Status and prospects of SHERPA

QCD@LHC 2023 in Durham, UK September 5 2023

Enrico Bothmann (ITP, U Göttingen) on behalf of the SHERPA collaboration

Deutsche Forschungsgemeinschaft

German Research Foundation

The SHERPA event generator framework

v2.2 release series [Sherpa collab. 1905.09127]

- Two multi-purpose matrix element (ME) generators: Амедіс, Соміх
- Two parton showers (PS) generators: CSSHOWER, DIRE
- A multiple interaction simulation à la PYTHIA
- A cluster fragmentation module
- A hadron and τ -lepton decay package
- A higher-order QED generator using YFS resummation
- Many add-ons

SHERPA's Traditional strength is the perturbative part of the event: LO, NLO, NNLO, LOPS, NLOPS, NNLOPS, MEPS, MENLOPS, MEPS@NLO

13 TeV Showcase I – rare triboson processes

Measure $Z\gamma\gamma$, observe $WZ\gamma$ and $W\gamma\gamma$ production [ATLAS 2211.14171, 2305.16994, 2308.03041]

- $Z\gamma\gamma$ measurement: Sherpa 2.2.10 used for signal (0j@NLO+1,2j@LO), backgrounds $Z\gamma$ +jets, ZZ, WZ γ , γ +jets and $\gamma\gamma$ +jets
- tightened constraints on dimension-8 EFT operators

WZ γ observation: Sherpa 2.2.11 used for signal (0j@NLO+1,2j@LO), backgrounds ZZ γ , Z $\gamma\gamma$ W $\gamma\gamma$ observation: Sherpa 2.2.10 used for signal (0j@NLO+1,2j@LO), backgrounds WW γ , Z γ and

$\mathbf{Z}\gamma\gamma$ production

Zγ

13 TeV Showcase II – precision measurements

V PT [ATLAS-CONF-2023-028]

- Z p_T ultimate precision observable
- old Sherpa 2.2.1 sample lacksquareshows sizable deviations at low p_T
 - deviation around 20 \bullet GeV reduced by improved splitting kernels in Sherpa 2.2.11 sample [2112.09588]
 - expect improvements at even lower p_T from upcoming Sherpa 3.0

(N)NLO + NLL' accurate predictions for plain and groomed 1-jettiness in neutral current DIS \rightarrow Daniel's talk (Wed)

Roadmap **Upcoming releases**

2.3.0

- new HPC-ready HDF5 event pipeline;
 - ME-level unweighted events encoded in HDF5 event files; builds on [Höche 1905.05120]
 - later read in files for fast generation of merged+matched particle level events
 - Bonus: reuse of expensive MElacksquarelevel events samples, e.g. for fast shower/hadronisation uncertainty studies etc.
 - https://zenodo.org/record/7754187 for sample H+jets files
 - publication+release very soon

3.0.0

•

- beta1 available for download and testing
- fully general & automated fixed-order NLO EW support [Schönherr 1712.07975]
- fully general & automated NLL EWSudakov corrections in all event generation modes (MEPS@NLO, ...) [EB, Napoletano 2006.14635], [EB et al. 2111.13453]
 - DY NNLO, EPA support, photon LHAPDFs, instantons, polarized cross sections for massive vector bosons ...
- rewritten+retuned soft QCD, MPI, MinBias, Hadronisation, colour reconnection model [Chahal, Krauss 2203.11385]
- modernised: YAML input format, CMake build system, sphinx manual

later in 3.x: Full NLL Alaric shower [Herren et al. 2208.06057] \rightarrow Daniel's talk on Monday

Status and prospects of SHERPA

Efficiency

Precision

6

SHERPA+LHADPF Performance for (HL-)LHC **Overall profiling and tuning** [EB et al. 2209.00843] **ATLAS** Preliminary 2022 Computing Model - CPU

