

tītji – NLO QCD corrections to top-quark pair production and decays at the LHC

Daniel Stremmer

In collaboration with: Giuseppe Bevilacqua, Michele Lupattelli, Malgorzata Worek

Based on Phys. Rev. D 107 (2023) 11, 114027

QCD@LHC 2023, Durham, UK, 6 September 2023

Motivation

Observation of $pp \rightarrow t\bar{t}H$ in 2018 by ATLAS and CMS

Phys.Lett.B 784 (2018) 173-191 Phys.Rev.Lett. 120 (2018) 23, 231801

g

q

0000

 W^+

W

Direct probe of Y_t at tree level

0000

0000

g

g

- $H \rightarrow b\bar{b}$ largest branching ratio with $\sim 58\%$
- Large irreducible background from $pp \rightarrow t\bar{t}bb$ & reducible one from $pp \rightarrow t\bar{t}jj$

 $pp \rightarrow t\bar{t}H(H \rightarrow b\bar{b})$

H

Feynman diagrams created with FeynGame Harlander, Klein, Lipp '20

Motivation

Cross section ratios:

- $R_b = \sigma_{t\bar{t}b\bar{b}} / \sigma_{t\bar{t}LL}$ • $R_c = \sigma_{t\bar{t}c\bar{c}} / \sigma_{t\bar{t}LL}$
- Playground for c and b jet tagging
- Better understanding of separation in different processes
- Differences between theoretical predictions and measurements up to 2.5σ for R_b

LL=light flavours and gluon jets

State of the art: NLO QCD

- Stable top quarks
 - $pp \rightarrow t\bar{t}jj$

Bevilacqua, Czakon, Papadopoulos, Worek '10'11

• $pp \rightarrow t\bar{t}jjj$ (NLO & MINLO)

Höche, Maierhöfer, Moretti, Pozzorini, Siegert '17

- Parton Shower (Multi-jet merging with MEPS@NLO in Sherpa)
 - $t\bar{t} + 0,1,2$ jets

Höche, Krauss, Maierhöfer, Pozzorini, Schönherr, Siegert '15

• $t\bar{t} + 0,1$ jet (NLO QCD + EW_{virt}), $t\bar{t} + 2,3,4$ jets (LO)

Gütschow, Lindert, Schönherr '18

$$pp \to t\bar{t}(jj) \to W^+W^-b\bar{b}jj \to \ell^+\ell^- \nu_\ell\bar{\nu}_\ell b\bar{b}jj$$

- LHC with $\sqrt{s} = 13 \text{ TeV}$
- Calculation performed in Narrow Width Approximation preserving spin correlations
- Jet radiation and NLO QCD corrections included in tt production and decay
- Diagonal CKM matrix
- 5 flavour scheme ($m_b = 0$)
- Top-quark width treated as fixed parameter

Process definition

Computational framework

- Theoretical prediction are stored in modified Les Houches Event Files (LHEFs) and ROOT Ntuples
- Reweighting to different renormalisation/factorisation scales and PDF sets

Bern, Dixon, Febres Cordero, Hoeche, Ita, Kosower, Maitre '14

Validation

Virtual Corrections

Recomputed with Recola (Actis, Denner, Hofer, Lang, Scharf, Uccirati '17) + Collier (Denner, Hofer, Dittmaier, Hofer '17)

Real Corrections in Helac-Dipoles

- Catani-Seymour subtraction Catani, Seymour '97 Catani, Dittmaier, Seymour, Trocsanyi '02
 - Additional polarised subtraction terms
 - $t \rightarrow W^+ bg$ Campbell, Ellis, Tramontano '04 (unpolarised)
 - $t \rightarrow W^+ bgg$ Melnikov, Scharf, Schulze '12 (unpolarised)
 - $t \rightarrow W^+ b q \bar{q}$
- Nagy-Soper subtraction Bevilacqua, Czakon, Kubocz, Worek '13
 - Extended to radiative decays

