Fitting a Deep Generative Hadronization Model

Andrzej Siódmok Jagiellonian University

QCD@LHC 2023, Durham

Andrzej Siódmok

Motivation - Monte Carlo Event Generators (MCEG)

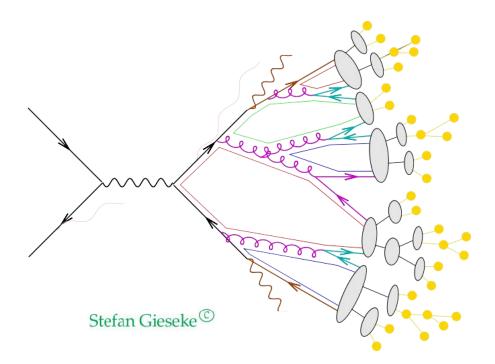
QCD correctly describes strong interactions in each energy range but its complex mathematical structure makes it very difficult to obtain precise predictions (Millennium Prize Problem \$1,000,000)

High energy

- perturbative QCD
- in theory we know what to do
- in practice very difficult

Low energy

- non-perturbative QCD
- we don't know what to do
- phenomenological models (with many free parameters)



[See talks on MC generators by A. Masouminia, E. Bothmann and P. Skands]

Why hadronization?

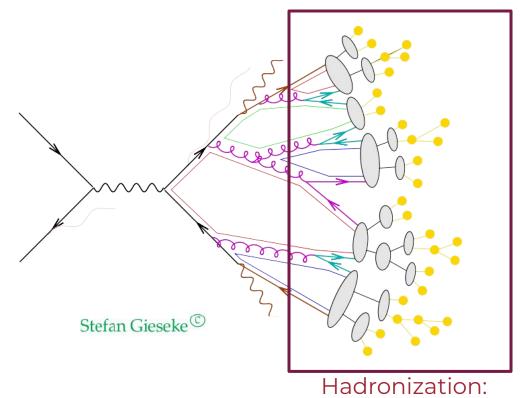
QCD correctly describes strong interactions in each energy range but its complex mathematical structure makes it very difficult to obtain precise predictions (Millennium Prize Problem \$1,000,000)

High energy

- perturbative QCD
- in theory we know what to do
- in practice very difficult

Low energy

- non-perturbative QCD
- we don't know what to do
- phenomenological models (with many free parameters)



one of the least understood elements of MCEG

QCD@LHC 2023, Durham

Andrzej Siódmok

Motivation - Hadronization

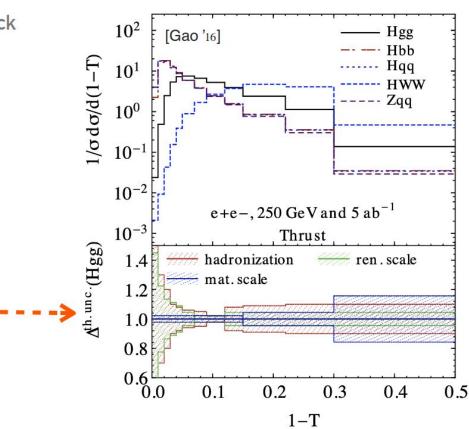
Hadronization:

- → Increased control of perturbative corrections ⇒ more often LHC measurements are limited by non-perturbative components, such as hadronization.
 - W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
 - Extraction of the strong coupling in [M. Johnson, D. Maître, Phys.Rev. D97 (2018) no.5]
 - Top mass [S. Argyropoulos, T. Sjöstrand, JHEP 1411 (2014) 043]

- ...

Pier Moni's talk FCC Physics Workshop 2023

- However, hadronisation remains the main bottleneck
 - e.g. thrust in Higgs decays (MC variation in plot)
- Increase in energy insufficient for suppression ($Q \sim m_{\rm H}$)
- Runs at lower energies are essential for a robust tuning of NP models in MCs
- Also crucial for training of ML algorithms for jet tagging, instrumental in extraction of Higgs couplings



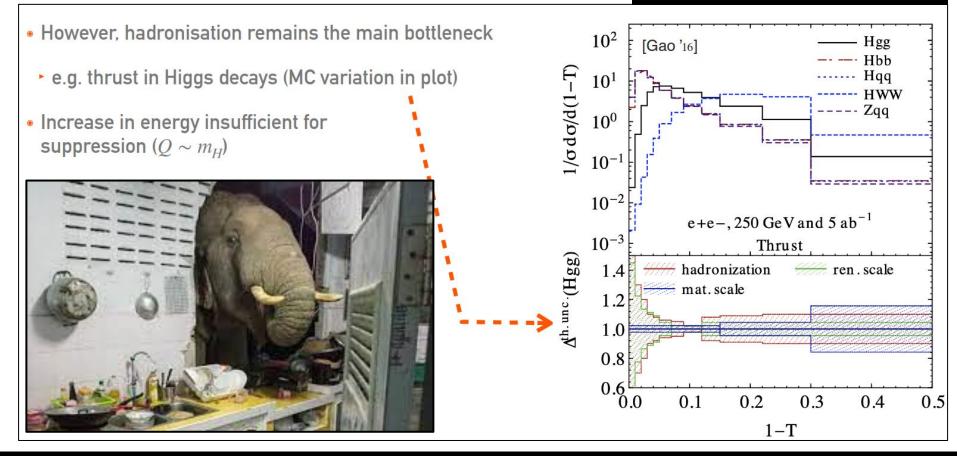
Motivation - Hadronization

Hadronization:

- → Increased control of perturbative corrections ⇒ more often LHC measurements are limited by non-perturbative components, such as hadronization.
 - W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
 - Extraction of the strong coupling in [M. Johnson, D. Maître, Phys.Rev. D97 (2018) no.5]
 - Top mass [S. Argyropoulos, T. Sjöstrand, JHEP 1411 (2014) 043]

- ...

