} = \sum_{i}^{N} \frac{P_i^+}{P_{\psi}^+}, \quad z = \frac{1}{1 + \frac{\sum_{i}^{N} P_i^+}{P_{\psi}^+}}, \quad \text{and} \quad N_{meas.} < N_{true}.$$

- $\Delta z = z_{true} z_{meas} < 0$
- Zmeas > Ztrue

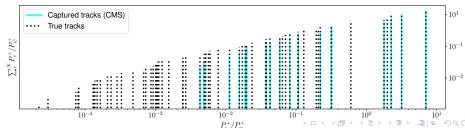
#### CMS requirements

| Civio requirements |                         |                         |  |  |  |  |
|--------------------|-------------------------|-------------------------|--|--|--|--|
| Charged            | no                      | yes                     |  |  |  |  |
| $p_T$              | $p_T > 200 \text{ MeV}$ | $p_T > 400 \text{ MeV}$ |  |  |  |  |
| $\eta$             | $2.5 <  \eta  < 5$      | $ \eta  < 2.5$          |  |  |  |  |

z-reconstruction depends on the... position of the detectors and kinematics of the event.

$$z = \frac{1}{1 + \frac{P_X^+}{P_\psi^+}}$$

$$\frac{P_{X}^{+}}{P_{\psi}^{+}} = \sum_{i}^{N} \frac{P_{i}^{+}}{P_{\psi}^{+}},$$

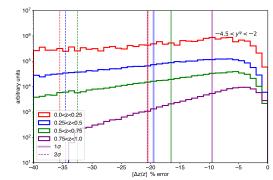

$$z = rac{1}{1 + rac{P_X^+}{P_{\psi}^+}}$$
 where  $rac{P_X^+}{P_{\psi}^+} = \sum_i^N rac{P_i^+}{P_{\psi}^+}, \quad z = rac{1}{1 + rac{\sum_i^N P_i^+}{P_{\psi}^+}}, \quad ext{and} \quad N_{meas.} < N_{true}.$ 

• 
$$\Delta z = z_{true} - z_{meas} < 0$$

 $\frac{\bullet}{\sum_{i}^{N}P_{i}^{+}}>Z_{true}$   $\frac{\sum_{i}^{N}P_{i}^{+}}{P_{i}^{+}}$  for a given event

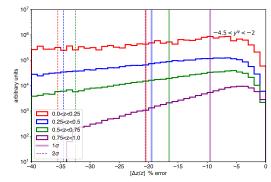
#### CMS requirements

| Charged | no                      | yes                      |  |  |  |  |
|---------|-------------------------|--------------------------|--|--|--|--|
| $p_T$   | $p_T > 200 \text{ MeV}$ | $p_T > 400 \; {\rm MeV}$ |  |  |  |  |
| $\eta$  | $2.5 <  \eta  < 5$      | $ \eta  < 2.5$           |  |  |  |  |




$$z = \frac{1}{1 + \frac{P_X^+}{P_\psi^+}}$$

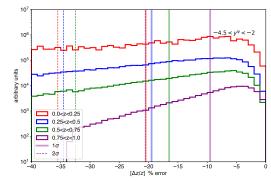
- Only measure particles in the detector acceptance
  - z<sub>measured</sub> ≥ z<sub>theoretical</sub> due to missed particles
  - undetected particles in the proton direction do not affect z


$$z = \frac{1}{1 + \frac{P_X^+}{P_\psi^+}}$$

- Only measure particles in the detector acceptance
  - z<sub>measured</sub> ≥ z<sub>theoretical</sub> due to missed particles
  - undetected particles in the proton direction do not affect z



$$z = \frac{1}{1 + \frac{P_X^+}{P_\psi^+}}$$


- Only measure particles in the detector acceptance
  - z<sub>measured</sub> ≥ z<sub>theoretical</sub> due to missed particles
  - undetected particles in the proton direction do not affect z