- MC event generation uses significant+increasing resources
- (HL-)LHC measurements in danger of being limited by MC statistics
- Explore reduction of CPU footprint for heaviest use cases, e.g. ATLAS default setup Z + 0, 1, 2j@NLO + 3, 4, 5j@LO
 - 1. LHAPDF improvement
 - 2. (LC)-MC@NLO: reduce matching accuracy to leading colour, neglect spin correlations, i.e. S-MC@NLO \rightarrow MC@NLO also useful to reduce negative event fractions [Danziger, Höche, Siegert 2110.15211]
 - 3. pilot run: minimal setup until PS point accepted, then rerun full setup
 - 4. (LC)-MC@NLO-CSS: defer MC@NLO emission until after unweighting
 - 5. use analytical loop library where available here: OPENLOOPS → MCFM via interface [Campbell, Höche, Preuss 2107.04472]
 - 6. pilot scale definition in pilot run that requires no clustering small weight spread by correction to correct scale
- all new developments part of Sherpa 2.2.13 or later

SHERPA+LHAPDF Performance for (HL-)LHC [EB et al. 2209.00843] – Results

\rightarrow 39 \times speed-up for ATLAS e^+e^- + jets setup

\rightarrow 43× speed-up for ATLAS $t\bar{t} + jets$ setup

Why stop here? Port bottlenecks to GPU to increase physics range further

- HPC hardware increasingly heterogeneous
- other ongoing MC@GPU efforts: MADGRAPH5_AMC@NLO, PYSECDEC, MADFLOW [Valassi et al. 2303.18244], [Heinrich et al. 2305.19768], [Carrazza et al. 2106.10279]; also see Zenny's talk (Wed)
- After performance improvements: tree-level ME and phase-space nearly 70 % of CPU usage
- Ongoing development from scratch of both components on CPU & GPU
 - concentrate on heavy hitters (V+jets, tt+jets, pure jets)
 - pick & adapt algorithms for GPU architecture
 - new ME generator PEPPER (previously BLOCKGEN) [EB, Giele, Höche, Isaacson, Knobbe 2106.06507]
 - new phase-space generator CHILI [EB et al. 2302.10449]
 - use new HDF5 read-in of SHERPA 2.3.0 to integrate into existing pipeline for particle-level production for free!
 - bonus: very useful for parton-level Machine Learning studies, since training can happen exclusively on GPU

Port bottlenecks to GPU to increase physics range further

→ Color-summed Berends-Giele recursion on GPU gives best performance in relevant multiplicity range, up to 150× speed-up

Upcoming publication of fully GPU-accelerated and HPC-ready partonic event generator

→ traditional phase-space parametrisation contains many channels that are not relevant for standard LHC event samples; CHILI uses much simpler (MCFM inspired) structure while achieving comparable sampling efficiency

Machine Learning assisted event generation paradigm: improve efficiency, but don't compromise on accuracy

Focus on same bottlenecks: partonic matrix elements, phase-space sampling.

normalizing flows

- Diffeomorphism \bullet parametrised by NN
- Drop-in replacement for VEGAS to optimise sampling

- Bayesian inference to optimise sampling
- Rich tooling available
- Short Markov chains: non-zero but low auto-correlation

Make use of our Physics understanding.

- use fast NN-based surrogate to reduce expensive ME evaluations
- recover true distribution by second unweighting step with exact ME

[Handley, Janßen, Schumann, Yallup 2205.02030]

Status and prospects of SHERPA

Efficiency

Precision

13

New NLL-accurate shower algorithm

ALARIC \rightarrow see D. Reichelt's talk (Mon) for details

- Framework to quantify log accuracy of parton showers established in [Dasgupta et al. 1805.09327, 2002.11114], also see Gavin's talk (Mon) & more refs. therein
- NLL accuracy requires that kinematics mapping of $n \rightarrow n+1$ phase space should not distort effects of pre-existing emissions on observables
 - extract NLL relevant effects by taking limit $\alpha_s \rightarrow 0$ at fixed $\lambda = \alpha_s \log v$, where v = resummed observable
 - PANSCALES developed & proven to fulfill requirements See Gavin's talks (Mon) & refs. therein
 - pre-existing showers in SHERPA do not meet this requirement
- new shower ALARIC [Herren Höche Krauss Reichelt Schönherr 2208.06057]
 - partial fractioning of eikonal \rightarrow positive definite splitting function with full phase space coverage inspired by Catani & Seymour's treatment of identified hadrons
 - price: dependence of splitting functions on azimuthal angle
 - global kinematics scheme enables analytic proof of NLL accuracy + numerical validation

