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๏Map: Partons (defined at a low factorisation scale, after showering)  Hadrons 

‣ Fully Inclusive: Power Corrections (to IRC Safe Observables) 

‣ Semi-Inclusive: Fragmentation Functions: One hadron species at a time 

‣ Fully Exclusive: Dynamical Models in MC Event Generators

→
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Important point: even for nominally IRC safe observables, peaks of distributions 
often involve low scales where HAD sensitivity is highest  NP peak shifts.⟹
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Corrections linear in 1/Q  
See Nason, Seymour, 
Nucl.Phys.B 454 (1995) 291-312
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Uncertainties

4

๏High-Precision Measurements  Rigorous & Exhaustive Uncertainties 

‣ Expensive to construct & perform all salient parm variations individually ➞ GEANT … 
๏ Not just question of CPU; also environmental impact, cost, inefficient duplication of man-hours & higher 

risk of mistakes/inconsistencies (by non-authors) + risk that lessons learned aren’t perpetuated 

‣ Sophisticated: reweighting methods developed for Parton Showers 
๏ Based on reinterpreting the veto algorithm’s accept and reject probabilities  
๏ [VINCIA 1102.2126; SHERPA 1605.04692; HERWIG 1605.08256; PYTHIA 1605.08352] 

๏ (Note: reweighting of course also done for PDFs and in Fixed-Order Calculations.)

↔

Peter Skands Soft QCD in MC Event Generators

https://arxiv.org/abs/1605.08256
https://arxiv.org/abs/1605.08352
https://arxiv.org/abs/1908.10811
https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363
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↔

๏Hadronization Uncertainties: More parameters and lots of subtleties 
๏ Interplay between perturbative (eg Njets) and nonperturbative (eg Nhadrons) observables 
๏ Parameter correlations; for a helping hand, see AutoTunes [Bellm & Gellersen, 1908.10811] 
๏ Risk of purely data-driven methods (eg eigentunes) to overfit precise data points at expense of 

tails / asymptotics / less statistically dominant (but perhaps theoretically important) data 
๏ Tensions between different measurements 

‣ Recent elaborate studies with PYTHIA 8, see eg: [Jueid et al., 1812.07424; 2202.11546; 2303.11363]
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•Pythia, Herwig, Sherpa all tuned to ~ same data ➤ risk central tunes being “too" similar? 
No guarantee that they span the experimental uncertainties (similar issue as of old with PDFs)

Another aspect of the problem

5Peter Skands Soft QCD in MC Event Generators
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Shrink uncertainty to hadronization modeling 

Borrowed slide from A Ghosh ↔ Machine Learning of/for Theory Models
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Personal Comment: I would kind of hope next year’s generator would be closer to Nature, not further from it…



Example: The Strong Force Meets the Dark Sector

6

๏QCD uncertainties on Dark-Matter Annihilation Spectra 

‣ Compare different generators? Problem: all tuned to ~ same data  

‣ Instead, did parametric refittings of LEP data within PYTHIA’s modelling 
๏ , bLund,  : also useful for collider studies of hadronization uncertainties 

+ universality tests: identifying and addressing tensions, overfitting & universality/consistency 

๏

⟨z⟩ σpT

Peter Skands Soft QCD in MC Event Generators

Based on A. Jueid et al., 1812.07424 (gamma rays, eg for GCE) and 2202.11546 (antiprotons, eg for AMS) + 2303.11363 (all)

Parameter without 5% with 5%

StringPT:Sigma 0.3151 +0.0010
�0.00010 0.3227+0.0028

�0.0028

StringZ:aLund 1.028+0.031
�0.031 0.976+0.054

�0.052

StringZ:avgZLund 0.5534+0.0010
�0.0010 0.5496+0.0026

�0.0026

�2/ndf 5169/963 778/963

Table 2. Results of tunes using the new parametrization of the Lund fragmentation function
in terms of the a and hz⇢i parameters. The second (third) column shows the result before (after)
including a flat 5% uncertainty to the theory prediction.

Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Aleph 0.827+0.066

�0.062 0.5447+0.0044
�0.0044 0.3105+0.0045

�0.0045 284.7/382
Delphi 0.67+0.11

�0.09 0.5290+0.0062
�0.0063 0.3110+0.0062

�0.0061 82/113
L3 1.186+0.093

�0.10 0.5708+0.0054
�0.0055 0.3303+0.0072

�0.0072 98/155
Opal 0.55 +0.11

�0.095 0.511+0.011
�0.012 0.318+0.013

�0.013 82.4/184
Sld 0.95+0.12

�0.11 0.5271+0.0097
�0.010 0.327+0.017

�0.017 34.4/116
COMBINED 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 3. Results of the tunes performed separately to all the considered measurements from a
given experiment. The COMBINED result corresponds to the T2 tune given in Table 2.

Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.

– 19 –

Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Charged multiplicity 1.061+0.089

�0.096 0.518+0.011
�0.012 0.410+0.017

�0.016 43.4/104
Scaled momentum 0.598+0.053

�0.049 0.5295+0.0070
�0.0072 0.324+0.012

�0.012 70.7/180
� 0.61+0.32

�0.23 0.517+0.035
�0.039 0.344+0.067

�0.062 52.4/70
⇡0 1.22+0.18

�0.16 0.566+0.014
�0.014 0.340+0.020

�0.020 31/117
⇡± 0.757+0.082

�0.073 0.5029 0.0098
�0.0099 0.336+0.011

�0.011 72.5/205
T 1.34+0.27

�0.20 0.498+0.018
�0.019 0.241+0.022

�0.023 124/194
C-parameter 1.65+0.35

�0.42 0.621+0.053
0.038 0.390+0.067

�0.043 23.4/71
�, ⇡0,± (T1) 0.821 0.065

�0.060 0.5291+0.0057
�0.0057 0.3304+0.0060

�0.0060 321/514
All (T2) 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 4. Results of tunes performed separately to measurements of charged multiplicity, charged
scaled momentum, � spectra, ⇡0 spectra, ⇡± spectra, Thrust distribution and C-parameter. Results
of tunes combining measurements of �,⇡± and ⇡0 (T1) or all measurements (T2) are also reported.

Figure 13. Results of tunes performed separately to measurements of � spectra (red), ⇡± spec-
tra (magenta), ⇡± spectra (green), Thrust distribution (yellow), C-parameter (blue) and charged
particles scaled momentum (black). Measurements from Aleph (A), Delphi (D), Opal (O), L3
(L) and Sld (S) are used. The contours corresponding to a one, two and three standard deviations
are also shown.

5.2 Uncertainties

After discussing in details the results of the tuning and independent fits, we move to the
question of QCD uncertainties. Those can be separated into the perturbative uncertain-
ties, related to the parton showers evolution, and the non-perturbative ones, related to the
determination of the parameters of the fragmentation model. Uncertainties on the non-
perturbative part, are specific to the chosen model and the data used to constrain them,
leaving more ambiguities in the uncertainty estimate.

Uncertainties on parton showering in Pythia8 are estimated using the automatic setup
developed in [37] which aims for a comprehensive uncertainty bands by variation the cen-
tral renormalization scale by a factor of 2 in the two directions with a full NLO scale

– 20 –

Different experiments Different observables

DM

DM
Jets

https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363
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Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.
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Simple sanity limit / overfit protection / tension resolution: 
add blanket 5% baseline TH uncertainty  
(+ exclude superseded measurements)

https://arxiv.org/abs/1812.07424
https://arxiv.org/abs/2202.11546
https://arxiv.org/abs/2303.11363
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Table 2. Results of tunes using the new parametrization of the Lund fragmentation function
in terms of the a and hz⇢i parameters. The second (third) column shows the result before (after)
including a flat 5% uncertainty to the theory prediction.

Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
Aleph 0.827+0.066

�0.062 0.5447+0.0044
�0.0044 0.3105+0.0045

�0.0045 284.7/382
Delphi 0.67+0.11

�0.09 0.5290+0.0062
�0.0063 0.3110+0.0062

�0.0061 82/113
L3 1.186+0.093

�0.10 0.5708+0.0054
�0.0055 0.3303+0.0072

�0.0072 98/155
Opal 0.55 +0.11

�0.095 0.511+0.011
�0.012 0.318+0.013

�0.013 82.4/184
Sld 0.95+0.12

�0.11 0.5271+0.0097
�0.010 0.327+0.017

�0.017 34.4/116
COMBINED 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 3. Results of the tunes performed separately to all the considered measurements from a
given experiment. The COMBINED result corresponds to the T2 tune given in Table 2.

Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.
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Tune StringZ:aLund StringZ:avgZLund StringPT:sigma �2/ndf
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�0.062 52.4/70
⇡0 1.22+0.18
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T 1.34+0.27
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�0.0057 0.3304+0.0060

�0.0060 321/514
All (T2) 0.976+0.054

�0.052 0.5496+0.0026
�0.0026 0.3227+0.0028

�0.0028 778/963

Table 4. Results of tunes performed separately to measurements of charged multiplicity, charged
scaled momentum, � spectra, ⇡0 spectra, ⇡± spectra, Thrust distribution and C-parameter. Results
of tunes combining measurements of �,⇡± and ⇡0 (T1) or all measurements (T2) are also reported.

Figure 13. Results of tunes performed separately to measurements of � spectra (red), ⇡± spec-
tra (magenta), ⇡± spectra (green), Thrust distribution (yellow), C-parameter (blue) and charged
particles scaled momentum (black). Measurements from Aleph (A), Delphi (D), Opal (O), L3
(L) and Sld (S) are used. The contours corresponding to a one, two and three standard deviations
are also shown.

5.2 Uncertainties

After discussing in details the results of the tuning and independent fits, we move to the
question of QCD uncertainties. Those can be separated into the perturbative uncertain-
ties, related to the parton showers evolution, and the non-perturbative ones, related to the
determination of the parameters of the fragmentation model. Uncertainties on the non-
perturbative part, are specific to the chosen model and the data used to constrain them,
leaving more ambiguities in the uncertainty estimate.

Uncertainties on parton showering in Pythia8 are estimated using the automatic setup
developed in [37] which aims for a comprehensive uncertainty bands by variation the cen-
tral renormalization scale by a factor of 2 in the two directions with a full NLO scale
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Table 3. Results of the tunes performed separately to all the considered measurements from a
given experiment. The COMBINED result corresponds to the T2 tune given in Table 2.

Figure 12. Results of tunes performed separately to all of the measurements from a given exper-
iment; Aleph (blue), Delphi (magenta), L3 (red), Opal (green), Sld (yellow) and COMBINED
(gray). The contours corresponding to one, two and three sigma deviations are also shown.

expected result given the fact that the C and T parameters have less sensitivity (expect in
their first few bins) on the fragmentation model and they are mainly sensitive to the shower
parameters, which are not varied in this study. Furthermore, for the same observables, the
StringZ:avgZLund and StringPT:sigma parameters are highly correlated as can be seen
from Fig. 13.
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Simple sanity limit / overfit protection / tension resolution: 
add blanket 5% baseline TH uncertainty  
(+ exclude superseded measurements)

Other possible 
universality tests  

(eg in pp):

Different CM energies … 
Different fiducial windows … 
Different hard processes … 
Quarks vs Gluons … 
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Figure 14. Results of tunes performed separately to each of the observables. The weighted
average of the tunes to the individual measurements is shown with a black line. A green shaded
area indicated the 68% CL interval on the parameters.

are however still found to provide small uncertainties which cannot be interpreted as con-
servative. The uncertainty on the parameters of the Lund fragmentation function are very
small (below the one percent level) and inconsistent with the uncertainties of the data used
in the tune6. In Table 7 we also show the uncertainties from QCD on the photon spectra in
the peak region for �� ! gg for m� = 25 GeV where the nominal values of the parameters
correspond to the result of T2 tune and the corresponding eigentunes are shown in Table
5.

Therefore, we use an alternative method to estimate the uncertainty on the Lund
fragmentation function’s parameters. We, first, make a fit each measurement. Thus, for N

measurements, we get N best-fit points for each parameter. We then take the 68% CL errors

6We also checked their impact on the gamma-ray spectra in different final states and for different DM
masses including the ones corresponding to the pMSSM best fit points and have found that the bands
obtained from the eigentunes are negligibly small.
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Weighted Average: good 
consistency across observables

10-point variations ➤ Fairly 
convincing uncertainty bands?