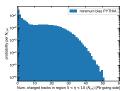
- z res.  $(\sigma_{\Delta z})$  improves with increasing z
- ullet < z > increases with  $y^{\psi}$  and  $W_{\gamma p}$

$$z = \frac{1}{1 + \frac{P_X^+}{P_\psi^+}}$$

- Only measure particles in the detector acceptance
  - z<sub>measured</sub> ≥ z<sub>theoretical</sub> due to missed particles
  - undetected particles in the proton direction do not affect z

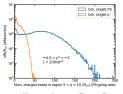


- z res.  $(\sigma_{\Delta z})$  improves with increasing z
- ullet < z > increases with  $y^{\psi}$  and  $W_{\gamma p}$
- z-reconstruction in the region... in CMS and LHCb
  - 0.20 < z < 0.45... reconstructed within 30% 25%
  - 0.45 < z < 0.70... reconstructed within 25% 30%
  - 0.70 < z < 0.90... reconstructed within 10% 20%
  - 0.90 < z < 1.0... reconstructed within **5% 10%**

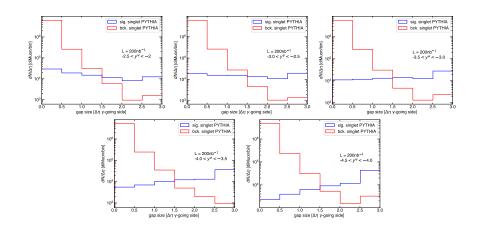

# Summary and outlook

- The LHC can be used as a photon-nucleon collider
  - measuring inclusive  $J/\psi$  photoproduction at the LHC appears feasible which is complimentary to existing HERA measurements
- In  $J/\psi$  photoproduction events in Pbp collisions
  - in CMS, ATLAS and ALICE the ZDC is sufficient to suppress background events
  - in each of these detectors rapidity gap constraints may be placed to further enhance the purity of the sample
  - in LHCb a combination of gap and HeRSCheL are likely sufficient to suppress background
- $\bullet$  The  $\Delta\eta$  value at which the cut is placed allows for control over statistics and purity
- Both z and  $W_{\gamma p}$  reconstruction appear possible with varying resolution which will allow control of the resolved contribution and offer the possibility to constrain the quarkonium production mechanism.

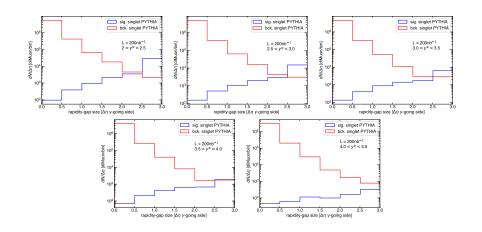
# Backup


### From p to Pb in the HeRSCheL region

- The background is modelled by generating pA events with HELAC-Onia and passing them through PYTHIA; PYTHIA reads these as pp events.
- In a pp collision  $N_{coll.} = 1$ ; whereas in a pA collision there are many more nucleons and therefore it is possible to have  $N_{coll.} > 1$  [typically modelled using Glauber-type models].
- Using minimum bias events generated by PYTHIA, one can obtain a probability distribution for the number of charged tracks in the HeRSCheL region. [bottom left]
- To model the HeRSCheL signal using the PYTHIA events (i.e., converting pp to pA) events are randomly assigned a centrality class and then assigned  $N_{coll.}$  based on ALICE results. [bottom centre arXiv:1605.05680]
- For a given event, the total number of charged tracks in the HeRSCheL region is given by throwing  $i = 1, ..., N_{coll.} - 1$  points into the probability distribution, and summing over  $N_{coll}$ .
- The transformation from pp to pA HeRSCheL distribution. [bottom right]