New NLL-accurate shower algorithm ALARIC \rightarrow see D. Reichelt's talk (Mon) for details

EW Sudakov logarithms Automated implementation for all processes

- Corrections due to soft/coll. EW gauge bosons coupled to external legs in high-energy limit (e.g. $p_T \gtrsim 1 \text{ TeV} \rightarrow \mathcal{O}(10\%)$ corrections)
- Corrections worked out in full generality [Denner, Pozzorini (2001) hep-ph/0010201]
- partial implementation in ALPGEN [Chiesa et al 1305.6837]
- In SHERPA fully automated as universal ME-level corrections applicable in all setups for any process, including MEPS@NLO predictions

[EB, Napoletano 2006.14635], [EB et al. 2111.13453]

- EW_{virt} for \mathcal{S} events, EW_{sud} for \mathcal{H} and LO events
- YFS resummation for QED FSR
- Example: application to MEPS@NLO diboson production $pp \rightarrow 0.1j@NLO + 2.3j@LO$ [EB et al. 2111.13453]
- similar implementations in development for MadGraph5_aMC@NLO and OpenLoops [Pagani, Vitos, Zaro 2309.00452], [Recent talks by OpenLoops]

EW Sudakov logarithms **Automated implementation for all processes**

(Approximate) EW corrections outside of MEPS@NLO QCD uncertainty band

Resumming soft photons with YFS Recent developments in SHERPA

- photon splitting $\gamma \rightarrow e^+e^-$ [Flower, Schönherr 2210.07007] \rightarrow Lois Flower's talk (Wed)
- Example: Dilepton invariant mass for $pp \rightarrow e^+e^-$:

Corrections up to 1 %, can be reigned in by refined dressing algorithm

- YFS in ISR for future lepton colliders [Krauss, Price, Schönherr 2203.10948]
- Application to Higgsstrahlung processes at lepton collider:

Process-independent implementation of YSF for ISR

Neutrino physics Achilles + Sherpa

- ACHILLES is a newly developed neutrino event generator [Höche, Isaacson, Lopez Gutierrez, Rocco 2110.15319]
- paradigm: transfer LHC expertise+tooling in neutrino physics, developed in close collaboration with SHERPA
 - ACHILLES for nuclear physics effects
 - SHERPA's COMIX for calculating leptonic currents, incl. BSM effects via Comix' UFO interface
 - study of ν_{τ} needs control over angular distribution of τ -lepton decay products
 - use interface to SHERPA for decays, incl. spin correlations across production and decays, QED showers [Isaacson, Höche, Siegert, Wang 2303.08104]

BSM physics via UFO interface [Höche, Kuttimalai, Schumann, Siegert 1412.6478]

- full support for UFO model [Degrande et al. CPC183(2012)1201]
- UFO2 ongoing [Darmé et al. 2304.09883]
- Lorentz and colour structures built fully automatically
- automatic inclusion in hard decay module
 - identification of all $1 \rightarrow 2$ and $1 \rightarrow 3$ decay channels and calculation of LO widths
 - can select individual channels
 - spin correlations using spin density matrices [Richardson JHEP11(2201)029, Knowles CPC58(1990)271]

BSM physics Calculating AGC limits using Sherpa+UFO [Biekötter, Gregg, Krauss, Schönherr 2102.01115]

- LO multi-leg with SMEFT model defined via UFO

use public ATLAS and CMS SM measurements to constrain SMEFT parameters

Status and prospects of SHERPA

Conclusions

22

Status and progress of SHERPA Conclusions

- Efficiency improvements (= increase physics range)
 - tuning exercise \rightarrow factor-40 speed-up for heavy hitter ATLAS setups
 - porting bottlenecks to GPU \rightarrow PEPPER+CHILI, integrated with Sherpa v2.3 via HDF5 event files
 - ML assisted event generation \rightarrow NF, Nested Sampling, NN unweighting
- **Precision physics** •
 - new NLL-accurate shower ALARIC

 - Fully automated EW_{sud} logarithms: application to MEPS@NLO ZZ production, but fully general • YFS developments: $\gamma \rightarrow e^+e^-$ splittings and ISR
 - Neutrino physics via ACHILLES+SHERPA
 - **BSM physics** via UFO