Pier Moni's talk FCC Physics Workshop 2023



Taken from Andrea's Banfi talk

We don't talk about

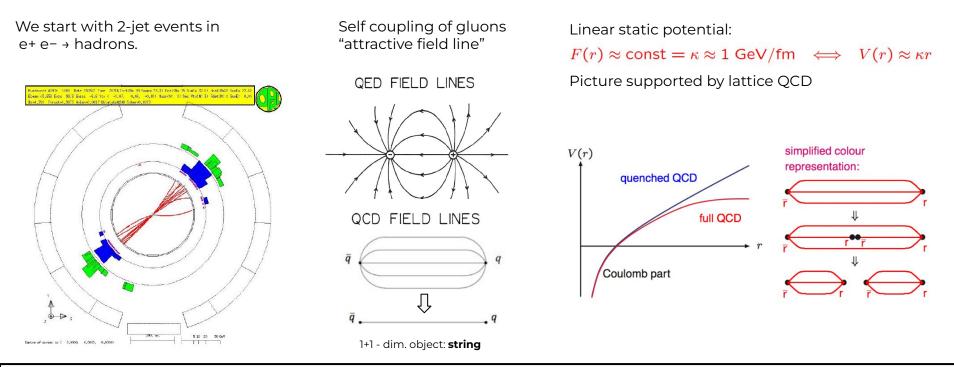
hadronisation

Slide adopted to my talk :)

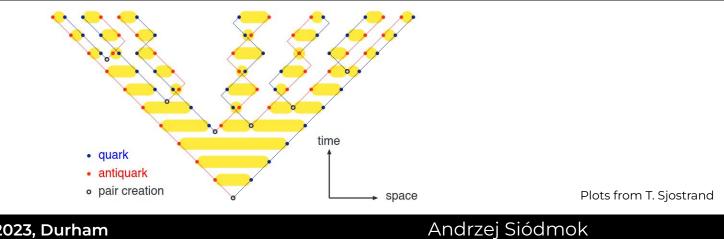
We have to talk about

hadronisation

Originally invented without perturbative physics of parton showers in mind.



Lund string model: like rubber band that is pulled apart and breaks into pieces



String Model in nutshell

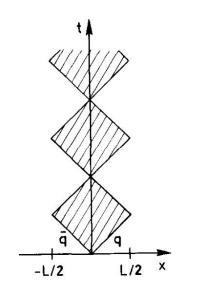
[Andersson, Gustafson, Ingelman, Sjostrand, Phys.Rept.97(1983)31]

String motion

From linear static potential $V(r) \approx \kappa r$ and linearity between space-time and energy-momentum:

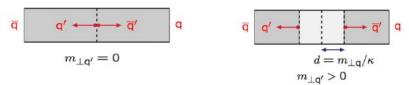
$$\left| \frac{\mathrm{d}E}{\mathrm{d}z} \right| = \left| \frac{\mathrm{d}p_z}{\mathrm{d}z} \right| = \left| \frac{\mathrm{d}E}{\mathrm{d}t} \right| = \left| \frac{\mathrm{d}p_z}{\mathrm{d}t} \right| = \kappa$$

We get a "YoYo" state which we interpret as a meson.



String breakdowns

The quarks obtain a mass and a transverse momentum in the breakup through a tunneling mechanism



with a probability:

$$\mathcal{P} \propto \exp\left(-rac{\pi m_{\perp \mathbf{q}}^2}{\kappa}
ight) = \exp\left(-rac{\pi p_{\perp \mathbf{q}}^2}{\kappa}
ight) \, \exp\left(-rac{\pi m_{\mathbf{q}}^2}{\kappa}
ight)$$

- Suppression of heavy quarks: uu : dd : ss : cc ≈ 1 : 1 : 0.3 : 10⁻¹¹
- Common Gaussian pT spectrum, <pT>~ 0.4 GeV
- Diquark (qq q̄q̄ breakups) ~ antiquark
 ⇒ simple model for baryon production.

Iterative process (left-right symmetry) leads to distribution of momentum fraction taken by each hadron as: $(1 - \alpha)^{\alpha}$ (hm^{2})

$$f(z) \propto \frac{(1-z)^a}{z} \exp\left(-\frac{bm^2}{z}\right)$$

Summary [for a recent progress see P. Skands talk]:

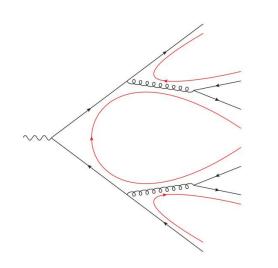
String model has very good energy-momentum picture however it is unpredictive in understanding of hadron mass effects \Rightarrow many parameters, 10-30 depending on how you count.

QCD@LHC 2023, Durham

Andrzej Siódmok

What if we have PS (more perturbative input before hadronization).

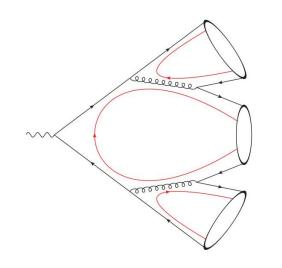
The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:



• QCD provide pre-confinement of colour

What if we have PS (more perturbative input before hadronization).

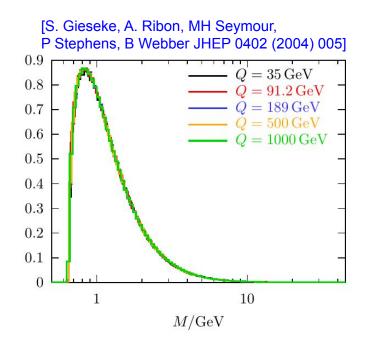
The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:



- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters

What if we have PS (more perturbative input before hadronization).

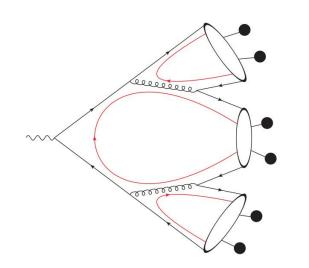
The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:



- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision

What if we have PS (more perturbative input before hadronization).

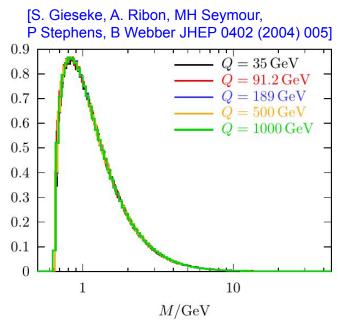
The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:



- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons

What if we have PS (more perturbative input before hadronization).

The philosophy of the model: use information from perturbative QCD as an input for hadronization. QCD **pre-confinement** discovered by Amati & Veneziano [*Phys.Lett.B* 83 (1979) 87-92]:



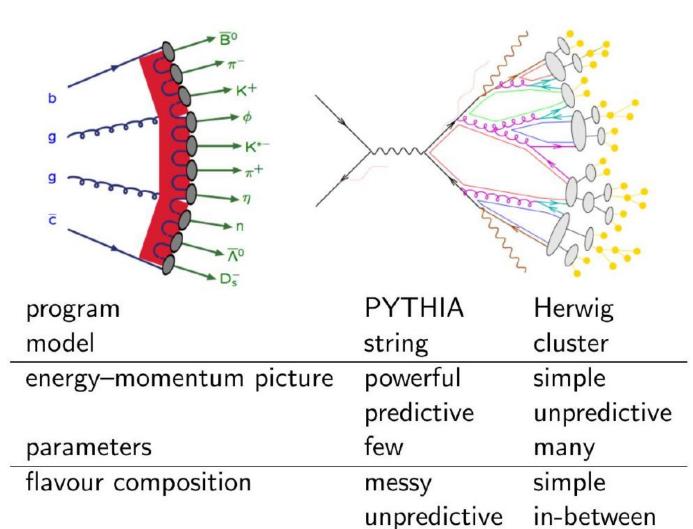
- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons
- Small fraction of clusters too heavy for isotropic two-body decay, heavy cluster decay first into lighter cluster C → CC, or radiate a hadron C → HC, it is rather string-like.
- ~ 15% of primary clusters get split but ~ 50% of hadrons come from them! (see S. Kiebacher talk for some progress)