Setup of the calculation

- Exclusive in $n_b = 2$, inclusive in $n_j \ge 2$
- Anti- k_T jet algorithm (R = 0.4) Cacciari, Salam, Soyez '08
- Event selection: *CMS-PAS-TOP-20-006*

$p_{T,\ell} > 20 \text{ GeV},$	$ y_\ell < 2.4,$	$\Delta R_{\ell\ell} > 0.4 ,$	$M_{\ell\ell} > 20 \mathrm{GeV},$
$p_{T,b} > 30 \mathrm{GeV},$	$ y_b < 2.4,$	$\Delta R_{bb} > 0.4 ,$	
$p_{T,j} > 40 \text{ GeV},$	$ y_j < 2.4 ,$	$\Delta R_{jj} > 0.4 ,$	
$\Delta R_{bl} > 0.4 ,$	$\Delta R_{jl} > 0.4 ,$	$\Delta R_{jb} > 0.8$	

- Renormalisation/Factorisation scale: $\mu_R = \mu_F = \mu_0 = \frac{H_T}{2}$ $H_T = \sum_{i=1}^2 p_{T\ell_i} + \sum_{i=1}^2 p_{Tj_i} + \sum_{i=1}^2 p_{Tb_i} + p_T^{miss}$
- NNPDF3.1 NLO PDF set with $\alpha_s = 0.118$ Ball et. al. '17

Setup of the calculation

- Exclusive in $n_b = 2$, inclusive in $n_i \ge 2$
- Anti- k_T jet algorithm (R = 0.4) Cacciari, Salam, Soyez '08
- Event selection: *CMS-PAS-TOP-20-006*

$p_{T,\ell} > 20 \text{ GeV},$	$ y_\ell < 2.4,$	$\Delta R_{\ell\ell} > 0.4 ,$	$M_{\ell\ell} > 20 \mathrm{GeV},$
$p_{T,b} > 30 \mathrm{GeV},$	$ y_b < 2.4,$	$\Delta R_{bb} > 0.4 ,$	
$p_{T,j} > 40 \text{ GeV},$	$ y_j < 2.4 ,$	$\Delta R_{jj} > 0.4 ,$	
$\Delta R_{bl} > 0.4 ,$	$\Delta R_{jl} > 0.4 ,$	$\Delta R_{jb} > 0.8 (0.4)$	

• Renormalisation/Factorisation scale:
$$\mu_R = \mu_F = \mu_0 = \frac{H_T}{2}$$
 $H_T = \sum_{i=1}^2 p_{T\ell_i} + \sum_{i=1}^2 p_{Tj_i} + \sum_{i=1}^2 p_{Tb_i} + p_T^{miss}$

• NNPDF3.1 NLO PDF set with $\alpha_s = 0.118$ Ball et. al. '17

Integrated Fiducial cross section

 $\Delta R_{ib} > 0.8$

i	$\sigma^{\rm LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$\sigma_i^{ m LO}/\sigma_{ m Full}^{ m LO}$	$\sigma_i^{ m NLO}/\sigma_{ m Full}^{ m NLO}$
Full	$868.8(2)^{+60\%}_{-35\%}$	$1225(1) + 1\% \\ -14\%$	1.00	1.00
Prod.	$843.2(2)^{+60\%}_{-35\%}$	$1462(1)^{+12\%}_{-19\%}$	0.97	1.19
Mix	25.465(5)	-236(1)	0.029	-0.19
Decay	0.2099(1)	0.1840(8)	0.0002	0.0002

- $\mathcal{K} = \sigma_{\text{Full}}^{\text{NLO}} / \sigma_{\text{Full}}^{\text{LO}} = 1.41$
- Scale uncertainties reduced from 60% to 14%
- Dominated by Prod.