Status and prospects of SHERPA

Backup

24

SHERPA+LHADPF Performance for (HL-)LHC Overall profiling and tuning [EB et al. 2209.00843]

LHAPDF 6.2.3 → 6.4.0

- PDF grid caching for given (x, Q^2) point
 - repeated calls for different flavours / replicas benefit
 - caller side might need to reorder calls to benefit
- Use same interpolation grid structure across flavours
- Cache universal terms of polynomial interpolation
- up to 3x faster for single flavour, ~10x for all flavours

Negative weight fractions

- explored three methods to improve the neg. weight fraction in SHERPA
 - 1) reduce matching accuracy to leading colour, neglect spincorrelations
 - 2) include jet veto on \mathbb{H} -events, as originally formulated arXiv:2012.5030
 - 3) use local K-factor in NLO \rightarrow LO merging from core configuration instead of highest multiplicity
- public since SHERPA-2.2.8 (Sep '19)

Danziger, Höche, Siegert, arXiv:2110.15211, ATLAS arXiv:2112.09588

SHERPA: performance and statistics

SHERPA+LHADPF Performance for (HL-)LHC Overall profiling and tuning [EB et al. 2209.00843]

weight distribution broadening due to the use of a Pilot scale

effective reduction in efficiency from using the pilot scale typically ≤ 2 computing time reduction reduced by this, but in most cases still beneficial

Port bottlenecks to GPU **PEPPER vs. COMIX runtime per partonic event**

Matrix Element timing of $Z[e^+e^-] + \text{Jets}$

Port bottlenecks to GPU Снігі vs. Соміх runtime for given accuracy target

Process /	Default PS Time 4 pts		New PS		Process /	Default PS		New PS	
	TIME	# pts	TIME	# pts			# pts		# pts
W+1j / 1‰	4m 52s	10.3M	2m $32s$	3.10M	$t\bar{t}{+}0{\rm j}$ / 1‰	4m $38s$	3.15M	4m 0s	$3.59\mathrm{M}$
W+2j / 3‰	$17m \ 12s$	$5.52\mathrm{M}$	13m 52s	$2.53\mathrm{M}$	$t\bar{t}$ +1j / 3‰	3m 12s	1.38M	3m 4s	1.47M
W+3j / 1%	$46m \ 24s$	7.48M	$20m \ 16s$	1.15M	$t\bar{t}$ +2j / 1%	11m 58s	1.47M	$11m \ 20s$	0.89M
H+1j / 1‰	$2m \ 20s$	1.83M	1m $36s$	$1.50\mathrm{M}$	2j / 1‰	12m 48s	2.98M	7m 44s	1.80M
H+2j / 3‰	4m $36s$	2.32M	$4m \ 4s$	$0.71\mathrm{M}$	3j / 3‰	22m $48s$	6.80M	23m $12s$	$2.39\mathrm{M}$
H+3j / 1%	$18m \ 12s$	2.32M	12m 56s	0.63M	4j / 1%	$1h\ 25m$	6.95M	50m 24s	0.91M

[EB et al. 2302.10449]

Normalizing Flows Slide by Timo Janßen

- diffeomorphism parameterized by NNs
- layered mapping: $h = h_L \circ \cdots \circ h_2 \circ h_1$
- each coupling layer transforms part of input
- triangular Jacobian ~> determinant costs $\mathcal{O}(d)$
- replacement for VEGAS

Swikimedia.org File:Diffeomorphism of a square.svg

Müller et al.: SIGGRAPH 2019

Normalizing Flows Gain factors for V + n jets [Gao et al. 2001.10028]

