A Logarithmically Accurate Resummation In C++

QCD@LHC 2023, 4 September 2023
[arXiv:2208.06057]

Daniel Reichelt, work in collaboration with Florian Herren, Stefan Höche, Frank Krauss and Marek Schönherr

colliders for theorists

- Event simulation factorised into
- Hard Process
- Parton Shower
- Underlying event
- Hadronisation
- QED radiation
- Hadron Decays

A Logarithmically Accurate Resummation In C++

- Event simulation factorised into

This Talk:
Why?

- parton showers resum large logs \sim NLL, but open questions on actual accuracy
- starting work towards NNLL/NLO evolution \rightarrow probably better resolve this first
See Talk by Gavin
Salam this
morning
recent formal discussion \rightarrow current dipole showers need reworking
[Dasgupta,Dreyer,Hamilton,Monni,Salam '18]

parton showers - Cliff notes version

- no-emission probability (sudakov factor)
- splitting kernels $P(z)$ captures soft and

$$
\sim \exp \left[-\int_{t_{0}}^{t_{1}} \frac{d k_{t}}{k_{t}} d z \frac{\alpha_{S}}{2 \pi} P(z)\right]
$$ collinear limits of matrix elements

- fill phase space ordered in evolution variable $\left(k_{t}, \theta, q^{2}, \ldots\right) \Rightarrow$ here k_{t} ordered shower
- generate new final state after emission according to recoil scheme

splitting of Eikonal

Starting point: eikonal

$$
\frac{p_{i} p_{k}}{\left(p_{i} p_{j}\right)\left(p_{j} p_{k}\right)}=\frac{1}{E_{j}^{2}} \frac{1-\cos \theta_{i k}}{\left(1-\cos \theta_{i j}\right)\left(1-\cos \theta_{j k}\right)} \equiv \frac{W_{i k, j}}{E_{j}^{2}}
$$

naive implementation leads to soft double counting need to split into $i j$ and $k j$ collinear terms
[Marchesini, Webber '88]
Option 1:
$W_{i k, j}=\tilde{W}_{i k, j}^{i}+\tilde{W}_{k i, j}^{k}, \quad$ where

$$
\tilde{W}_{i k, j}^{i}=\frac{1}{2}\left(\frac{1-\cos \theta_{i k}}{\left(1-\cos \theta_{i j}\right)\left(1-\cos \theta_{j k}\right)}+\frac{1}{1-\cos \theta_{i j}}-\frac{1}{1-\cos \theta_{j k}}\right)
$$

- e.g. Angular ordered shower, downside: problems with NGLs

Option 2: follow [Catani, Seymour '97]

$$
W_{i k, j}=\bar{W}_{i k, j}^{i}+\bar{W}_{k i, j}^{k}, \quad \text { where } \quad \bar{W}_{i k, j}^{i}=\frac{1-\cos \theta_{i k}}{\left(1-\cos \theta_{i j}\right)\left(2-\cos \theta_{i j}-\cos \theta_{j k}\right)}
$$

- full phase space coverage, splitting functions remain positive definite

Note related ideas in [Forshaw, Holguin, Plätzer '20]

kinematics - global recoil scheme

- Before splitting:

- After splitting:

$$
p_{k}=\tilde{p}_{k}
$$

effect of recoil on accuracy - multiple emissions

- QCD coherence \rightarrow factorised emissions
- observables dependece correlated \rightarrow how to extract NLL without additional information?
- method from [Banfi, Salam, Zanderighi '05]: need explicit soft-collinear limit*:
$k_{t}^{\rho}=k_{t} \rho$
$\eta^{\rho}=\eta-\xi \ln \rho$

$$
\xi=\frac{\eta}{\eta_{\max }}
$$

and assume
$V\left(k_{i}^{\rho}\right)=\rho V\left(k_{i}\right)$
\rightarrow numerically evaluate integrals in this limit

effect of recoil on accuracy

- question: do recoil effects indeed vanish in soft limit (i.e. $\rho \rightarrow 0$)?*

$$
\begin{aligned}
p_{i} & =z \tilde{p}_{i j}+(1-z) y \tilde{p}_{k}+k_{\perp} \\
p_{j} & =(1-z) \tilde{p}_{i j}+z y \tilde{p}_{k}-k_{\perp} \\
p_{k} & =(1-y) \tilde{p}_{k} .
\end{aligned}
$$

