$Wb\bar{b}$ production at NNLO QCD

Heribertus Bayu Hartanto

based on work with: Simon Badger, Rene Poncelet, Andrei Popescu and Simone Zoia arXiv:2102.02516, arXiv:2205.01687, arXiv:2209.03280

> QCD@LHC 2023, Durham September 6, 2023

Bayu Hartanto (Cambridge)

Wbb production at NNLO QCD

W + b jets

- \Rightarrow test perturbative QCD
- \Rightarrow modelling of flavoured jets
- \Rightarrow theoretical approach: 4FS vs 5FS
- W + 1b jet: probe b quark PDFs
- W + 2b jets: backgrounds for
 - Higgs-strahlung $pp \rightarrow WH(H \rightarrow b\bar{b})$
 - single top $pp \rightarrow bt(t \rightarrow bW)$

Theoretical predictions available at NLO:

W + 1b: [Campbell,Ellis,Maltoni,Willenbrock(2006)][Campbell,Ellis,Febres Cordero,Maltoni,Reina,Wackeroth,Willenbrock(2008)] [Caola,Campbell,Febres Cordero,Reina,Wackeroth(2011)]

 $\begin{array}{l} W+2b: \ m_b=0 \ [Ellis, Veseli (1999)], \ onshell \ W \ [Febres \ Cordero, Reina, Wackeroth (2006, 2009)], \ W(\ell\nu) b \ \overline{b} \ [Badger, Campbell, Ellis (2010)] \\ NLO+PS \ [Oleari, Reina (2011)] \ [Frederix \ etal (2011)], \ W(\ell\nu) b \ \overline{b} \ J \ [Luisoni, Oleari, Tramontano (2015)] \\ W(\ell\nu) b \ \overline{b} + \leq 3j \ [Anger, Febres \ Corder, Ita, Sotnikov (2018] \\ Bayu \ Hartanto \ (Cambridge) \ Wb \ \overline{b} \ production \ at \ NNLO \ QCD \ September \ 6, 2023 \end{array}$

W + b jets

- \Rightarrow test perturbative QCD
- \Rightarrow modelling of flavoured jets
- \Rightarrow theoretical approach: 4FS vs 5FS
- W + 1b jet: probe b quark PDFs
- W + 2b jets: backgrounds for
 - Higgs-strahlung $pp
 ightarrow WH(H
 ightarrow bar{b})$
 - single top pp
 ightarrow bt(t
 ightarrow bW)

Theoretical predictions available at NLO:

W + 1b: [Campbell,Ellis,Maltoni,Willenbrock(2006)][Campbell,Ellis,Febres Cordero,Maltoni,Reina,Wackeroth,Willenbrock(2008)] [Caola,Campbell,Febres Cordero,Reina,Wackeroth(2011)]

 $\begin{array}{l} W+2b: \ m_b=0 \ [Ellis, Veseli (1999)], \ onshell \ W \ [Febres \ Cordero, Reina, Wackeroth (2006, 2009)], \ W(\ell\nu) b \ \overline{b} \ [Badger, Campbell, Ellis (2010)] \\ NLO+PS \ [Oleari, Reina (2011)] \ [Frederix \ etal (2011)], \ W(\ell\nu) b \ \overline{b} \ j \ [Luisoni, Oleari, Tramontano (2015)] \\ W(\ell\nu) b \ \overline{b} + \leq 3j \ [Anger, Febres \ Corder, Ita, Sotnikov (2018] \\ Bayu \ Hartanto \ (Cambridge) \ Wb \ \overline{b} \ production \ at \ NNLO \ QCD \ September \ 6, 2023 \end{array}$

Wbb at NLO QCD

$Wb\bar{b}+$ jets production at NLO QCD

[Anger, Febres Cordero, Ita, Sotnikov(2017)]

 $\Rightarrow Wb\bar{b} + X$ (inclusive, n = 0): large NLO corrections, large NLO scale dependence

 \Rightarrow due opening of qg channel at NLO

NNLO QCD corrections to $Wb\bar{b}$ production is required!