x� (dN/dx�)T2 ± �had. ± �shower

0.00125 7.59+0.05%
�0.0%

+8.1%
�4.8%

0.002 13.79+0.18%
�0.26%

+8.3%
�4.9%

0.003 22.29+0.13%
�0.0%

+8.2%
�4.9%

0.005 31.95 +0.2%
�0.04%

+8.1%
�4.8%

0.008 40.74+0.12%
�0.05%

+7.7%
�4.6%

0.0125 45.83+0.08%
�0.09

+7.1%
�4.3%

0.02 45.01+0.13%
�0.02

+6.5%
�4.0%

0.03 39.43+0.13%
�0.0%

+5.2%
�3.3%

0.05 30.73 +0.0%
�0.15%

+3.1%
�2.1%

0.08 21.36 +0.0%
�0.06%

+0.4%
�0.5%

0.125 12.98+0.13%
�0.23%

+1.6%
�3.0%

Table 7. Scaled momentum of photons in the process �� ! gg for m� = 25 GeV where only
the peak region of the spectra is shown. In this table, we show the predictions from the weighted
tune denoted by T2 (the central values of the parameters and their eigentunes are shown in Tables
2 and 5). The 68% CL on hadronisation parameters are shown as first errors for each bin while
uncertainties due to shower variations are the second errors.
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Figure 15. Photon energy distribution for dark matter annihilation into W+W� with m� = 90.6
GeV (left) and into tt̄ with m� = 177.6 GeV (right). In the two cases, the result corresponding to
the new tune is shown in black line. Both the uncertainties from parton showering (gray bands)
and from hadronisation (blue bands) are shown. Predictions from Herwig7 are shown as a gray
solid line.

(gray bands) and hadronisation (blue bands) uncertainties. We can see that the predictions
from Pythia and Herwig agree very well except for E� 6 2 GeV where differences can
reach about 21% for E� ⇠ 0.4 GeV. Furthermore, one can see that uncertainties can be
important for both channels. Particularly, in the peak region which corresponds to energies
where the photon excess is observed in the galactic center region. Indeed combining them
in quadrature assuming the different type of uncertainties are uncorrelated, they can go
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Figure 14. Results of tunes performed separately to each of the observables. The weighted
average of the tunes to the individual measurements is shown with a black line. A green shaded
area indicated the 68% CL interval on the parameters.

are however still found to provide small uncertainties which cannot be interpreted as con-
servative. The uncertainty on the parameters of the Lund fragmentation function are very
small (below the one percent level) and inconsistent with the uncertainties of the data used
in the tune6. In Table 7 we also show the uncertainties from QCD on the photon spectra in
the peak region for �� ! gg for m� = 25 GeV where the nominal values of the parameters
correspond to the result of T2 tune and the corresponding eigentunes are shown in Table
5.

Therefore, we use an alternative method to estimate the uncertainty on the Lund
fragmentation function’s parameters. We, first, make a fit each measurement. Thus, for N

measurements, we get N best-fit points for each parameter. We then take the 68% CL errors

6We also checked their impact on the gamma-ray spectra in different final states and for different DM
masses including the ones corresponding to the pMSSM best fit points and have found that the bands
obtained from the eigentunes are negligibly small.
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Table 7. Scaled momentum of photons in the process �� ! gg for m� = 25 GeV where only
the peak region of the spectra is shown. In this table, we show the predictions from the weighted
tune denoted by T2 (the central values of the parameters and their eigentunes are shown in Tables
2 and 5). The 68% CL on hadronisation parameters are shown as first errors for each bin while
uncertainties due to shower variations are the second errors.
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Figure 15. Photon energy distribution for dark matter annihilation into W+W� with m� = 90.6
GeV (left) and into tt̄ with m� = 177.6 GeV (right). In the two cases, the result corresponding to
the new tune is shown in black line. Both the uncertainties from parton showering (gray bands)
and from hadronisation (blue bands) are shown. Predictions from Herwig7 are shown as a gray
solid line.

(gray bands) and hadronisation (blue bands) uncertainties. We can see that the predictions
from Pythia and Herwig agree very well except for E� 6 2 GeV where differences can
reach about 21% for E� ⇠ 0.4 GeV. Furthermore, one can see that uncertainties can be
important for both channels. Particularly, in the peak region which corresponds to energies
where the photon excess is observed in the galactic center region. Indeed combining them
in quadrature assuming the different type of uncertainties are uncorrelated, they can go
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Figure 14. Results of tunes performed separately to each of the observables. The weighted
average of the tunes to the individual measurements is shown with a black line. A green shaded
area indicated the 68% CL interval on the parameters.

are however still found to provide small uncertainties which cannot be interpreted as con-
servative. The uncertainty on the parameters of the Lund fragmentation function are very
small (below the one percent level) and inconsistent with the uncertainties of the data used
in the tune6. In Table 7 we also show the uncertainties from QCD on the photon spectra in
the peak region for �� ! gg for m� = 25 GeV where the nominal values of the parameters
correspond to the result of T2 tune and the corresponding eigentunes are shown in Table
5.