LO cross section

 $\sigma_{gg}^{\text{LO}} = 561.1(2) \text{ fb} \quad (65\%)$ $\sigma_{gq}^{\text{LO}} = 272.6(1) \text{ fb} \quad (31\%)$ $\sigma_{qq'}^{\text{LO}} = 35.10(1) \text{ fb} \quad (4\%)$

- Internal PDF uncertainties
 - NNPDF3.1: $\sigma^{\text{NLO}} = 1225(1)^{+1.3\%}_{-1.3\%}$ fb
 - MSHT20: $\sigma^{\text{NLO}} = 1212(1)^{+2.1\%}_{-1.8\%}$ fb
 - CT18: $\sigma^{\text{NLO}} = 1197(1)^{+2.9\%}_{-2.7\%}$ fb

Integrated Fiducial cross section

$\Delta R_{jb} > 0.8$			$\Delta R_{jb} > 0.4$						
i	$\sigma^{\rm LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$\sigma_i^{ m LO}/\sigma_{ m Full}^{ m LO}$	$\sigma_i^{ m NLO}/\sigma_{ m Full}^{ m NLO}$	i	$\sigma^{\rm LO}$ [fb]	$\sigma^{\rm NLO}$ [fb]	$\sigma_i^{ m LO}/\sigma_{ m Full}^{ m LO}$	$\sigma_i^{ m NLO}/\sigma_{ m Full}^{ m NLO}$
Full	$868.8(2)^{+60\%}_{-35\%}$	1225(1) + 1% - 14%	1.00	1.00	Full	$1074.5(3)^{+60\%}_{-35\%}$	1460(1) + 1% - 13%	1.00	1.00
Prod.	843.2(2) + 60% - 35%	$1462(1)^{+12\%}_{-19\%}$	0.97	1.19	Prod.	$983.1(3)^{+60\%}_{-35\%}$	$1662(1)^{+11\%}_{-18\%}$	0.91	1.14
Mix	25.465(5)	-236(1)	0.029	-0.19	Mix	89.42(3)	-205(1)	0.083	-0.14
Decay	0.2099(1)	0.1840(8)	0.0002	0.0002	Decay	1.909(1)	2.436(6)	0.002	0.002
$\sigma_{ m Pro}^{ m NL0}$	$_{\rm d.LOdecay}^{\rm O} = $	$\left(rac{\Gamma_t^{ m NLO}}{\Gamma_t^{ m LO}} ight)^2\sigma_{ m Pt}^{ m N}$	$_{\rm rod.}^{\rm LO} = 122$	$21(1)^{+12\%}_{-19\%}$	$\sigma_{ m Pro}^{ m NL}$	$_{\rm d.LOdecay}^{\rm O} = 13$	$390(2)^{+11\%}_{-18\%}$		

- LO: Prod. increased by 16%, Mix increased by 250%, Decay increased by 810%
- NLO: Relative size of Mix decreased
- Differences up to 5% for Prod. LOdecay, scale uncertainties reduced by 5%

Differential Fiducial cross section

$\Delta R_{jb} > 0.4$

- 800 Prod. (LOdec) Full (NLO) NNPDF3.1 600 $d\sigma/d\Delta\phi_{j_1j_2}$ [fb] $\mu_0 = H_T/2$ 400 200 1.30 1.15Ratio 1.000.85 $0.70^{
 m L}_{
 m 0}$ $\pi/4$ $3\pi/4$ $\pi/2$ π $\Delta \phi_{j_1 j_2}$
 - Shape distortions up to 15%
 - Scale uncertainties reduced by 5%

- Shape distortions up to 20%
- Scale uncertainties reduced by 5% below 300 GeV

Differential Fiducial cross section

$\Delta R_{jb} > 0.8$

- NLO QCD corrections ~30% 60%
- Scale uncertainties reduced from 60% to 15%

- Mix/Full [-25%, 20%]
- Mix sensitive to ΔR_{jb} at small energies

Differential Fiducial cross section

$\Delta R_{jb} > 0.8$

- NLO QCD corrections ~30% 50%
- Scale uncertainties reduced from 60% to 15%

- Mix/Full [-25%, -7%]
- Larger shape distortions for $\Delta R_{jb} > 0.4$

From $t\bar{t}jj$ to $t\bar{t}\gamma\gamma$

What are the similarities/differences between both processes?

