Elimination of negative weights in MC event samples

Andreas Maier

6 September 2023

J. R. Andersen, A. Maier, D. Maître arXiv:2303.15246 J. R. Andersen, A. Maier Eur.Phys.J.C 82 (2022) 5, 433 J. R. Andersen, C. Gütschow, A. Maier, S. Prestel Eur.Phys.J.C 80 (2020) 11, 1007

What are event weights?

Leading-order cross sections

Example: prediction for dijet production cross section

1 Relate to partonic cross section

$$\sigma_{2\, ext{jets}} \stackrel{ ext{LO}}{=} \sigma_{2\, ext{partons}}$$

2 Simulate partonic scattering events with weights w_i

- Computed from scattering matrix elements + PDF + phase space factor
- Weights proportional to probability: $w_i > 0$
- Sum of weights gives the cross section:

$$\sigma_{2 \text{ partons}} = \sum_{i} w_{i}$$

What are negative event weights?

Next-to-leading-order cross sections

Example: prediction for dijet production cross section

1 Relate to partonic cross section

$$\sigma_{2 \text{ jets}} \stackrel{\text{NLO}}{=} \sigma_{2 \text{ partons}} + \sigma_{3 \text{ partons}}$$

2 Simulate partonic scattering events

$$\sigma_2 \text{ partons} = \sum_i w_i$$

 $\sigma_3 \text{ partons} = \sum_j w_j$

 $\sigma_{2 \text{ partons}}$, $\sigma_{3 \text{ partons}}$ not separately observable:

Events weights can be either positive or negative

Number of required events to reach given accuracy:

Number of required events to reach given accuracy:

[BLACKHAT + SHERPA 2013 + 2017]

Event simulation chain

Event simulation chain

Event simulation chain

[Andersen, Gütschow, Maier, Prestel 2020]

Observables

Events in 2D projection of phase space:

Observables

Events in 2D projection of phase space:

Observables \mathcal{O} :

- Select region \mathcal{D} in phase space \geq experimental resolution
- $\mathcal{O} = \sum_{i \in \mathcal{D}} w_i \ge 0$ with sufficient statistics
- e.g. histogram bins

Redistribute weights without affecting any observable

1 Choose seed event with w < 0 for cell C

Cell resampling: Repeatedly

- **1** Choose seed event with w < 0 for cell C
- 2 Iteratively add nearest event to cell until $\sum_{i \in C} w_i \ge 0$

Cell resampling:

Repeatedly

- **1** Choose seed event with w < 0 for cell C
- **2** Iteratively add nearest event to cell until $\sum_{i \in C} w_i \ge 0$

3 Redistribute weights:
$$w_i \to w = \frac{\sum_{j \in C} w_j}{\# \text{ events in } C} \ge 0$$

Cell resampling:

Repeatedly

- **1** Choose seed event with w < 0 for cell C
- **2** Iteratively add nearest event to cell until $\sum_{i \in C} w_i \ge 0$

3 Redistribute weights: $w_i \rightarrow w = \frac{\sum_{j \in C} w_j}{\# \text{ events in } C} \ge 0$ Sufficient statistics: cell size \ll experimental resolution Otherwise: limit cell size, accept w < 0

Cell resampling:

Repeatedly

- **1** Choose seed event with w < 0 for cell C
- 2 Iteratively add nearest event to cell until $\sum_{i \in C} w_i \ge 0$ What does "nearest" mean?

3 Redistribute weights: $w_i \rightarrow w = \frac{\sum_{j \in C} w_j}{\# \text{ events in } C} \ge 0$ Sufficient statistics: cell size \ll experimental resolution Otherwise: limit cell size, accept w < 0

Example

Example

Example

 $d(e, e') = d(s_j, s'_j) + d(s_\gamma, s'_\gamma)$

Example

$$d(e, e') = d(s_j, s'_j) + d(s_\gamma, s'_\gamma)$$

= $d(s_j, s'_j) + d(p_\gamma, q_\gamma)$

Example

 $d(e, e') = d(s_j, s'_j) + d(s_{\gamma}, s'_{\gamma})$ = min[d(p_{j1}, q_{j1}) + d(p_{j2}, q_{j2}), d(p_{j1}, q_{j2}) + d(p_{j2}, q_{j1})] + d(p_{\gamma}, q_{\gamma})

Example

$$d(e, e') = d(s_j, s'_j) + d(s_{\gamma}, s'_{\gamma})$$

= $d(p_{j1}, q_{j1}) + d(p_{j2}, q_{j2}) + d(p_{\gamma}, q_{\gamma})$

Example

$$d(e, e') = d(s_j, s'_j) + d(s_{\gamma}, s'_{\gamma})$$

$$\stackrel{\tau=0}{=} |\vec{p}_{j1} - \vec{q}_{j1}| + |\vec{p}_{j2} - \vec{q}_{j2}| + |\vec{p}_{\gamma} - \vec{q}_{\gamma}|$$