Therefore, we use an alternative method to estimate the uncertainty on the Lund
fragmentation function’s parameters. We, first, make a fit each measurement. Thus, for N

measurements, we get N best-fit points for each parameter. We then take the 68% CL errors

6We also checked their impact on the gamma-ray spectra in different final states and for different DM
masses including the ones corresponding to the pMSSM best fit points and have found that the bands
obtained from the eigentunes are negligibly small.
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Table 7. Scaled momentum of photons in the process �� ! gg for m� = 25 GeV where only
the peak region of the spectra is shown. In this table, we show the predictions from the weighted
tune denoted by T2 (the central values of the parameters and their eigentunes are shown in Tables
2 and 5). The 68% CL on hadronisation parameters are shown as first errors for each bin while
uncertainties due to shower variations are the second errors.
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Figure 15. Photon energy distribution for dark matter annihilation into W+W� with m� = 90.6
GeV (left) and into tt̄ with m� = 177.6 GeV (right). In the two cases, the result corresponding to
the new tune is shown in black line. Both the uncertainties from parton showering (gray bands)
and from hadronisation (blue bands) are shown. Predictions from Herwig7 are shown as a gray
solid line.

(gray bands) and hadronisation (blue bands) uncertainties. We can see that the predictions
from Pythia and Herwig agree very well except for E� 6 2 GeV where differences can
reach about 21% for E� ⇠ 0.4 GeV. Furthermore, one can see that uncertainties can be
important for both channels. Particularly, in the peak region which corresponds to energies
where the photon excess is observed in the galactic center region. Indeed combining them
in quadrature assuming the different type of uncertainties are uncorrelated, they can go
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๏Problem: 

‣ Given a colour-singlet system that (randomly) broke up into a specific set of hadrons: 

‣ What is the relative probability that same system would have resulted, if the fragmentation 
parameters had been somewhat different?  

‣ Would this particular final state become more likely ( )? 

‣ Or less likely ( ) 

‣ Crucially: maintaining unitarity  inclusive cross section remains unchanged!

w′ > 1

w′ < 1

⟹

8Peter Skands Soft QCD in MC Event Generators

New: Automated Hadronization Uncertainties

https://arxiv.org/abs/2308.13459
https://gitlab.com/uchep/mlhad-weights-validation
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‣ Given a colour-singlet system that (randomly) broke up into a specific set of hadrons: 

‣ What is the relative probability that same system would have resulted, if the fragmentation 
parameters had been somewhat different?  

‣ Would this particular final state become more likely ( )? 

‣ Or less likely ( ) 

‣ Crucially: maintaining unitarity  inclusive cross section remains unchanged!

w′ > 1
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๏Aug 25: Bierlich, Ilten, Menzo, Mrenna, Szewc, Wilkinson, Youssef, Zupan 
๏ [Reweighting MC Predictions & Automated Fragmentation Variations in Pythia 8, 2308.13459]   
๏ Method is general; demonstrated on variations of the 7 main parameters governing longitudinal 

and transverse fragmentation functions in PYTHIA 8 
๏ https://gitlab.com/uchep/mlhad-weights-validation
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8, these follow a product of Gaussian distributions for px, py [17]:

P (�px,�py,�pT ) =
1

2⇡�2
pT

exp

✓
�
(�px)2 + (�py)2

2�2
pT

◆
, (2)

where the width parameter �pT is such that E[(�px)2] = E[(�py)2] = �2
pT and thus

E[(pkick
T )2] = 2�2

pT , where pkick
T is the transverse momentum kick, related to the hadron

transverse momentum via conservation of momentum.3 Gaussian distributions can be
sampled with complete efficiency, e.g., using the Box–Muller transform [18].

Our key interest is to calculate uncertainties arising from different choices of the pa-
rameters a, a0s, a0D, b, rc, rb, and �pT as they enter into eqs. (1) and (2). In the following,
we first review the accept-reject algorithm so as to later introduce a modified version of it,
best suited for the uncertainty estimation on the parameters of eq. (1). We also explain
how to perform uncertainty estimation for �pT by taking advantage of the direct sampling
from eq. (2).