Bayu Hartanto (Cambridge)

Wbb production at NNLO QCD

NNLO QCD corrections to $W(ightarrow \ell u) b ar{b}$ production

NNLO QCD calculation for W + 2b-jets: massless b (5FS)[HBH,Poncelet,Popescu,Zoia(2022)]

massive b (4FS)[Buonocore,Devoto,Kallweit,Mazzitelli,Rottoli,Savoini(2022)]

• Amplitudes:

- ▶ Tree-level $pp \rightarrow W(\rightarrow \ell \nu) b \bar{b} jj$: AvH[Bury,van Hameren(2015)]
- ▶ 1-loop $pp \rightarrow W(\rightarrow \ell \nu) b\bar{b}j$: OPENLOOPS[Bucionni,Lang,Lindert,Maierhoefer,Pozzorini,Zhang,Zoller(2018,2019)]
- ▶ 2-loop $u\bar{d} \rightarrow W(\rightarrow \ell \nu) b\bar{b}$: [Abreu, Febres Cordero, Ita, Klinkert, Page(2021)][HBH, Poncelet, Popescu, Zoia(2022)]
- NNLO subtraction scheme: Sector Improved Residue Subtraction Scheme (STRIPPER) [Czakon(2010)][Czakon,Heymes(2014)]

Wbb production at NNLO QCD

NNLO QCD corrections to $W(ightarrow \ell u) b ar{b}$ production

NNLO QCD calculation for W + 2b-jets: massless b (5FS)[HBH,Poncelet,Popescu,Zoia(2022)] \leftarrow this talk massive b (4FS)[Buonocore,Devoto,Kallweit,Mazzitelli,Rottoli,Savoini(2022)]

- Amplitudes:
 - ▶ Tree-level $pp \rightarrow W(\rightarrow \ell \nu) b \bar{b} jj$: AvH[Bury,van Hameren(2015)]
 - ▶ 1-loop $pp \rightarrow W(\rightarrow \ell \nu) b\bar{b}j$: OPENLOOPS[Bucionni,Lang,Lindert,Maierhoefer,Pozzorini,Zhang,Zoller(2018,2019)]
 - ▶ 2-loop $u\bar{d} \rightarrow W(\rightarrow \ell \nu) b\bar{b}$: [Abreu, Febres Cordero, Ita, Klinkert, Page(2021)][HBH, Poncelet, Popescu, Zoia(2022)]
- NNLO subtraction scheme: Sector Improved Residue Subtraction Scheme (STRIPPER) [Czakon(2010)][Czakon,Heymes(2014)]

Two-Loop Scattering Amplitude

$2 \rightarrow 3$ scattering with an off-shell leg at two loops

talk by Federica Devoto on Monday on massless 2-loop 5-point amplitudes

- ► Multi-loop scattering amplitude: $A^{(2)} = c(\epsilon, \{p\}) \operatorname{MI}(\epsilon, \{p\})$
- All two-loop master integrals are known!!!

[Canko,Papadopoulos,Syrrakos(2020)] [Syrrakos(2020)][Abreu,Ita,Page,Tschernow(2021)] [Kardos,Papadopoulos,Smirnov,Syrrakos,Wever(2022)] [Abreu,Chicherin,Ita,Page,Sotnikov,Tschernow,Zoia(2023)]

- ⇒ Pentagon function basis ⇒ fast numerical evaluation available [Chicherin,Sotnikov,Zoia(2021)][Abreu,Chicherin,Ita,Page,Sotnikov,Tschernow,Zoia(2023)]
- Several two-loop QCD amplitudes known analytically at leading colour
 - $pp \rightarrow Wb\bar{b}, pp \rightarrow W^+(\rightarrow \bar{\ell}\nu)b\bar{b}, pp \rightarrow Hb\bar{b} \text{ (massless } b)$ [Badger,HBH,Zoia(2021)][Badger,HBH,Krys,Zoia(2021)][HBH,Poncelet,Popescu,Zoia(2022)]
 - pp
 ightarrow W/Z + jj [Abreu, Febres Cordero, Ita, Klinkert, Page(2021)] $pp
 ightarrow W^+ (
 ightarrow ar{\ell}
 u) \gamma j$ [Badger, HBH, Krys, Zoia(2022)]
- Towards full colour amplitudes: determination of coefficients extremely complicated ⇒ extremely large algebraic expressions and huge integral reduction tables!!!

Bayu Hartanto (Cambridge)

Wbb production at NNLO QCD

 $uar{d} o W^+(o ar{\ell}
u) bar{b}$ at two loops [Badger,HBH,Zoia(2021)][HBH,Poncelet,Popescu,Zoia(2022)]

 \Rightarrow leading colour approximation and massless *b* quark

 \Rightarrow compute squared matrix element

$$\sum {\cal M}^{(0)*} {\cal M}^{(2)} = {\it M}^{(2)}_{\rm even} + {\rm tr}_5 ~{\it M}^{(2)}_{\rm odd}$$

 $\mathrm{tr}_5 = 4\mathrm{i}\varepsilon_{\mu\nu\rho\sigma}p_1^{\mu}p_2^{\nu}p_3^{\rho}p_4^{\sigma}$

employ CDR+Larin scheme to treat γ_5 .