unweighting efficiency				NLO QCD (RS)				
$\langle w angle / w_{ m max}$		n = 0	n = 1	n=2	n=3	n=4	n=0	n=1
$W^+ + n$ jets	Sherpa	$2.8\cdot10^{-1}$	$3.8\cdot 10^{-2}$	$7.5\cdot 10^{-3}$	$1.5\cdot 10^{-3}$	$8.3\cdot 10^{-4}$	$9.5 \cdot 10^{-2}$	$4.5\cdot 10^{-3}$
	NN+NF	$6.1 \cdot 10^{-1}$	$1.2\cdot 10^{-1}$	$1.0\cdot 10^{-2}$	$1.8\cdot 10^{-3}$	$8.9\cdot 10^{-4}$	$1.6\cdot 10^{-1}$	$4.1\cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2	1.1	1.6	0.91
$W^- + n ext{ jets}$	Sherpa	$2.9\cdot10^{-1}$	$4.0\cdot 10^{-2}$	$7.7\cdot 10^{-3}$	$2.0\cdot 10^{-3}$	$9.7\cdot 10^{-4}$	$1.0\cdot 10^{-1}$	$4.5\cdot 10^{-3}$
	NN+NF	$7.0 \cdot 10^{-1}$	$1.5\cdot 10^{-1}$	$1.1\cdot 10^{-2}$	$2.2\cdot 10^{-3}$	$7.9\cdot 10^{-4}$	$1.5\cdot 10^{-1}$	$4.2\cdot 10^{-3}$
	Gain	2.4	3.3	1.4	1.1	0.82	1.5	0.91
Z + n jets	Sherpa	$3.1\cdot10^{-1}$	$3.6\cdot 10^{-2}$	$1.5\cdot 10^{-2}$	$4.7\cdot 10^{-3}$		$1.2\cdot 10^{-1}$	$5.3\cdot 10^{-3}$
	NN+NF	$3.8\cdot10^{-1}$	$1.0\cdot 10^{-1}$	$1.4\cdot 10^{-2}$	$2.4\cdot 10^{-3}$		$1.8\cdot 10^{-3}$	$5.7\cdot 10^{-3}$
	Gain	1.2	2.9	0.91	0.51		1.5	1.1

Nested Sampling Slide by Timo Janßen

Nested Sampling

Meta algorithm

- draw ensemble of live points (uniformly)
- **\triangleright** sort in order of likelihood, \mathcal{L}
- \blacktriangleright replace \mathcal{L}_{min} by sampling uniformly, requiring $\mathcal{L} > \mathcal{L}_{\mathsf{min}}$
- repeat until termination criterion reached
- dead points form representative sample of target distribution

Implementation

- PolyChord (Handley et al., 2015)
- ▶ use slice sampling (R. Neal, 2003) to evolve live points
- \rightarrow many short Markov chains \rightsquigarrow low autocorrelation
- J. Skilling: AIP Conference Proceedings 735, 395 (2004)

Surrogate unweighting

Algorithm [K. Danziger, TJ, S. Schumann, F. Siegert: SciPost Phys. 12, 164 (2022)]

Surrogate unweighting Slide by Timo Janßen

Factorisation-aware matrix element emulation

soft/collinear factorisation properties

$$|\mathcal{M}_{n+1}|$$

Ansatz

 $\langle |\mathcal{M}|^2 \rangle$

kinematic invariant

 \triangleright C_{ijk} : coefficients fit by neural network

D. Maître, H. Truong: JHEP 11 (2021) 066

 $|^2 \rightarrow |\mathcal{M}_n|^2 \otimes \mathbf{V}_{ijk}$

[Catani, Seymour Nucl.Phys. B485 (1997) 291-419]

$$\rangle = \sum_{\{ijk\}} C_{ijk} D_{ijk}$$

► $D_{ijk} = \langle V_{ijk} \rangle / s_{ij}$: spin-averaged Catani-Seymour dipoles divided by

Surrogate unweighting Slide by Timo Janßen

Factorisation-aware matrix element emulation

D. Maître, H. Truong: JHEP 11 (2021) 066

21

35

EWvirt & EWsud

Comparative study in ZZ production

[EB et al. 2111.13453]

- Both schemes capture dominant logs in Sudakov region \bullet
- EWvirt:
 - subleading Born (can be sizable, e.g. in 3-jet production) [Reyer Schönherr Schumann 1902.01763]
 - approx. integrated real emission
 - finite terms in virtual loop
 - not applied to real-emission events
 - no subleading logs from RG
 - requires virtual loop ME
- don't expect perfect agreement, but so far we see K factors consistent within couple percent
- **proposal:** apply EWvirt to lower multis and EWsud to real-emission terms and higher multis, in a single merged sample ("Hybrid")

Collider reach

- Plot taken from a talk by Marek Schönherr
- How far the integrated luminosity takes us into the Sudakov region

improved Z pT modelling by improved shower defaults and better intrinsic kT tune (PRELIMINARY)