It should be noted that the hadronization algorithm described above is used while the
mass of the remaining string is sufficiently large, such that suitable phase space exists to
produce a hadron and a remaining string. When the remaining string reaches a sufficiently
low mass, a specialized splitting is performed where two hadrons are produced without
a remaining string, rather than a hadron and the remaining string [19]. However, this
splitting is not always successful; if the remaining string has an m? smaller than the
summed m? of the two hadrons, then the entire hadronization of the string is rejected,
and started over. In principle, we do not account for this possible final rejection in our
modified accept-reject algorithm, since any effect from this should only be noticeable when
variations of the parameters from their default values are large, in which case, the support
of the underlying distribution will also not be sufficient.

2.1 Standard Accept-Reject Algorithm

The accept-reject algorithm can be used to sample a probability distribution when the
maximum value of the probability distribution, or a reliable overestimate thereof, is known.
The algorithm for sampling the probability distribution P (z, ci) begins by defining an
acceptance probability Paccept(z, ci) for a trial value of z,

Paccept(z, ci) ⌘
P (z, ci)

bP
 1 . (3)

Both the acceptance probability Paccept(z, ci) and the probability distribution P (z, ci) de-
pend on a set of parameter values ci, that we will later vary. The constant bP is cho-
sen so that the relation in eq. (3) is satisfied; it can be either the analytic maximum or
a numerically estimated overestimate. A trial value for z is accepted only if Paccept is
larger than a random uniform variate. If the trial value of z is rejected, with probability
Preject = 1� Paccept, a new trial z is then selected. The algorithm continues until a given
z value is accepted. That is, in the standard accept-reject algorithm, the value of z is
selected with probability p given by the product of the final accept probability times a
factor accounting for all of the rejected trials:

p(z) = Paccept(z)
1X

n=0

An , where A =

Z 1

0
dz0

�
1� Paccept(z

0)
�
, (4)

3Within Pythia 8, �pT is set with the parameter name StringPT:sigma.
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as desired.
A few considerations are worth mentioning. As in the case of parton-shower variations,

the modified rejection ratio in eq. (7) is inversely proportional to the difference P̂ �P and
can become large if P̂ ' P , leading to large weights. It is thus advantageous for P̂ to not
approximate the maximum value of P (z, ci) too closely, but to be larger by an O(1) factor.
In practice, multiplying P̂ by a factor of ten typically leads to stable results.4 The final
event weight w0 can also become large in cases when the baseline and alternative probability
distributions have limited overlap, i.e., the baseline distribution does not provide proper
support for the alternative distribution. A good indicator of the fidelity of the reweighting
is the weight sum

P
iw

0
i (or, equivalently, the mean weight) or the effective number of

events (
P

iw
0
i)
2/

P
iw

02
i . If the mean event weight is not near unity, or if the effective

number of events is significantly lower than the actual number of simulated events, care
should be taken when interpreting the weighted results.

2.3 Variation Details

Currently, we have implemented variations for the a, b, rc, and rb parameters of the Lund
string fragmentation function f(z) given by eq. (1), and the hadron transverse momentum
�pT of eq. (2). The variation weight for one selection of �pT does not require the use of the
accept-reject algorithm but can be calculated directly using the Box–Muller transform:

w0 =
�2

�02 exp

✓
�

✓
�2

�02 � 1

◆◆
, (11)

where  = (n2
1 + n2

2)/2 and ni are normally distributed random variates.
The two event weights arising from variations in eqs. (1) and (2) can be combined into

a single event weight by multiplication, due to the fact that we are sampling in a sequential
manner from P (�px,�py) and P (z|�px,�py), i.e., P (�px,�py) does not depend upon
z. However, variations of the parameters of f(z) must be considered as a group. While a
variation of the a parameter for a fixed b parameter can be calculated and vice versa, the
product of weights from these two calculations is not equivalent to varying both a and b
simultaneously. This is because, e.g., the maximum weight fmax(a1, b1) is different from
the maximum weights fmax(a1, b0) and fmax(a0, b1). This applies to all of the parameters
that enter into eq. (1): a, b, rc, and rb.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event
weights w0 to produce the desired distributions using the original sample of events, rather
than generating a new sample for each alternative parameter value. Therefore, we validate
the method by generating samples of 106 events using Pythia 8 configured with a set
of baseline parameter values. During this generation, we also calculate, using the modi-
fied accept-reject algorithm, a per-event weight w0 corresponding to an alternative set of
parameter values. We then compare the w0-weighted distributions to those obtained by
generating new samples using Pythia 8 configured with the alternative parameter values
as the baseline and without using the modified accept-reject algorithm.