[For a recent progress see A. Masouminia, S. Kiebacher talks]

QCD@LHC 2023, Durham

Andrzej Siódmok

String vs Cluster model



many

parameters

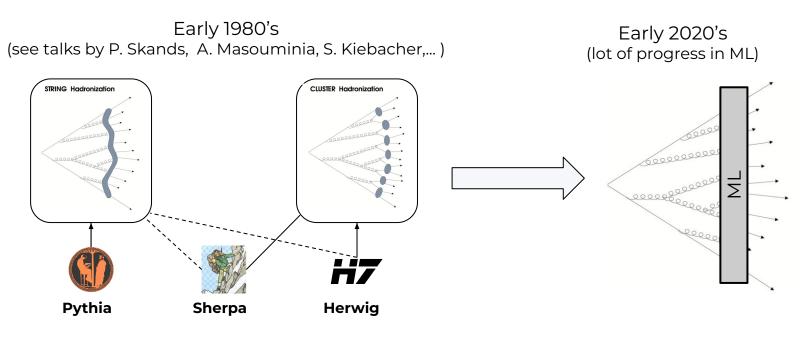
Taken from T. Sjostrand

few

Andrzej Siódmok

Hadronization models

Hadronization:



Idea of using Machine Learning (ML) for hadronization.

Motivation for Machine learning hadronization

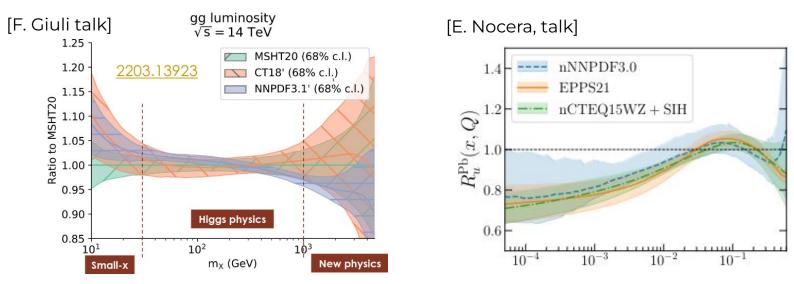
Idea of using Machine Learning (ML) for hadronization.

- Existing hadronization models are highly parameterized functions.
- Hadronization is a fitting problem [Ch. Oppedisano talk]
 - Can ML hadronization be more flexible?
 - Can ML hadronization extract more information from the data?

[can accommodate unbinned and high-dimensional inputs]

NNPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF). Hadronization is closely related to fragmentation functions (FF) which were considered the counterpart of PDFs.



aa?

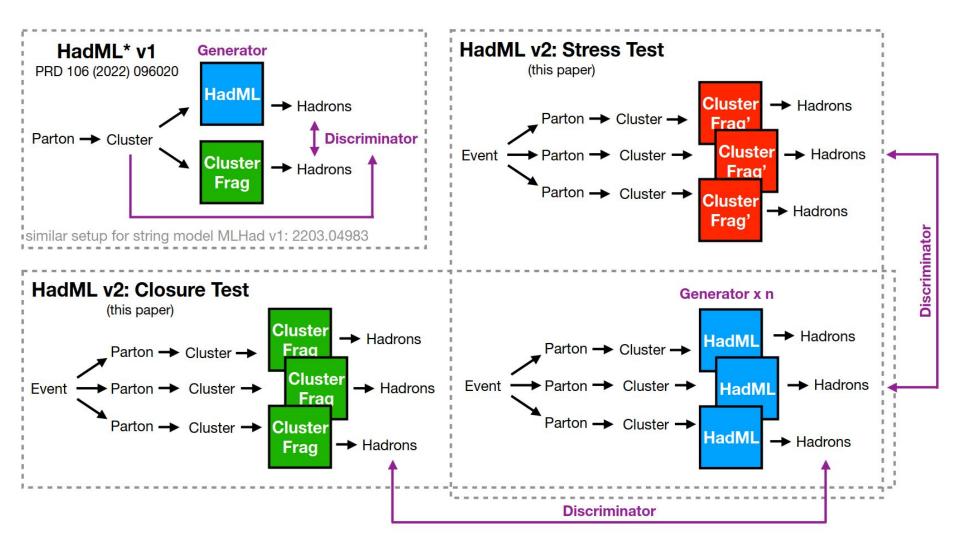
Recent progress: Machine learning hadronization

First steps for ML hadronization:

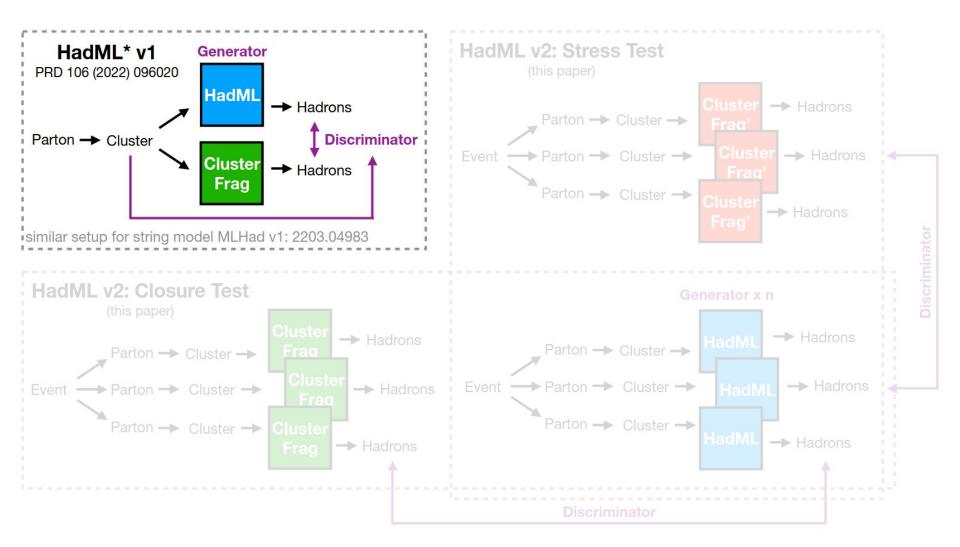
- HADML [A. Ghosh, Xi. Ju, B. Nachman AS, Phys. Rev. D 106 (2022) 9]
- MLhad [P. Ilten, T. Menzo, A. Youssef and J. Zupan, SciPost Phys. 14, 027 (2023)]