 \Rightarrow Incorporating $W \rightarrow \ell
u$ decay

 $M_6^{(L)} = \sum_{\text{spin}} A_6^{(0)\dagger} A_6^{(L)} = M_5^{(L)\mu\nu} \mathcal{D}_{\mu\nu} |P(s_{56})|^2$ 16

$$\mathcal{M}_{5}^{(L)\mu\nu} = \sum_{i=1}^{5} a_{i}^{(L)} v_{i}^{\mu\nu} \qquad v_{i}^{\mu\nu} \in \{p_{1}^{\mu}, p_{2}^{\mu}, p_{3}^{\mu}, p_{W}^{\mu}\}$$

Derive analytic expressions of the finite remainders using finite-field reconstruction method talk by Xiao Liu on Tuesday on analytic reconstruction method

> QGRAF[Nogueira], FORM[Vermaseren], LiteRed[Lee], FiniteFlow[Peraro], Mathematica

$$\begin{split} \mathcal{M}_{k}^{(2)}(\{p\},\epsilon) &= \sum_{i} c_{k,i}(\{p\},\epsilon) \ \mathcal{I}_{k,i}(\{p\},\epsilon) \\ & \downarrow \quad \text{IBP reduction} \\ \mathcal{M}_{k}^{(2)}(\{p\},\epsilon) &= \sum_{i} d_{k,i}(\{p\},\epsilon) \ \text{MI}_{k,i}(\{p\},\epsilon) \\ & \downarrow \quad \text{map to pentagon function basis} \\ & \downarrow \quad \text{subtract UV/IR poles} \\ & \downarrow \quad \epsilon \text{ expansion} \\ \mathcal{F}_{k}^{(2)}(\{p\}) &= \sum_{i} e_{k,i}(\{p\}) \ m_{k,i}(f) + \mathcal{O}(\epsilon) \end{split}$$

Bayu Hartanto (Cambridge)

Numerical Results

Fixed-order flavoured jets beyond NLO

Mistreatment of flavour pair in $F_{n+2} \Rightarrow$ mismatch w.r.t $F_n \Rightarrow$ double soft singularity not subtracted Solutions:

- Flavour- k_T jet algorithm [Banfi,Salam,Zanderighi(2006)] \rightarrow data/theory comparison requires unfolding
- Practical jet flavour through NNLO [Caletti,Larkoski,Marzani,Reichelt(2022)]
- ► Infrared-safe flavoured anti-k_T jets [Czakon,Mitov,Poncelet(2022)]
- A dress of flavour to suit any jet [Gauld, Huss, Stagnitto(2022)]

Flavoured jets with exact anti- k_T kinematics [Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler(2023)]

talks by Mathieu Pellen this morning (W+c) and Ludovic Scyboz on Thursday

Fixed-order flavoured jets beyond NLO

Mistreatment of flavour pair in $F_{n+2} \Rightarrow$ mismatch w.r.t $F_n \Rightarrow$ double soft singularity not subtracted Solutions:

- Practical jet flavour through NNLO [Caletti,Larkoski,Marzani,Reichelt(2022)]
- ► Infrared-safe flavoured anti-k_T jets [Czakon,Mitov,Poncelet(2022)]
- ► A dress of flavour to suit any jet [Gauld,Huss,Stagnitto(2022)]

Flavoured jets with exact anti- k_T kinematics [Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler(2023)]

talks by Mathieu Pellen this morning (W+c) and Ludovic Scyboz on Thursday

Fixed-order flavoured jets beyond NLO

Mistreatment of flavour pair in $F_{n+2} \Rightarrow$ mismatch w.r.t $F_n \Rightarrow$ double soft singularity not subtracted

Infrared-safe flavoured anti- k_T jet algorithm [Czakon,Mitov,Poncelet(2022)] \Rightarrow introduce damping function to the standard anti- k_T

$$\mathcal{S}_{ij} = 1 - \Theta(1-x) \cdot \cos\left(\frac{\pi}{2}x\right) \le 1$$
 $x \equiv \frac{1}{a} \frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T,\max}^2}$

if *i*, *j* have the same non-zero flavour of opposite sign, **a**: tunable *softness* parameter \Rightarrow minimize the effect of unfolding

Bayu Hartanto (Cambridge)

Setup (follows CMS measurement[arXiv:1608.07561])

 \Rightarrow **5FS**, LHC 8 TeV, PDFs: NNPDF31, cuts: $p_{T,\ell} >$ 30 GeV, $|\eta_\ell| <$ 2.1, $p_{T,j} >$ 25 GeV, $|\eta_j| <$ 2.4

 $\Rightarrow jet algorithm: flavour-k_{\mathcal{T}}[\texttt{Banfi},\texttt{Salam},\texttt{Zanderighi}(2006)] and flavour anti-k_{\mathcal{T}}[\texttt{Czakon},\texttt{Mitov},\texttt{Poncelet}(2022)] with R = 0.5$

 \Rightarrow central scale: $\mu_R = \mu_F = \mu_0$, where $H_T = E_T(\ell \nu) + p_T(b_1) + p_T(b_2)$.