See Talk by Gavin
Salam this morning

- consider situation where we first emit $\tilde{p}_{i j}$ from p_{a}, p_{b}, then emit p_{j}, $\tilde{p}_{i j} \rightarrow p_{i}, p_{j}$
- transverse momentum of p_{i} will be

$$
\sim k_{t}^{i j}+k_{t}^{j}
$$

$$
\Rightarrow \frac{\Delta k_{t}^{i j}}{k_{t}^{i j}} \rightarrow \frac{\rho k_{t}^{j}}{\rho k_{t}^{i j}}=\mathcal{O}(1)
$$

analytic proof of accuracy

$$
\Lambda_{\nu}^{\mu}(K, \tilde{K})=g_{\nu}^{\mu}+\tilde{K}^{\mu} A_{\nu}+\overbrace{X^{\mu} B_{\nu}} \text { vanishes in soft limit }
$$

work out $\rho \rightarrow 0$ limit: $\quad A^{\nu} \xrightarrow{\rho \rightarrow 0} 2 \frac{\tilde{K} X}{\tilde{K}^{2}} \frac{\tilde{K}^{\nu}}{\tilde{K}^{2}}-\frac{X^{\nu}}{\tilde{K}^{2}}, \quad$ and $\quad B^{\nu} \xrightarrow{\rho \rightarrow 0} \frac{\tilde{K}^{\nu}}{\tilde{K}^{2}}$
apply to soft momentum p_{l} :

$$
\frac{\Delta p_{l}^{0,3}}{p_{l}^{0,3}} \sim \rho^{1-\max \left(\xi_{i}, \xi_{j}\right)}
$$

$$
\frac{\Delta p_{l}^{1,2}}{p_{l}^{1,2}} \sim \rho^{\left(1-\xi_{l}\right)\left(\max \left(\xi_{i} \xi_{j}\right)-\xi_{l}\right)}
$$

compare to $\frac{\Delta k_{t}}{k_{t}} \sim \mathcal{O}(1)$ from local dipole scheme

numerical validation I

- Limit $\alpha_{s} \rightarrow 0$ with $\lambda=\alpha_{s} L=$ const. of

$$
\begin{aligned}
\frac{\Sigma^{\text {Shower }}}{\Sigma^{\mathrm{NLL}}} \sim & \exp \left(f_{\text {Shower }}^{L L}-L g_{1}\left(\alpha_{s}^{n} L^{n}\right)\right) \\
& \times \exp \left(f_{\text {Shower }}^{N L L}-g_{2}\left(\alpha_{s}^{n} L^{n}\right)\right) \\
& \times \exp \left(\mathcal{O}\left(\alpha_{s}^{n+1} L^{n}\right)\right) \\
& \rightarrow 1 \quad \text { if shower reproduces } \\
& \text { LL, NLL logs }
\end{aligned}
$$

- Observable: jet resolution y_{23} in Cambridge jet measure, $\mathscr{F}=1 \rightarrow$ only largest emission matters, check that additional shower emissions vanish

numerical validation II

- total broadening $B_{T}=B_{L}+B_{R}$
- scaling k_{t} like, similar to y_{23}
- but non-trivial \mathscr{F} function

- thrust $\tau=1-t$
- scaling like virtuality $k_{t} e^{-\eta}$
- standard function

$$
\mathscr{F}=\frac{\exp \left(-\gamma_{E} R\right)}{\Gamma\left(1+R^{\prime}\right)}
$$

- no evidence for NLL violation even for standard showers

numerical validation III

pheno, details and b fragmentation

- first caveat: no quark masses implemented yet
- problem for cluster hadronisation \rightarrow use Lund model via Pythia
- + need flavour threshold for $g \rightarrow b \bar{b} / g \rightarrow c \bar{c}$ splittings
- Dire parton shower as implemented in Sherpa as reference, Lund model
b quark fragmentation function $f\left(x_{B}^{\text {weak }}\right)$
 tuned for Alaric $\sigma=0.3 \mathrm{GeV}, a=0.4, b=0.36 \mathrm{GeV}^{-2}$ and for Dire $\quad \sigma=0.3 \mathrm{GeV}, a=0.4, b=0.46 \mathrm{GeV}^{-2}$

$$
x_{B} \sim \frac{E_{B-\text { Hadron }}}{E_{\text {tot. }} / 2}
$$

pheno, details and b fragmentation

b quark fragmentation function $f\left(x_{B}^{\text {weak }}\right)$

Side Note:

- full mass depenedent splitting functions implemented since then [Assi, Höche '23],

$$
x_{B} \sim \frac{E_{B-\text { Hadron }}}{E_{\text {tot. }} / 2}
$$

pheno, LEP observables

Thrust:

- Note this is T, not 1-T: soft physics is to the right
- Note there is no matching, relevant for small T

Total Broadening:

- soft physics is left hand side
- some deviations from data, but similar to Dire

pheno, LEP observables

- Durham resolution scales $y_{n, n+1} \sim k_{t}^{2} / Q^{2}$
- higher Born multiplicities \rightarrow sensitivity to multiple emissions increased
- again, note no matching/merging involved

Alaric initial state shower

- Formalism presented in [Herren, Höche, Krauss, DR, Schönherr '22] general and applicable to initial state evolution
- practical considerations:
- precise definition of evolution variable
- PDFs, clear in principle, but more choices to make
- distribution of recoil (i.e. definition of \tilde{K})

Alaric initial state shower

- Formalism presented in [Herren, Höche, Krauss, DR, Schönherr '22] general and applicable to initial state evolution
- practical considerations:
- precise definition of evolution variable/scales
- PDFs, clear in principle, but more choices to make
- distribution of recoil (i.e. definition of \tilde{K})
in principle stay k_{t} ordered:

$$
t_{F S}=v z(1-z) 2 \tilde{K} \tilde{p}_{i}
$$

$$
t_{I S}=v \frac{(1-z)}{z} 2 \tilde{K} \tilde{p}_{i}
$$

scale in collinear (SL) evolution:

- choice between k_{t}^{2} vs. virtuality

choice between k_{t}^{2} vs. virtuality

scale in collinear (SL) evolution:

- choice between k_{t}^{2} vs. virtuality
- little to no effect in p_{T}^{Z} spectrum

Alaric initial state shower

- Formalism presented in [Herren, Höche, Krauss, DR, Schönherr '22] general and applicable to initial state evolution
- practical considerations:
- precise definition of evolution variable/scales
- PDFs, clear in principle, but more choices to make
- distribution of recoil (i.e. definition of \tilde{K})

PDF choice:

- initial studies made using CT14nnlo
- use virtuality as shower scale

Alaric initial state shower

- Formalism presented in [Herren, Höche, Krauss, DR, Schönherr '22] general and applicable to initial state evolution
- practical considerations:
- precise definition of evolution variable/scales
- PDFs, clear in principle, but more choices to make
- distribution of recoil (i.e. definition of \tilde{K})

Alaric IS - choice of \tilde{K}

- effect of recoil (i.e. Lorentz transformation) vanishes for soft particles \rightarrow in limit, should not matter if

$$
\tilde{K}=\Sigma=\sum_{\text {FS }} p_{i} \quad \text { or }
$$

$$
\tilde{K}=p_{V}=p_{Z}
$$

- in practice shift $\sim 10 \%$

Alaric IS pheno

CMS, $13 \mathrm{TeV}, \mathrm{Z} \rightarrow \ell^{+} \ell^{-}$

- first results:
- DY transverse momentum spectrum
- intrinsic transverse momentum model relevant at $p_{t}^{Z} \sim 1-5 \mathrm{GeV}$
- flat wrt. data in

$$
5 \mathrm{GeV}<p_{t}^{Z}<20 \mathrm{GeV}
$$

- missing HO corrections above that

- similar picture from ϕ^{*} :

Alaric IS pheno

- transverse momentum of W bosons
- compare to ATLAS data @ $\sqrt{s}=7 \mathrm{TeV}$
- note much lower resolution than previous plot

A Logarithmically Accurate Resummation In C++

- NLL resummation in CAESAR formalism as definition and validation of parton shower accuracy
- New parton shower Alaric
- partial fractioning of eikonal \rightarrow positive definite splitting function with full phase space coverage
- global kinematics scheme enables analytic proof of NLL accuracy + numerical validation
- included in Sherpa framework and first pheno results @ LHC