	MLhad	HADML
Deep generative model:	Variational Autoencoder	Generative Adversarial Networks
Trained on:	String model	Cluster model
Recent progress:	"Reweighting Monte Carlo Predictions and Automated Fragmentation Variations in Pythia 8"	"Fitting a Deep Generative Hadronization Model"
	[Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan, 2308.13459]	[J. Chan, X. Ju, A. Kania, B. Nachman, V. Sangli and A.S, <u>2305.17169</u>]
	(see P. Skands talk)	

Road map for today



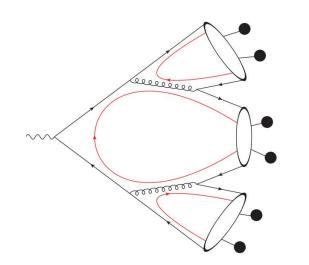
Road map for today



Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD **pre-confinement** discovered by Amati & Veneziano:

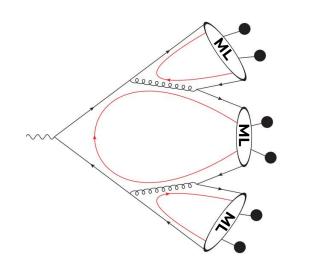


- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons

Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

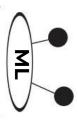
QCD **pre-confinement** discovered by Amati & Veneziano:



- QCD provide pre-confinement of colour
- Colour-singlet pair end up close in phase space and form highly excited hadronic states, the clusters
- Pre-confinement states that the spectra of clusters are independent of the hard process and energy of the collision
- Peaked at low mass (1-10 GeV) typically decay into 2 hadrons

• ML hadronization

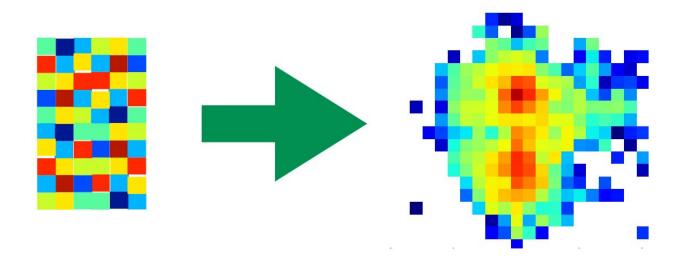
1st step: generate kinematics of a cluster decay:



How?

Use Generative Adversarial Networks (GAN)

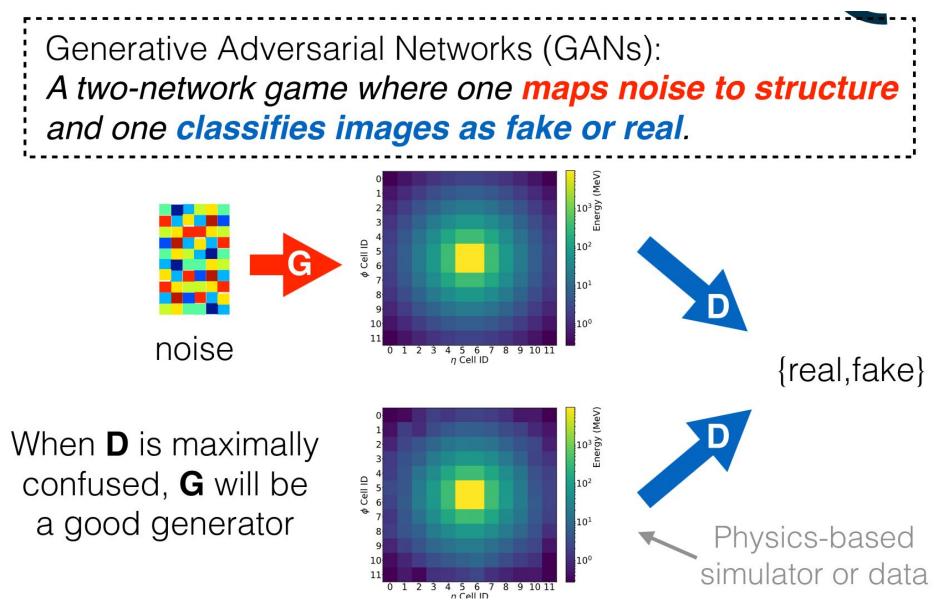
A generator is nothing other than a function that maps random numbers to structure.



Deep generative models: the map is a deep neural network.

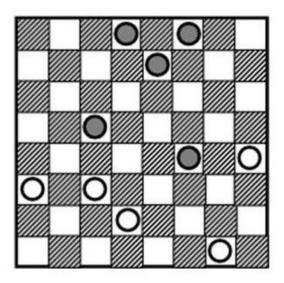
Our tool of choice: GANs

[Goodfellow et al. "Generative adversarial nets". arxiv:1406.2661]



Adversarial Networks

Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.



- He popularized the term **"machine learning"** in 1959.
- The program chose its move based on a **minimax** strategy, meaning it made the move assuming that the opponent was trying to optimize the value of the same function from its point of view.
- He also had it play thousands of **games against itself** as another way of learning.

QCD@LHC 2023, Durham

Andrzej Siódmok

Towards a Deep Learning Model for Hadronization

ML hadronization

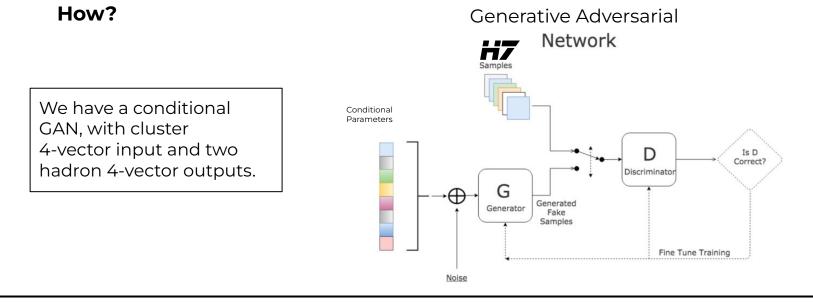
1st step: generate kinematics of a cluster decay to 2 hadrons



Towards a Deep Learning Model for Hadronization

ML hadronization

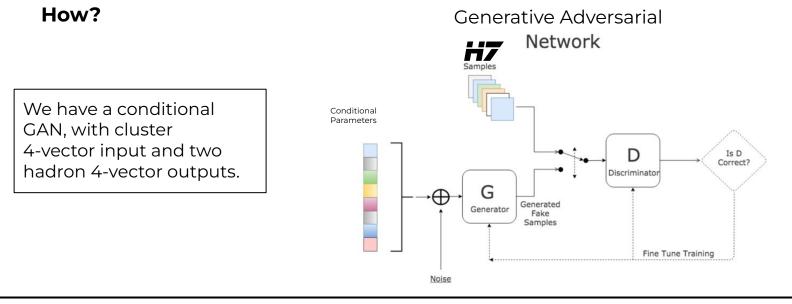
1st step: generate kinematics of a cluster decay to 2 hadrons



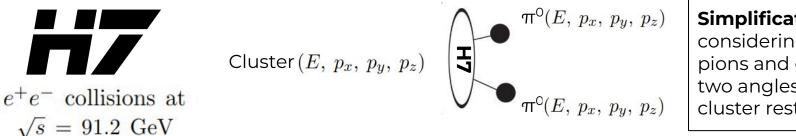
Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons



Training data:



Simplification: considering only pions and generating two angles in the cluster rest frame.