 \Rightarrow final states: inclusive (at least 2 b jets) and exclusive (exactly two b jets and no other jets).

 $\Rightarrow \text{ scale uncertainties: inclusive } \rightarrow \text{7-pt variation} \qquad 1/2 \leq \mu_R/\mu_F \leq 2$ exclusive $\rightarrow \text{7-pt variation and uncorrelated prescription[Stewart,Tackmann(2012)]}$

Uncorrelated scale variation $\sigma_{Wb\bar{b},\text{exc}} = \sigma_{Wb\bar{b},\text{inc}} - \sigma_{Wbbj,\text{inc}} \Delta \sigma_{Wb\bar{b},\text{exc}} = \sqrt{\left(\Delta \sigma_{Wb\bar{b},\text{inc}}\right)^2 + \left(\Delta \sigma_{Wbbj,\text{inc}}\right)^2}$

Leading colour approximation is only applied to scale independent double virtual finite remainder

$$\mathcal{V}^{(2)}(\mu_R^2) = \mathcal{V}^{(2)}_{ ext{LC}}(s_{12}) + \sum_{i=1}^4 c_i ext{ln}^iigg(rac{\mu_R^2}{s_{12}}igg)$$

Double virtual contributions to σ : 5% (inc) and 10% (exc), expected SLC: 0.5% (inc) and 1% (exc)

$$K_{\rm NLO} = \frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}} \qquad K_{\rm NNLO} = \frac{\sigma_{\rm NNLO}}{\sigma_{\rm NLO}}$$

Inclusive $W^+(\rightarrow \ell^+ \nu) b \bar{b}$ cross sections

Jet algorithm	$\sigma_{\sf LO}$ [fb]	$\sigma_{\rm NLO}~{\rm [fb]}$	$K_{\rm NLO}$	$\sigma_{ m NNLO}~[{ m fb}]$	$K_{\rm NNLO}$
flavour- k_T	$213.24(8)^{+21.4\%}_{-16.1\%}$	$362.0(6)^{+13.7\%}_{-11.4\%}$	1.70	$445(5)^{+6.7\%}_{-7.0\%}$	1.23
flavour anti- k_T ($a=0.05$)	$262.52(10)^{+21.4\%}_{-16.1\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	1.91	$690(7)^{+10.9\%}_{-9.7\%}$	1.38
flavour anti- k_{T} $(a=0.1)$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	1.90	$677(7)^{+10.4\%}_{-9.4\%}$	1.36
flavour anti- $k_{\mathcal{T}}$ $(a=0.2)$	$261.71(10)^{+21.4\%}_{-16.1\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$	1.86	$647(7)^{+9.5\%}_{-8.9\%}$	1.33

Exclusive $W^{\pm}(ightarrow \ell^{\pm} u) b ar{b}$ cross sections

Jet algorithm	$\sigma_{\rm LO}~{\rm [fb]}$	$\sigma_{ m NLO}$ [fb]	$K_{\rm NLO}$	$\sigma_{ m NNLO}$ [fb]	K _{NNLO}
flavour- k_T	$345.97(9)^{+21.4\%}_{-16.2\%}$	$408.4(5)^{+4.2\%~(41\%)}_{-6.2\%~(28\%)}$	1.18	$434(8)^{+1.7\%~(16\%)}_{-2.5\%~(16\%)}$	1.06
flavour anti- $k_T~(a=0.05)$	$425.71(12)^{+21.5\%}_{-16.2\%}$	$540.3(7)^{+6.2\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$636(11)^{+5.4\%}_{-5.0\%}~^{(23\%)}_{(20\%)}$	1.18
flavour anti- $k_{\mathcal{T}}~(a=0.1)$	$425.63(12)^{+21.5\%}_{-16.2\%}$	$538.7(7)^{+6.1\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$630(10)^{+5.0\%}_{-4.8\%}~^{(22\%)}_{(20\%)}$	1.17
flavour anti- $k_{\mathcal{T}}~(a=0.2)$	$424.37(12)^{+21.5\%}_{-16.2\%}$	$530.6(7)^{+5.8\%}_{-7.2\%} {}^{(42\%)}_{(29\%)}$	1.25	$606(10)^{+4.2\%}_{-4.2\%}~^{(21\%)}_{(19\%)}$	1.14