| Centrality class | $\langle N_{\rm coll} \rangle_{\rm opt.}$ | $\langle N_{\rm coll} \rangle_{\rm ALICE}$ | b [fm |
|------------------|-------------------------------------------|--------------------------------------------|-------|
| 2-10%            | 14.7                                      | $11.7 \pm 1.2 \pm 0.9$                     | 4.14  |
| 10-20%           | 13.6                                      | $11.0 \pm 0.4 \pm 0.9$                     | 4.44  |
| 20-40%           | 11.4                                      | $9.6 \pm 0.2 \pm 0.8$                      | 4.94  |
| 40-60%           | 7.7                                       | $7.1 \pm 0.3 \pm 0.6$                      | 5.64  |
| 60-80%           | 3.7                                       | $4.3 \pm 0.3 \pm 0.3$                      | 6.29  |
| 80-100%          | 1.5                                       | $2.1\pm0.1\pm0.2$                          | 6.91  |
|                  |                                           |                                            |       |


Inclusive UPC

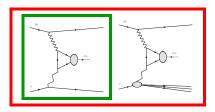


### Rapidity-differential gap distributions in LHCb pPb



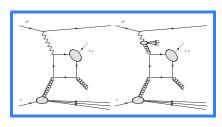
### Rapidity-differential gap distributions in LHCb Pbp




In a given kinematic region, the percentage error on z-reconstruction at one standard deviation.

|                |                        | CMS                          |                                |                                |                              |                          |                      |                        |
|----------------|------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------|----------------------|------------------------|
|                | $1.6 < y^{\psi} < 2.4$ | $1.2 < y^{\psi} < 1.6$       | $0 < y^{\psi} < 1.2$           | $-1.2 < y^{\psi} < 0$          | $-1.6 < y^{\psi} < -1.2$     | $-2.4 < y^{\psi} < -1.6$ | $2 < y^{\psi} < 4.5$ | $-4.5 < y^{\psi} < -2$ |
|                |                        | $p_T^{\psi} > 2 \text{ GeV}$ | $p_T^{\psi} > 6.5 \text{ GeV}$ | $p_T^{\psi} > 6.5 \text{ GeV}$ | $p_T^{\psi} > 2 \text{ GeV}$ | $-2.4 < y^{\psi} < -1.6$ | $2 < y^{\psi} < 4.5$ | $-4.5 < y^{\psi} < -2$ |
| 0.2 < z < 0.45 | -26%                   | -28%                         | -20%                           | -26%                           | -28%                         | -26%                     | -22%                 | -20%                   |
| 0.45 < z < 0.7 | -22%                   | -22%                         | -14%                           | -14%                           | -18%                         | -18%                     | -26%                 | -16%                   |
| 0.7 < z < 0.9  | -10%                   | -10%                         | -6%                            | -6%                            | -8%                          | -8%                      | -20%                 | -14%                   |
| 0.9 < z < 1    | -2%                    | -2%                          | -2%                            | -0%                            | -2%                          | -4%                      | -6%                  | -4%                    |

Note:  $\Delta z/z = (z - z_{exp.})/z < 0$ .


### Diffractive vs. inclusive photoproduction

### Diffractive production



- Colourless exchange
- Only CSM contributes
- $\bullet$  exclusive: only  $J/\psi$  decay products

### Inclusive production



- Hard final state gluon
- Resolved vs. direct contribution
- Test production mechanism
- Probe gluon PDF

# Lightcone four-vector representation

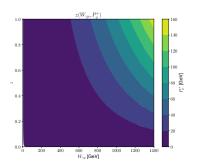
Choose two vectors along an axis such that,

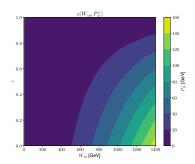
$$\eta^{\pm} \cdot \eta^{\pm} = 0 \quad \& \quad \eta^{\mp} \cdot \eta^{\pm} = 2.$$
(1)

A particle's four-momentum can be written as,

$$p = (E, p_x, p_y, p_z) = [P^+, P^-, \mathbf{p}]. \tag{2}$$

The scalar product of two four-momenta is given as,


$$p \cdot q = \frac{1}{2} \left( P^+ Q^- + P^- Q^+ \right) - \mathbf{p} \cdot \mathbf{q}. \tag{3}$$