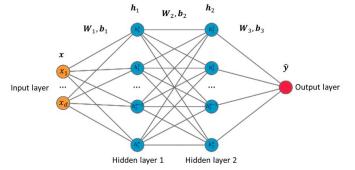
QCD@LHC 2023, Durham

Andrzej Siódmok

Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron

(each a fully connected, hidden size 256, a batch normalization layer, LeakyReLU activation function)



Generator

Input

Cluster (E, p_x, p_y, p_z) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

$$\left. \begin{array}{l} \phi & \cdot & \text{polar angle} \\ \theta & \cdot & \text{azimuthal angle} \end{array} \right\}$$

we reconstruct the four vectors of the two outgoing hadrons

Discriminator

Input

 ϕ and heta labeled as signal (generated by Herwig) or background (generated by Generator)

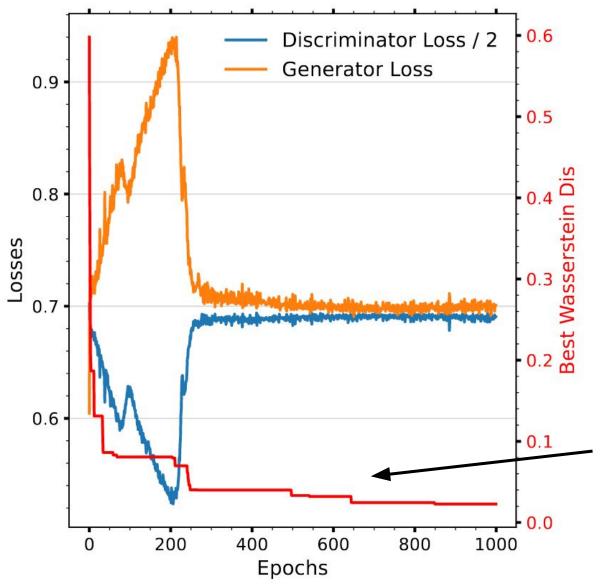
Output

Score that is higher for events from Herwig and lower for events from the Generator

QCD@LHC 2023, Durham

Andrzej Siódmok

Training HADML v1

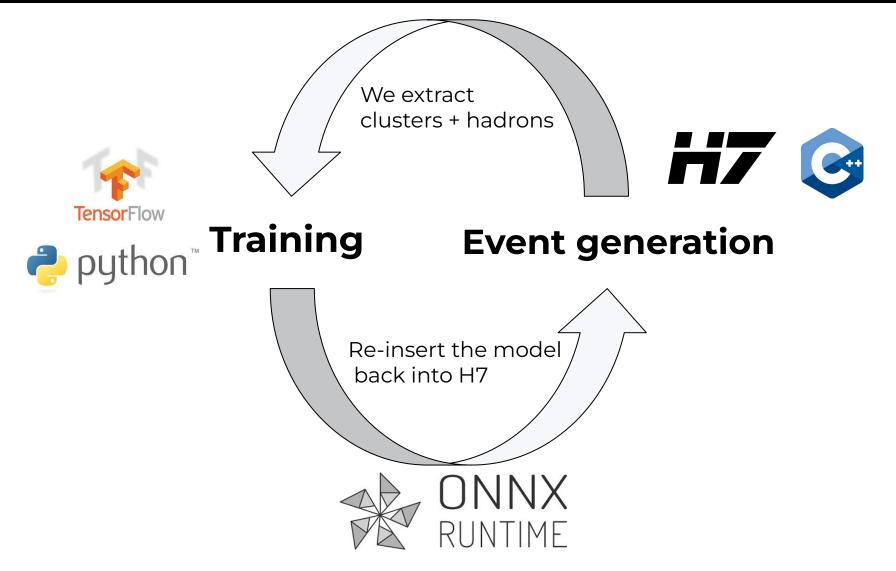


We have a conditional GAN, with cluster 4-vector input and two hadron 4-vector outputs.

<u>Simplification:</u> considering only pions and generating two angles in the cluster rest frame.

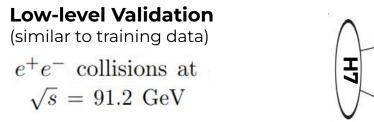
This is a typical learning curve for GAN training