Bayu Hartanto (Cambridge) Wbb production at NNLO QCD September 6, 2023 9/	9/13
---	------

$$K_{
m NLO} = rac{\sigma_{
m NLO}}{\sigma_{
m LO}} \qquad K_{
m NNLO} = rac{\sigma_{
m NNLO}}{\sigma_{
m NLO}}$$

Inclusive $W^+(\rightarrow \ell^+ \nu) b \bar{b}$ cross sections

Jet algorithm	$\sigma_{\sf LO}$ [fb]	$\sigma_{\rm NLO}~{\rm [fb]}$	$\kappa_{\rm NLO}$	$\sigma_{ m NNLO}$ [fb]	$K_{\rm NNLO}$
flavour- k_T	$213.24(8)^{+21.4\%}_{-16.1\%}$	$362.0(6)^{+13.7\%}_{-11.4\%}$	1.70	445(5) ^{+6.7%} -7.0%	1.23
flavour anti- $k_T~(a=0.05)$	$262.52(10)^{+21.4\%}_{-16.1\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	1.91	$690(7)^{+10.9\%}_{-9.7\%}$	1.38
flavour anti- $k_{\mathcal{T}}$ $(a=0.1)$	$262.47(10)^{+21.4\%}_{-16.1\%}$	497.8(8) ^{+16.0%}	1.90	$677(7)^{+10.4\%}_{-9.4\%}$	1.36
flavour anti- $k_{\mathcal{T}}~(a=0.2)$	$261.71(10)^{+21.4\%}_{-16.1\%}$	486.3(8) ^{+15.5%} 	1.86	647(7) ^{+9.5%} -8.9%	1.33

Exclusive $W^{\pm}(ightarrow \ell^{\pm} u) b ar{b}$ cross sections

Jet algorithm	$\sigma_{\rm LO}~{\rm [fb]}$	$\sigma_{ m NLO}$ [fb]	$K_{\rm NLO}$	$\sigma_{ m NNLO}$ [fb]	K _{NNLO}
flavour- k_T	$345.97(9)^{+21.4\%}_{-16.2\%}$	$408.4(5)^{+4.2\%~(41\%)}_{-6.2\%~(28\%)}$	1.18	$434(8)^{+1.7\%~(16\%)}_{-2.5\%~(16\%)}$	1.06
flavour anti- $k_T~(a=0.05)$	$425.71(12)^{+21.5\%}_{-16.2\%}$	$540.3(7)^{+6.2\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$636(11)^{+5.4\%}_{-5.0\%}~^{(23\%)}_{(20\%)}$	1.18
flavour anti- $k_{\mathcal{T}}~(a=0.1)$	$425.63(12)^{+21.5\%}_{-16.2\%}$	$538.7(7)^{+6.1\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$630(10)^{+5.0\%}_{-4.8\%}~^{(22\%)}_{(20\%)}$	1.17
flavour anti- $k_{\mathcal{T}}~(a=0.2)$	$424.37(12)^{+21.5\%}_{-16.2\%}$	$530.6(7)^{+5.8\%}_{-7.2\%} {}^{(42\%)}_{(29\%)}$	1.25	$606(10)^{+4.2\%}_{-4.2\%}~^{(21\%)}_{(19\%)}$	1.14

3ayu Hartanto (Cambridge)	Wbb production at NNLO QCD	September 6, 2023	9 / 13

$$K_{
m NLO} = rac{\sigma_{
m NLO}}{\sigma_{
m LO}} \qquad K_{
m NNLO} = rac{\sigma_{
m NNLO}}{\sigma_{
m NLO}}$$

Inclusive $W^+(\rightarrow \ell^+ \nu) b \bar{b}$ cross sections

		i i			
Jet algorithm	$\sigma_{\sf LO}$ [fb]	$\sigma_{\sf NLO}$ [fb]	$K_{\rm NLO}$	$\sigma_{\sf NNLO}$ [fb]	$K_{\rm NNLO}$
flavour- k_T	$213.24(8)^{+21.4\%}_{-16.1\%}$	$362.0(6)^{+13.7\%}_{-11.4\%}$	1.70	445(5) ^{+6.7%} -7.0%	1.23
flavour anti- $k_T~(a=0.05)$	$262.52(10)^{+21.4\%}_{-16.1\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	1.91	$690(7)^{+10.9\%}_{-9.7\%}$	1.38
flavour anti- $k_{\mathcal{T}}$ $(a=0.1)$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	1.90	677(7) ^{+10.4%} 9.4%	1.36
flavour anti- $k_T~(a=0.2)$	$261.71(10)^{+21.4\%}_{-16.1\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$	1.86	647(7) ^{+9.5%} -8.9%	1.33