Resonant contributions in $t\bar{t}\gamma\gamma$

$$pp \to t\bar{t}(\gamma\gamma) \to W^+W^-b\bar{b}(\gamma\gamma) \to \ell^+\ell^- \nu_\ell\bar{\nu}_\ell b\bar{b}\gamma\gamma$$

- Irreducible background of $pp \rightarrow t\bar{t}H(H \rightarrow \gamma\gamma)$
- Photon bremsstrahlung in $t\bar{t}$ production and t / W decays
- No mixing of resonant contributions at NLO QCD
- Similar setup as tīţj

Resonant contributions in $t\bar{t}\gamma\gamma$

- Large contribution from photon emission in decays
- Prod. dominant at large p_T (~80% of Full)

 Different peak structures for Prod., Mixed and Decay

Resonant contributions in $t\bar{t}\gamma\gamma$

Stremmer, Worek, JHEP 08 (2023) 179							
		gg	gg/pp	q ar q	$q \bar{q}/p p$	$qg + \bar{q}g$	$(qg+\bar{q}g)/pp$
$\sigma_{ m Full}^{ m NLO}$	[fb]	0.0999(1)	56.4%	0.04307(4)	24.3%	0.03428(4)	19.3%
$\sigma_{\mathrm{Prod.}}^{\mathrm{NLO}}$	[fb]	0.02587(4)	36.3%	0.02672(4)	37.5%	0.01871(3)	26.2%
$\sigma_{ m Mixed}^{ m NLO}$	[fb]	0.04928(8)	63.7%	0.01408(2)	18.2%	0.01398(2)	18.1%
$\sigma_{\rm Decay}^{\rm NLO}$	[fb]	0.02476(4)	86.5%	0.002268(3)	7.9%	0.00160(2)	5.6%

- Only ~39% of Full from Prod.
- gg channel supressed for increasing number of photons in tt production
- Conclusions also hold in lepton + jet top-quark decay channel

Conclusion

- NLO QCD corrections to $pp \to t\bar{t}(jj) \to W^+W^-b\bar{b}jj \to \ell^+\ell^- \nu_\ell \bar{\nu}_\ell b\bar{b}jj$
- Jet radiation consistenly included in production and decay of top-quark pair
- LO dominated by Prod., Mix and Decay contributions negligible at LO
- Mixing of different resonant contributions at NLO QCD
- Different sign of Mix contribution at NLO
- Theoretical uncertainties dominated by scale uncertainties
- Large contributions from photon bremsstrahlung in t / W decays

Outlook

- Cross section ratios $R_b = \sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$ and $R_c = \sigma_{t\bar{t}c\bar{c}}/\sigma_{t\bar{t}jj}$ in fiducial phase space
- Hadronic W boson decays \rightarrow lepton + jet top-quark decay channel

Backup

Fiducial cross section ratios

$\Delta R_{jb} > 0.8$					
\mathcal{R}_n	$\mathcal{R}^{ ext{LO}}$	$\mathcal{R}^{ ext{NLO}}$	$\mathcal{R}_{ ext{exp}}^{ ext{NLO}}$		
$\mathcal{R}_1 = \sigma_{t\bar{t}j}/\sigma_{t\bar{t}}$	$0.3686^{+12\%}_{-10\%}$	$0.3546^{+0\%}_{-5\%}$	$0.3522^{+0\%}_{-3\%}$		
$\mathcal{R}_2 = \sigma_{t\bar{t}jj} / \sigma_{t\bar{t}j}$	$0.2539^{+11\%}_{-9\%}$	$0.2660^{+0\%}_{-5\%}$	$0.2675^{+0\%}_{-2\%}$		
$\mathcal{R}_{ ext{exp}}^{ ext{NLO}} =$	$= \frac{\sigma^0_{t\bar{t}j(j)}}{\sigma^0_{t\bar{t}(j)}} \left(1 + \frac{\sigma}{\sigma}\right)$	$rac{1}{t\bar{t}j(j)} - rac{\sigma^1_{t\bar{t}(j)}}{\sigma^0_{t\bar{t}(j)}}$			