Integration into Herwig

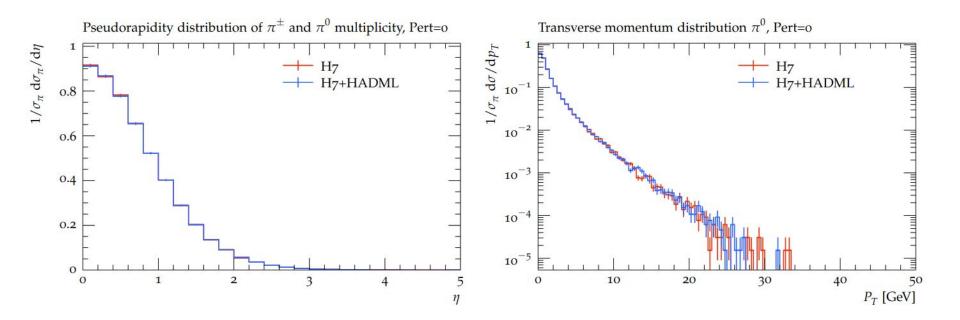


This then allows us to run a full event generator and produce plots

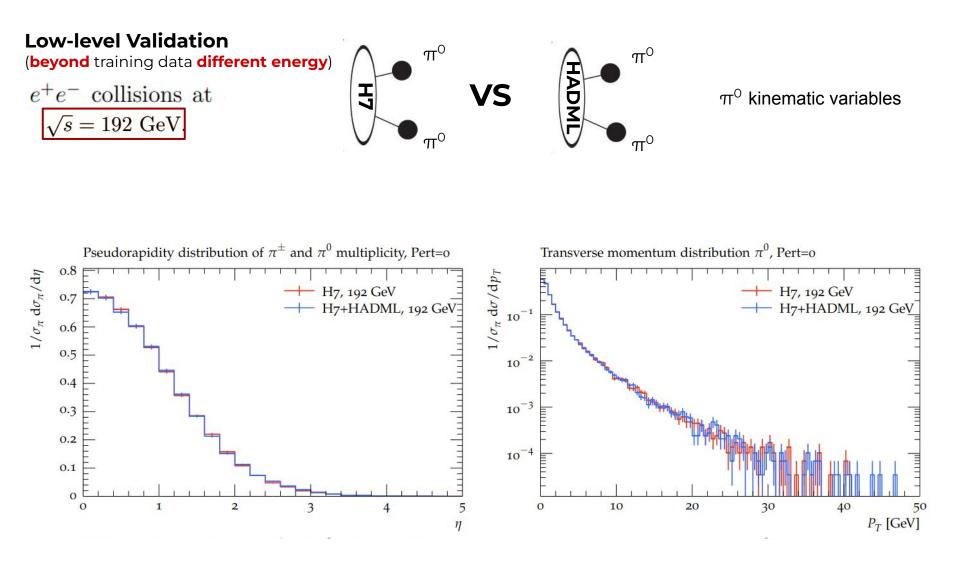
Performance: Pions



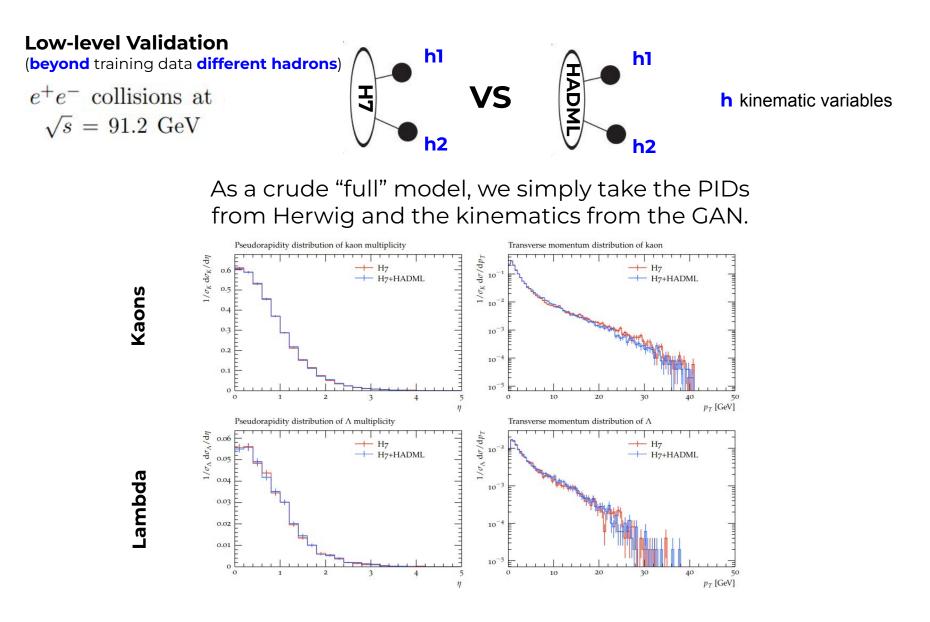
 $\pi^{\scriptscriptstyle O}$ kinematic variables



Performance: Energy of the collisions

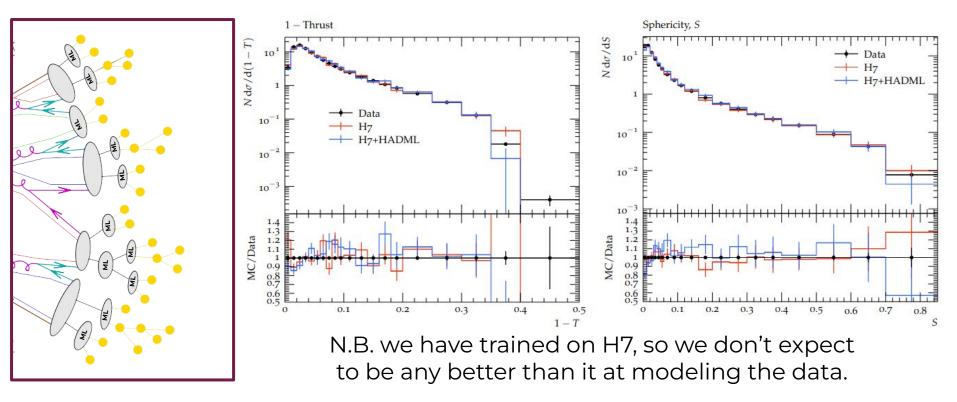


Performance: All Hadrons



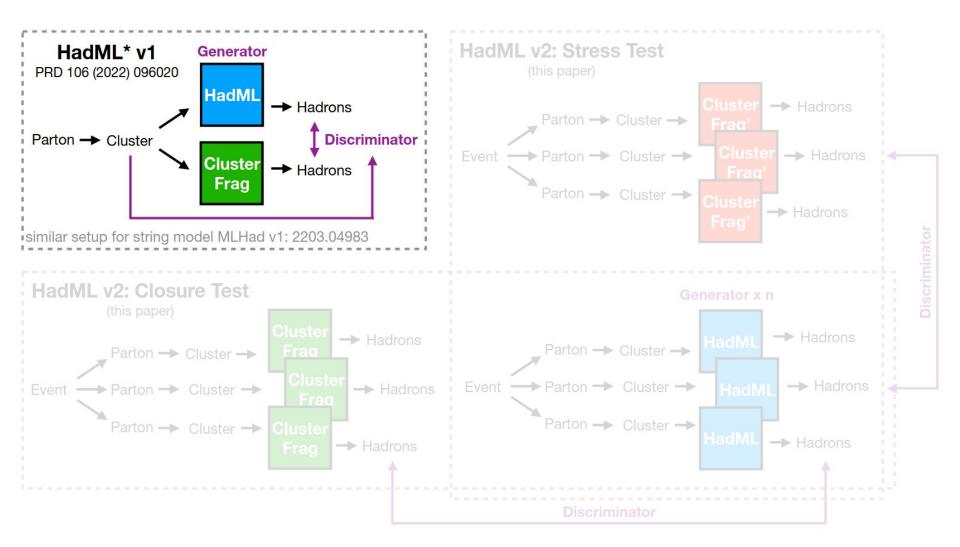
Performance: Data!

With a "full" model, we can compare directly to data!