Exclusive $W^{\pm}(ightarrow \ell^{\pm} u) b ar{b}$ cross sections

Jet algorithm	$\sigma_{\rm LO}~{\rm [fb]}$	$\sigma_{ m NLO}$ [fb]	$K_{\rm NLO}$	$\sigma_{ m NNLO}$ [fb]	K _{NNLO}
flavour- k_T	$345.97(9)^{+21.4\%}_{-16.2\%}$	$408.4(5)^{+4.2\%~(41\%)}_{-6.2\%~(28\%)}$	1.18	$434(8)^{+1.7\%~(16\%)}_{-2.5\%~(16\%)}$	1.06
flavour anti- $k_T~(a=0.05)$	$425.71(12)^{+21.5\%}_{-16.2\%}$	$540.3(7)^{+6.2\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$636(11)^{+5.4\%}_{-5.0\%}~^{(23\%)}_{(20\%)}$	1.18
flavour anti- $k_{\mathcal{T}}~(a=0.1)$	$425.63(12)^{+21.5\%}_{-16.2\%}$	$538.7(7)^{+6.1\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$630(10)^{+5.0\%}_{-4.8\%}~^{(22\%)}_{(20\%)}$	1.17
flavour anti- $k_{\mathcal{T}}~(a=0.2)$	$424.37(12)^{+21.5\%}_{-16.2\%}$	$530.6(7)^{+5.8\%}_{-7.2\%} {}^{(42\%)}_{(29\%)}$	1.25	$606(10)^{+4.2\%}_{-4.2\%}~^{(21\%)}_{(19\%)}$	1.14

Bayu Hartanto (Cambridge)	Wbb production at NNLO QCD	September 6, 2023	9 / 13

$$K_{
m NLO} = rac{\sigma_{
m NLO}}{\sigma_{
m LO}} \qquad K_{
m NNLO} = rac{\sigma_{
m NNLO}}{\sigma_{
m NLO}}$$

Inclusive $W^+(\rightarrow \ell^+ \nu) b\bar{b}$ cross sections

Jet algorithm	$\sigma_{\sf LO}$ [fb]	$\sigma_{\rm NLO}~{\rm [fb]}$	$\kappa_{\rm NLO}$	$\sigma_{ m NNLO}~[{ m fb}]$	$K_{\rm NNLO}$
flavour- k_T	$213.24(8)^{+21.4\%}_{-16.1\%}$	$362.0(6)^{+13.7\%}_{-11.4\%}$	1.70	$445(5)^{+6.7\%}_{-7.0\%}$	1.23
flavour anti- k_T ($a=0.05$)	$262.52(10)^{+21.4\%}_{-16.1\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	1.91	$690(7)^{+10.9\%}_{-9.7\%}$	1.38
flavour anti- k_{T} $(a=0.1)$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	1.90	$677(7)^{+10.4\%}_{-9.4\%}$	1.36
flavour anti- $k_{\mathcal{T}}$ $(a=0.2)$	$261.71(10)^{+21.4\%}_{-16.1\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$	1.86	$647(7)^{+9.5\%}_{-8.9\%}$	1.33

Exclusive $W^{\pm}(ightarrow \ell^{\pm} u) b ar{b}$ cross sections

Jet algorithm	$\sigma_{\rm LO}~{\rm [fb]}$	$\sigma_{ m NLO}$ [fb]	K _{NLO}	$\sigma_{ m NNLO}$ [fb]	K _{NNLO}
flavour- k_T	$345.97(9)^{+21.4\%}_{-16.2\%}$	$408.4(5)^{+4.2\% (41\%)}_{-6.2\% (28\%)}$	1.18	$434(8)^{+1.7\%\ (16\%)}_{-2.5\%\ (16\%)}$	1.06
flavour anti- $k_T~(a=0.05)$	$425.71(12)^{+21.5\%}_{-16.2\%}$	$540.3(7)^{+6.2\%}_{-7.4\%}{}^{(42\%)}_{(29\%)}$	1.27	$636(11)^{+5.4\%}_{-5.0\%}$ (23%)	1.18
flavour anti- $k_{\mathcal{T}}~(a=0.1)$	$425.63(12)^{+21.5\%}_{-16.2\%}$	$538.7(7)^{+6.1\%}_{-7.4\%}{}^{(42\%)}_{(29\%)}$	1.27	$630(10)^{+5.0\%}_{-4.8\%}$ (22%)	1.17
flavour anti- $k_{\mathcal{T}}~(a=0.2)$	$424.37(12)^{+21.5\%}_{-16.2\%}$	$530.6(7)^{+5.8\%}_{-7.2\%} \stackrel{(42\%)}{_{(29\%)}}$	1.25	$606(10)^{+4.2\%}_{-4.2\%}$ (21%)	1.14