- NLO QCD corrections ~ 4% 5%
- Reduced scale uncertainties by consistent expansion in α_s from 5% to 2% 3%
- PDF uncertainties with NNPDF3.1 ~0.5%

Setup of the calculation $(t\bar{t}\gamma\gamma)$

- Exclusive in $n_b = 2$
- Anti- k_T jet algorithm (R = 0.4) Cacciari, Salam, Soyez '08
- Event selection:
 - $\begin{array}{ll} p_{T,\,\ell} > 25 \; {\rm GeV}\,, & |y_{\ell}| < 2.5\,, & \Delta R_{\ell\ell} > 0.4\,, \\ p_{T,\,b} > 25 \; {\rm GeV}\,, & |y_{b}| < 2.5\,, & \Delta R_{bb} > 0.4\,, \\ p_{T,\,\gamma} > 25 \; {\rm GeV}\,, & |y_{\gamma}| < 2.5\,, & \Delta R_{\gamma\gamma} > 0.4\,, \\ \Delta R_{bl} > 0.4\,, & \Delta R_{\gamma l} > 0.4\,, & \Delta R_{\gamma b} > 0.4 \end{array}$
- Renormalisation/Factorisation scale: $\mu_R = \mu_F = \mu_0 = \frac{E_T}{4}$ $E_T = \sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2} + p_{T,\gamma_1} + p_{T,\gamma_2}$
- NNPDF3.1 NLO PDF set with $\alpha_s = 0.118$ Ball et. al. '17

Setup of the calculation $(t\bar{t}\gamma\gamma)$

Smooth photon isolation prescription *Frixione '98*

$$\sum_{i} E_{Ti} \Theta(R - R_{\gamma i}) \le \epsilon_{\gamma} E_{T\gamma} \left(\frac{1 - \cos(R)}{1 - \cos(R_{\gamma j})} \right)^n \quad \text{for all } R \le R_{\gamma j}$$

• with $R_{\gamma j} = 0.4$ and $\epsilon_{\gamma} = n = 1$

Integrated Fiducial cross section

$E_T/4 \qquad \begin{aligned} \sigma_{\rm Full} & [fb] & 0.13868(3)^{+31.2\%}_{-22.1\%} & 0.1773(1)^{+1.8\%}_{-6.2\%} & 1.28 \\ \sigma_{\rm Prod.} & [fb] & 0.05399(2)^{+30.6\%}_{-21.7\%} & 0.07130(6)^{+2.5\%}_{-7.2\%} & 1.32 \\ \sigma_{\rm Mixed} & [fb] & 0.06022(2)^{+31.9\%}_{-22.5\%} & 0.07733(8)^{+1.5\%}_{-6.2\%} & 1.28 \end{aligned}$	μ_0			LO	NLO	$\mathcal{K} = \sigma_{ m NLO} / \sigma_{ m LO}$
σ_{Decay} [fb] $0.024473(7)^{+30.9\%}_{-22.1\%} = 0.02863(4)^{+0.9\%}_{-4.9\%} = 1.17$	$E_T/4$	$\sigma_{ m Full} \ \sigma_{ m Prod.} \ \sigma_{ m Mixed} \ \sigma_{ m Decay}$	[fb] [fb] [fb] [fb]	$\begin{array}{c} 0.13868(3)^{+31.2\%}_{-22.1\%}\\ 0.05399(2)^{+30.6\%}_{-21.7\%}\\ 0.06022(2)^{+31.9\%}_{-22.5\%}\\ 0.024473(7)^{+30.9\%}_{-22.1\%}\end{array}$	$\begin{array}{c} 0.1773(1)^{+1.8\%}_{-6.2\%}\\ 0.07130(6)^{+2.5\%}_{-7.2\%}\\ 0.07733(8)^{+1.5\%}_{-6.2\%}\\ 0.02863(4)^{+0.9\%}_{-4.9\%}\end{array}$	1.28 1.32 1.28 1.17

- NLO QCD corrections ~30%
- Scale uncertainties reduced from 31% to 6%
- Only ~39% of Full from Prod.