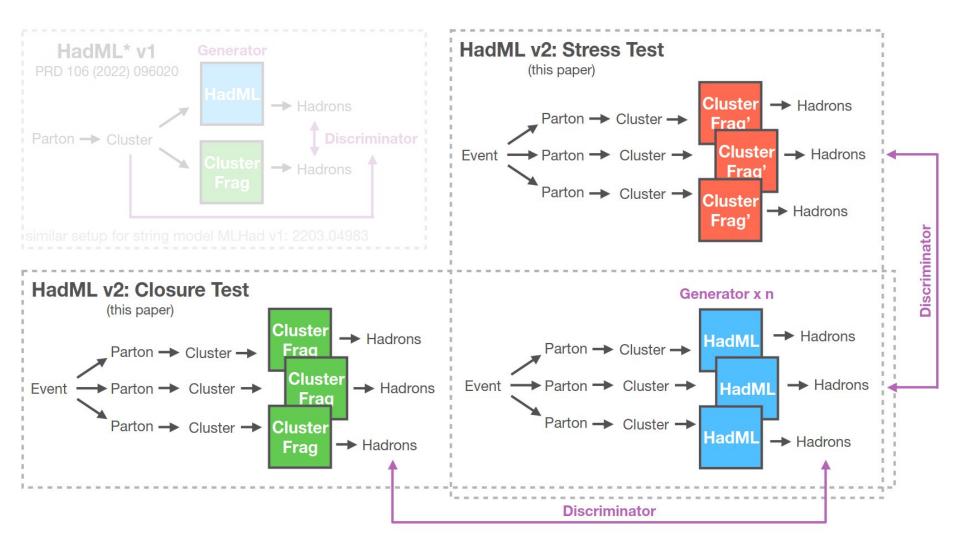


LEP DELPHI Data

Road map for today

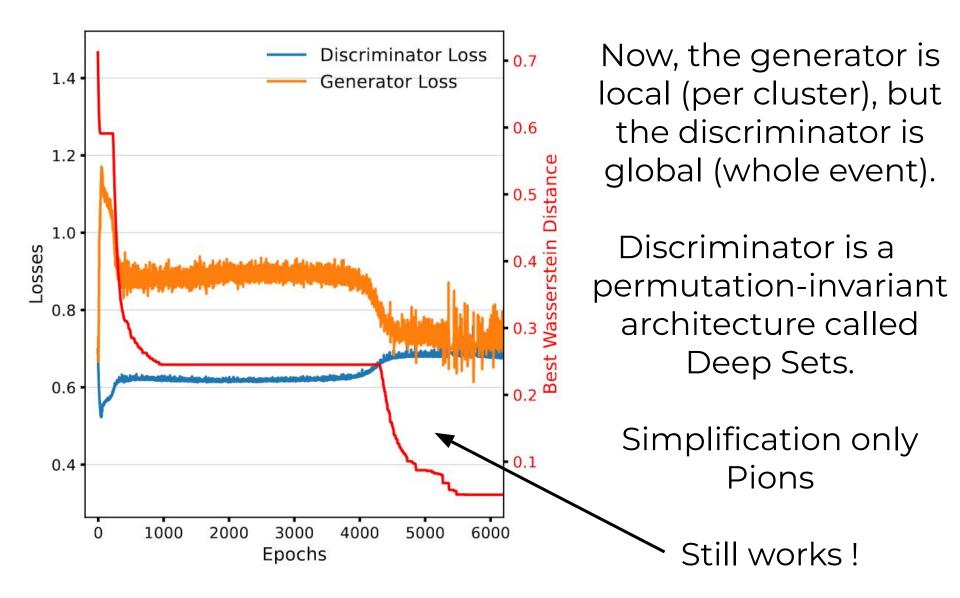


Road map for today

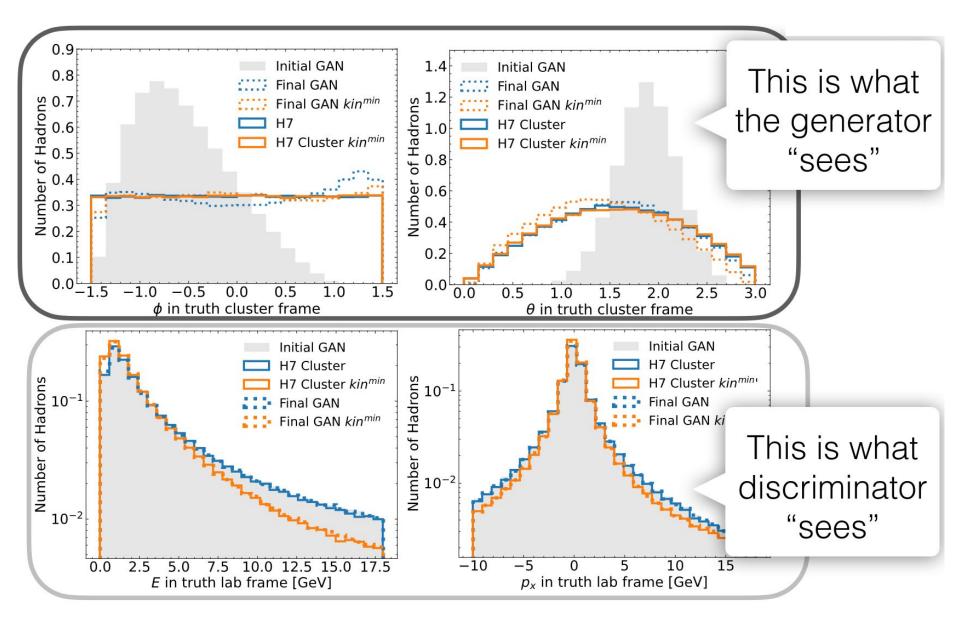


Protocol for fitting a deep generative hadronization model in a realistic data setting, where we only have access to a set of hadrons in data.