Bayu Hartanto (Cambridge)

$$K_{
m NLO} = rac{\sigma_{
m NLO}}{\sigma_{
m LO}} \qquad K_{
m NNLO} = rac{\sigma_{
m NNLO}}{\sigma_{
m NLO}}$$

Inclusive $W^+(\rightarrow \ell^+ \nu) b\bar{b}$ cross sections

		· /			
Jet algorithm	$\sigma_{\sf LO}$ [fb]	$\sigma_{\rm NLO}$ [fb]	$K_{\rm NLO}$	$\sigma_{ m NNLO}$ [fb]	K _{NNLO}
flavour- k_T	$213.24(8)^{+21.4\%}_{-16.1\%}$	$362.0(6)^{+13.7\%}_{-11.4\%}$	1.70	$445(5)^{+6.7\%}_{-7.0\%}$	1.23
flavour anti- k_T ($a=0.05$)	$262.52(10)^{+21.4\%}_{-16.1\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	1.91	$690(7)^{+10.9\%}_{-9.7\%}$	1.38
flavour anti- k_{T} $(a=0.1)$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	1.90	$677(7)^{+10.4\%}_{-9.4\%}$	1.36
flavour anti- $k_{\mathcal{T}}$ $(a=0.2)$	$261.71(10)^{+21.4\%}_{-16.1\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$	1.86	647(7) ^{+9.5%} -8.9%	1.33

Exclusive $W^{\pm}(ightarrow \ell^{\pm} u) b ar{b}$ cross sections

Jet algorithm	$\sigma_{\rm LO}~{\rm [fb]}$	$\sigma_{ m NLO}$ [fb]	$K_{\rm NLO}$	$\sigma_{ m NNLO}$ [fb]	$K_{\rm NNLO}$
flavour- k_T	$345.97(9)^{+21.4\%}_{-16.2\%}$	$408.4(5)^{+4.2\%~(41\%)}_{-6.2\%~(28\%)}$	1.18	$434(8)^{+1.7\%~(16\%)}_{-2.5\%~(16\%)}$	1.06
flavour anti- $k_T~(a=0.05)$	$425.71(12)^{+21.5\%}_{-16.2\%}$	$540.3(7)^{+6.2\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$636(11)^{+5.4\%}_{-5.0\%}~^{(23\%)}_{(20\%)}$	1.18
flavour anti- $k_{\mathcal{T}}~(a=0.1)$	$425.63(12)^{+21.5\%}_{-16.2\%}$	$538.7(7)^{+6.1\%}_{-7.4\%}~^{(42\%)}_{(29\%)}$	1.27	$630(10)^{+5.0\%}_{-4.8\%}~^{(22\%)}_{(20\%)}$	1.17
flavour anti- $k_{\mathcal{T}}~(a=0.2)$	$424.37(12)^{+21.5\%}_{-16.2\%}$	$530.6(7)^{+5.8\%}_{-7.2\%} {}^{(42\%)}_{(29\%)}$	1.25	$606(10)^{+4.2\%}_{-4.2\%}~^{(21\%)}_{(19\%)}$	1.14

Bayu Hartanto (Cambridge)

Numerical results: differential distributions

NLO, flavour-k-

NLO, standard-k7

NIO standard-k-

4.5 5.0

NNLO, flay, $k_{\tau}^{-1}(a = 0.2)$

Comparison to CMS data [arXiv:1608.07561]

- CMS measurement is done for exclusive final state configuration
- ► The use of flavour anti-k_T algorithm in theoretical calculation allows for close comparison with CMS data (standard anti-k_T) ⇒ unfolding corrections expected to be small
- Correction factors included: hadronisation (multiplicative) = 0.81 ± 0.07 DPI (additive) = 0.06 ± 0.06 pb
 - Thick bands: 7-pt scale variation (without DPI error) thin bands: uncorrelated prescription (without DPI error), dotted bands: uncorrelated prescription (with DPI error)

[HBH, Poncelet, Popescu, Zoia; arXiv:2209.03280]

$Wb\bar{b}$: 4FS vs 5FS comparison

NNLO QCD calculation for $Wb\bar{b}$ with massive b quark (4FS) [Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini (2022)]

► main bottleneck: two-loop matrix element is still out of reach ⇒ use massification procedure [Mitov,Moch(2007)]

$$\mathcal{M}^{Wbar{b},(m)} = \prod_{i\in b,ar{b}} \left(Z^{(m|0)}_{[i]}
ight)^{rac{1}{2}} \mathcal{M}^{Wbar{b},(m=0)} + \mathcal{O}(m^k)$$

predicts poles, log(m) and mass independent terms but not m^k and heavy quark loops talk by Simone Devoto on Friday