**1** If p lies along the vector  $\eta^-$ , then the scalar product reduces to,

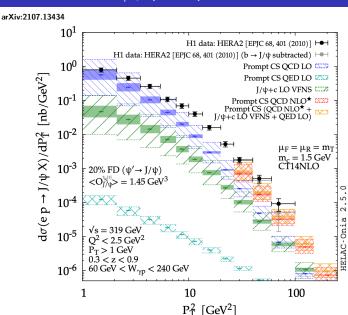
$$p \cdot q = \frac{1}{2} \left( P^- Q^+ \right). \tag{4}$$

- Onsider some massless particle q,
  - If q lies on the vector  $\eta^+$ :  $p \cdot q$  is maximised  $\rightarrow p \cdot q = A$ .
  - If q is perpendicular to the vectors  $\eta^{\pm}$ :  $p \cdot q = A/2$ .
  - If q lies on the vector  $\eta^-$ :  $p \cdot q$  is minimised  $\rightarrow p \cdot q = 0$ .

### Resolution of reconstructed variables





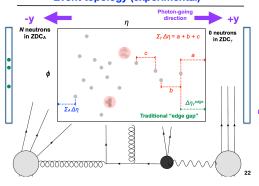

$$\frac{\delta z}{z} = z \frac{P_X^+}{(P_\psi^+)^2} \delta P_\psi^+ \oplus z \frac{\delta P_X^+}{P_\psi^+}$$

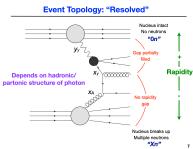
• Poor z resolution at small 
$$P_{ab}^+$$

$$\frac{\delta W_{\gamma p}}{W_{\gamma p}} = \frac{P_p^-}{2W_{\gamma p}^2} \delta P_{\psi}^+ \oplus \frac{P_p^-}{2W_{\gamma p}^2} \delta P_X^+$$

• Poor  $W_{\gamma p}$  resolution at small  $W_{\gamma p}$ 

# NLO inclusive $J/\psi$ photoproduction at HERA





# ATLAS UPC dijet Study

#### ATLAS-CONF-2022-021

- Pb-Pb @  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 
  - OnXn requirement [E<sub>ZDC</sub> < 1 TeV]
  - $\sum_{\gamma} \Delta \eta$  requirement [instead of  $\Delta \eta_{\gamma}^{edge}$ ]
    - Include resolved photon in analysis
    - What is the effect of higher order corrections on choice of gap definition?

#### **Event topology (experimental)**





| LHC | 0 | 13 | TeV | slide from | Leif | Lonnblad |
|-----|---|----|-----|------------|------|----------|
|-----|---|----|-----|------------|------|----------|

| Total                         | 100 mb |
|-------------------------------|--------|
| Non-diffractive               | 56 mb  |
| Elastic                       | 22 mb  |
| Diffractive                   | 22 mb  |
| Jets $p_{\perp} > 150 \; GeV$ | 220 nb |
| W+Z                           | 200 nb |
| Тор                           | 600 pb |
| Higgs                         | 30 pb  |

Luminosity targets taken from LHC programme coordination meeting; *p*Pb and PbPb targets are for Run 3 and 4 and *pp* targets are for Run 3 only.

|             | ATLAS             | CMS      | ALICE                  | LHCb                  |
|-------------|-------------------|----------|------------------------|-----------------------|
| рр          | 160 fl            | $o^{-1}$ | $200 \; { m pb}^{-1}$  | $25 \; { m fb}^{-1}$  |
| PbPb        | $13~{ m nb}^{-1}$ |          |                        | $2~{ m nb}^{-1}$      |
| <i>p</i> Pb | 1 pb              | -1       | $0.5~\mathrm{pb}^{-1}$ | $0.2 \; { m pb}^{-1}$ |