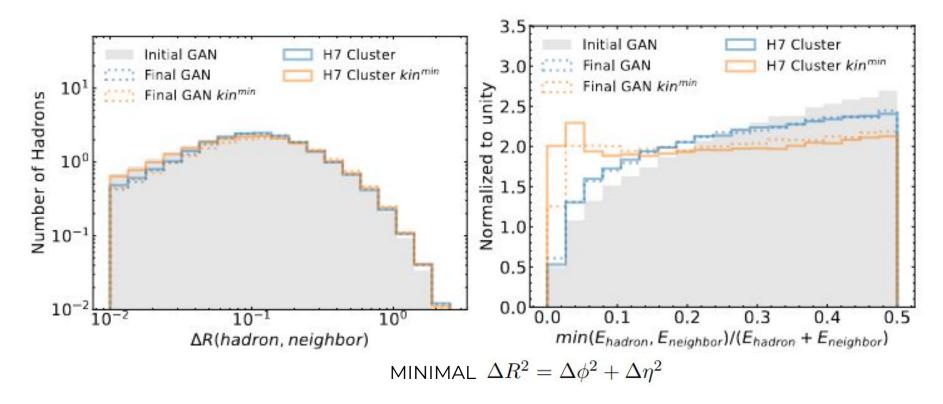
Training HADML v2



Performance



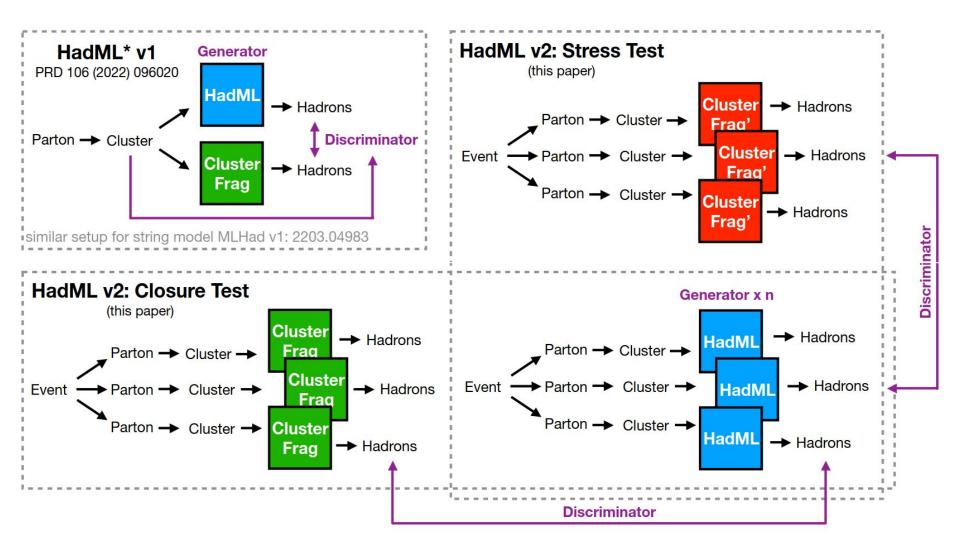
Performance: going beyond inputs and outputs



A key advantage of this fitting protocol over other methods is that it can accommodate unbinned and high-dimensional inputs.

The approach could also be used to fit (without binning) data to a parametric physics model (for example cluster) as well. However, this would require making the cluster model differentiable.

Summary



Outlook

- First ML hadronization models: HADML and MLHAD
- Recent progress:
 - -HADML: "Data fitting protocol"
 - MLHAD: "Reweighting Monte Carlo Predictions and Automated Fragmentation Variations" see P. Skands talk

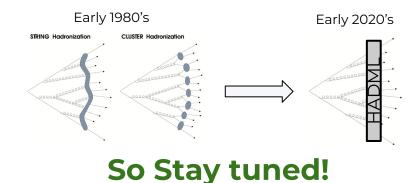
We have made significant progress,

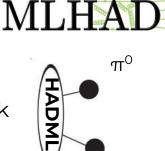
but there are still multiple steps to build and tune a full-fledged hadronization model.

What is next for HADML?

- Number of technical and methodological step needed:
 - → Directly accommodate multiple hadron species with their relative probabilities
 - → Hyperparameter optimization, including the investigation of alternative generative models
 - → More flexible model with a capacity to mimic the cluster or string models as well as go beyond either model.

There is still a multi-year program ahead of us!





π⁰

Andrzej Siódmok

Advertisement

A postdoc in ML/HEP position

If you are interested please contact me: andrzej.siodmok@cern.ch

Discriminator HadML v1 vs v2

HadML v1

The loss function:

$$L = -\sum_{\lambda \sim \text{Herwig}, z \sim p(z)} \left(\log \left(D\left(\tau\left(\lambda\right)\right) \right) + \log \left(1 - D\left(G\left(z,\lambda\right)\right) \right) \right)$$

HadML v2

The discriminator function is modified, we parameterize is as a Deep Sets model

$$D_{E}(x) = F\left(\frac{1}{n}\sum_{i=1}^{n}\Phi\left(h_{i},\omega_{D_{\Phi}}\right),\omega_{F}\right) \longleftarrow \begin{array}{c} \text{invariant under} \\ \text{permutations of} \\ \text{hadrons} \end{array}$$

 Φ embeds a set of hadrons into a fixed-length latent space and F acts on the average

$$L = -\sum_{x \sim \text{data}} \log \left(D_E(x) \right) - \sum_{\{G\} \sim \text{Herwig}, z \sim p(z)} \log \left(1 - D_E\left(\{G(z,\lambda)\} \right) \right)$$

The approach could also be used to fit (without binning) data to a parametric physics model (for example cluster) as well. However, this would require making the cluster model differentiable.

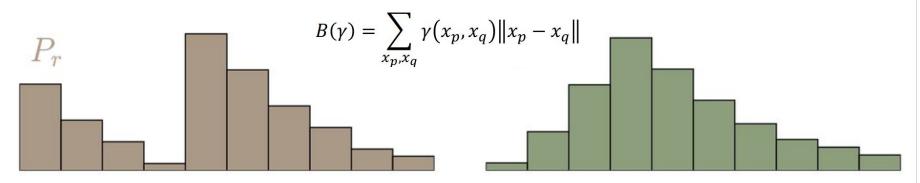
Wasserstein distance

The Wasserstein distance

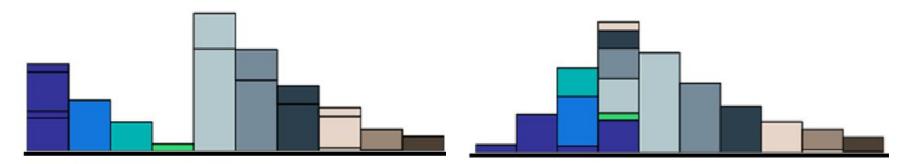
- For discrete probability distributions, the Wasserstein distance is called the earth mover's distance (EMD):
- EMD is the minimal total amount of work it takes to transform one heap into the other.

$$W(P,Q) = \min_{\gamma \in \Pi} B(\gamma)$$

• Work is defined as the amount of earth in a chunk times the distance it was moved.



Best "moving plans" of this example



Minimax Loss

In the paper that introduced GANs, the generator tries to minimize the following function while the discriminator tries to maximize it:

$$E_x[log(D(x))] + E_z[log(1 - D(G(z)))]$$

In this function:

- D(x) is the discriminator's estimate of the probability that real data instance x is real.
- Ex is the expected value over all real data instances.
- G(z) is the generator's output when given noise z.
- D(G(z)) is the discriminator's estimate of the probability that a fake instance is real.
- E_z is the expected value over all random inputs to the generator (in effect, the expected value over all generated fake instances G(z)).
- The formula derives from the cross-entropy between the real and generated distributions.

The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is equivalent to minimizing log(1 - D(G(z))).