► *b*-quark mass regulates IR divergencies in the double soft limit \Rightarrow can use standard anti- k_T jet algorithm

massless (5FS) vs massive (4FS) comparison

order	$\sigma^{4\mathrm{FS}}$ [fb]	$\sigma_{a=0.05}^{5\rm FS}[{\rm fb}]$	$\sigma_{a=0.1}^{5\rm FS}$ [fb]	$\sigma_{a=0.2}^{\rm 5FS}[{\rm fb}]$
LO	$210.42(2)^{+21.4\%}_{-16.2\%}$	$262.52(10)^{+21.4\%}_{-16.1\%}$	$262.47(10)^{+21.4\%}_{-16.1\%}$	$261.71(10)^{+21.4\%}_{-16.1\%}$
NLO	$468.01(5)^{+17.8\%}_{-13.8\%}$	$500.9(8)^{+16.1\%}_{-12.8\%}$	$497.8(8)^{+16.0\%}_{-12.7\%}$	$486.3(8)^{+15.5\%}_{-12.5\%}$
NNLO	$636.4(1.6)^{+11.9\%}_{-10.5\%}$	$690(7)^{+10.9\%}_{-9.7\%}$	$677(7)^{+10.4\%}_{-9.4\%}$	$647(7)^{+9.5\%}_{-9.4\%}$

 Table and Figure from [Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini (2022)]

Wbb production at NNLO QCD

Summary

Summary & Outlooks

Summary:

- $\checkmark\,$ NNLO QCD predictions for $W(
 ightarrow \ell
 u) b ar{b}$ production at the LHC
 - \Rightarrow improved perturbative convergence
 - \Rightarrow better agreement with CMS measurements
- $\checkmark\,$ Comparison between 4FS and 5FS calculations
- ✓ Two-loop amplitude for 5-point process with one external mass (at leading colour)

Outlooks:

- ► Full colour two-loop amplitude
- ▶ W + 1b jet at NNLO QCD \Rightarrow comparison with data, 4FS vs 5FS
- ▶ NNLO+PS matching for the massive $Wb\bar{b}$ calculation talk by Emanuele Re on Monday

Back-up Slides

NNLO vs NLO-merged calculation

$$K_{\rm NNLO} = \frac{\sigma_{\rm NNLO}}{\sigma_{\rm NLO}} \qquad K_{\rm NLO+}$$

$$_{\rm NLO+} = \frac{\sigma_{\rm NLO+}}{\sigma_{\rm NLO}}$$

THIL O .

Inclusive $W^+(\rightarrow \ell^+ \nu) b \bar{b}$ cross sections

Jet algorithm	$\sigma_{\sf NLO}$ [fb]	$\sigma_{\sf NNLO}$ [fb]	<i>K</i> _{NNLO}	σ_{NLO+} [fb]	$\kappa_{\rm NLO+}$
flavour- <i>k_T</i>	$362.0(6)^{+13.7\%}_{-11.4\%}$	$445(5)^{+6.7\%}_{-7.0\%}$	1.23	426(5) ^{+7.6%} -8.9%	1.18
flavour anti- k_T ($a = 0.05$)	$500.9(8)^{+16.1\%}_{-12.8\%}$	$690(7)^{+10.9\%}_{-9.7\%}$	1.38	$635(6)^{+11.2\%}_{-11.1\%}$	1.27
flavour anti- $k_T (a=0.1)$	$497.8(8)^{+16.0\%}_{-12.7\%}$	$677(7)^{+10.4\%}_{-9.4\%}$	1.36	$626(6)^{+10.8\%}_{-10.9\%}$	1.26
flavour anti- k_T ($a = 0.2$)	$486.3(8)^{+15.5\%}_{-12.5\%}$	$647(7)^{+9.5\%}_{-8.9\%}$	1.33	$602(6)^{+10.2\%}_{-10.5\%}$	1.24

Combine *Wbb* and *Wbbj* NLO cross sections using *exclusive sums* method [The SM and NLO Multileg and SM MC Working Groups: Summary Report(2012)] [Anger,Febres Cordero,Ita,Sotnikov(2017)]

 $\sigma_{\mathrm{NLO}+,\mathit{Wb}\bar{b},\mathrm{inc}} = \sigma_{\mathrm{NLO},\mathit{Wb}\bar{b},\mathrm{exc}} + \sigma_{\mathrm{NLO},\mathit{Wb}\bar{b}j,\mathrm{inc}}$

Bayu Hartanto (Cambridge)