Concrete implementation jets electrons 1 Collect all infrared-safe objects in event e into sets $\{s_1, s_2, \dots, s_T\}$

$$d(e, e') = \sum_{t=1}^{T} d(s_t, s'_t)$$

Concrete implementation 1 Collect all infrared-safe objects in event e into sets $\{s_1, s_2, \dots, s_T\}$

$$d(e, e') = \sum_{t=1}^{T} d(s_t, s'_t)$$

jets electrons

2 Objects in s_t have four-momenta (p_1, \ldots, p_P) Objects in s'_t have four-momenta $(q_1, \ldots, q_Q, 0, \ldots, 0)$

$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

Concrete implementation 1 Collect all infrared-safe objects in event e into sets $\{s_1, s_2, \dots, s_T\}$

$$d(e, e') = \sum_{t=1}^{T} d(s_t, s'_t)$$

jets electrons

2 Objects in s_t have four-momenta (p_1 , ..., p_P) Objects in s'_t have four-momenta (q_1 , ..., q_Q , 0, ..., 0)

$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

Concrete implementation

1 Collect all infrared-safe objects in event e into sets $\{s_1, s_2, \ldots, s_T\}$

$$d(e, e') = \sum_{t=1}^{T} d(s_t, s'_t)$$

jets

electrons

2 Objects in s_t have four-momenta (p_1, \ldots, p_P) Objects in s'_t have four-momenta $(q_1, \ldots, q_Q, 0, \ldots, 0)$

$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

Efficient minimisation: Hungarian algorithm [Jacobi 1890]

Concrete implementation

1 Collect all infrared-safe objects in event e into sets $\{s_1, s_2, \ldots, s_T\}$

$$d(e, e') = \sum_{t=1}^{T} d(s_t, s'_t)$$

jets electrons

2 Objects in s_t have four-momenta (p_1, \ldots, p_P) Objects in s'_t have four-momenta $(q_1, \ldots, q_Q, 0, \ldots, 0)$

$$d(s_t, s_t') = \min_{\sigma \in S_P} \sum_{i=1}^P d_t(p_i, q_{\sigma(i)})$$

Choose distance function between particle momenta
 Here: independent of particle type t, do not consider internal structure

$$d_t(p,q)=\sqrt{(ec{p}-ec{q})^2+ au^2(p_\perp-q_\perp)^2}$$
 au : tunable parameter

Results

Cell resampling drastically reduces the number of required events

Results

Analysis from ATLAS, Eur. Phys. J. C77 (2017) 361:

Cell resampling preserves predictions

Unweighting for Z + jet

original: 8.21×10^8 events unweighted: 320 events resampled + unweighted: 11574 events resampled + unweighted (small sample): 320 events

Summary

- Negative event weights lead to slow statistical convergence
- Idea: remove negative weights by smearing over small phase space regions
 - Potential to reduce the number of required events by orders of magnitude
 - Preserves predictions of observables
 - Agnostic with respect to process and observables
 - Automatic improvement with increasing statistics
 - Computationally efficient: ~ 55 CPU hours for one billion events (W + 5 jets)

Summary

- Negative event weights lead to slow statistical convergence
- Idea: remove negative weights by smearing over small phase space regions
 - Potential to reduce the number of required events by orders of magnitude
 - Preserves predictions of observables
 - Agnostic with respect to process and observables
 - Automatic improvement with increasing statistics
 - Computationally efficient: ~ 55 CPU hours for one billion events (W + 5 jets)

Ongoing work:

- Application to parton showered samples \checkmark
- IRC safety with electroweak corrections
- Systematic estimate of uncertainties
- Integrate into existing workflows
- Guide Monte Carlo event generation?

[Andersen, Cueto, Maier, Jones]

[Andersen, Maier, Schönherr]

[Andersen, Maier, Maître, Schönherr]

Backup

Need distance function d(e, e') between events e, e'

- Essential: d(e, e') small $\Rightarrow e, e'$ look similar in detector or differ only in properties the event generator can't predict
- Desirable: d(e, e') large $\Rightarrow e, e'$ look different in detector

Need distance function d(e, e') between events e, e'

- Essential: d(e, e') small $\Rightarrow e, e'$ look similar in detector or differ only in properties the event generator can't predict
- Desirable: d(e, e') large $\Rightarrow e, e'$ look different in detector

Example: infrared safety

- d(e,e') unaffected by collinear splittings with $\Theta
 ightarrow 0$
- d(e, e') unaffected by soft particles with $p \rightarrow 0$
- \Rightarrow define distance in terms of infrared-safe physics objects, e.g. jets

Here: Example for fixed-order (QCD) event generator

Event samples

[BLACKHAT 2013 + 2017]

Sample	Process	Centre-of-mass energy	# events
Z1	$ ho ho ightarrow (Z ightarrow e^+e^-) + { m jet}$	13 TeV	$8.21 imes10^8$
Z2	$ ho p ho ightarrow (Z ightarrow e^+ e^-) + 2$ jets	13 TeV	$5.30 imes10^8$
Z3	$ ho ho ightarrow (Z ightarrow e^+ e^-) + 3$ jets	13 TeV	$1.65 imes10^9$
W5	$ ho ho ightarrow (W^- ightarrow e^- u_e)+5$ jets	7 TeV	$1.17 imes10^9$

Resampling for W + 5 jets

Nearest-neighbour search