4This factor may be adjusted within Pythia 8 by modifying the corresponding overSample parameter
for each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR spec-
ifies the over-sample factor for QCD final-state radiation enabled by the fsr:* set of variation keywords.
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Figure 4: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter �pT is (top) explicitly set to different
values, or (bottom) when the parameter �pT is varied using different methods.
In the top panel, the lower row shows the ratios of the distributions generated
with various values of �pT to that generated with �pT = 0.350. In the bottom
panel, the distributions labeled e were generated with the value of the parameter
�pT explicitly set to (left) 0.283 and (right) 0.360. The distributions labeled w0

are all taken from the same sample generated with �pT = �base
pT = 0.350, but

with different sets of alternative event weights, calculated using the accept-reject
algorithm applied according to the alternative values of �pT . The bottom row
shows the ratios of the latter distributions to the former.
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8, these follow a product of Gaussian distributions for px, py [17]:

P (�px,�py,�pT ) =
1

2⇡�2
pT

exp

✓
�
(�px)2 + (�py)2

2�2
pT

◆
, (2)

where the width parameter �pT is such that E[(�px)2] = E[(�py)2] = �2
pT and thus

E[(pkick
T )2] = 2�2

pT , where pkick
T is the transverse momentum kick, related to the hadron

transverse momentum via conservation of momentum.3 Gaussian distributions can be
sampled with complete efficiency, e.g., using the Box–Muller transform [18].

Our key interest is to calculate uncertainties arising from different choices of the pa-
rameters a, a0s, a0D, b, rc, rb, and �pT as they enter into eqs. (1) and (2). In the following,
we first review the accept-reject algorithm so as to later introduce a modified version of it,
best suited for the uncertainty estimation on the parameters of eq. (1). We also explain
how to perform uncertainty estimation for �pT by taking advantage of the direct sampling
from eq. (2).

It should be noted that the hadronization algorithm described above is used while the
mass of the remaining string is sufficiently large, such that suitable phase space exists to
produce a hadron and a remaining string. When the remaining string reaches a sufficiently
low mass, a specialized splitting is performed where two hadrons are produced without
a remaining string, rather than a hadron and the remaining string [19]. However, this
splitting is not always successful; if the remaining string has an m? smaller than the
summed m? of the two hadrons, then the entire hadronization of the string is rejected,
and started over. In principle, we do not account for this possible final rejection in our
modified accept-reject algorithm, since any effect from this should only be noticeable when
variations of the parameters from their default values are large, in which case, the support
of the underlying distribution will also not be sufficient.

2.1 Standard Accept-Reject Algorithm

The accept-reject algorithm can be used to sample a probability distribution when the
maximum value of the probability distribution, or a reliable overestimate thereof, is known.
The algorithm for sampling the probability distribution P (z, ci) begins by defining an
acceptance probability Paccept(z, ci) for a trial value of z,

Paccept(z, ci) ⌘
P (z, ci)

bP
 1 . (3)

Both the acceptance probability Paccept(z, ci) and the probability distribution P (z, ci) de-
pend on a set of parameter values ci, that we will later vary. The constant bP is cho-
sen so that the relation in eq. (3) is satisfied; it can be either the analytic maximum or
a numerically estimated overestimate. A trial value for z is accepted only if Paccept is
larger than a random uniform variate. If the trial value of z is rejected, with probability
Preject = 1� Paccept, a new trial z is then selected. The algorithm continues until a given
z value is accepted. That is, in the standard accept-reject algorithm, the value of z is
selected with probability p given by the product of the final accept probability times a
factor accounting for all of the rejected trials:

p(z) = Paccept(z)
1X

n=0

An , where A =

Z 1

0
dz0

�
1� Paccept(z

0)
�
, (4)

3Within Pythia 8, �pT is set with the parameter name StringPT:sigma.
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as desired.
A few considerations are worth mentioning. As in the case of parton-shower variations,

the modified rejection ratio in eq. (7) is inversely proportional to the difference P̂ �P and
can become large if P̂ ' P , leading to large weights. It is thus advantageous for P̂ to not
approximate the maximum value of P (z, ci) too closely, but to be larger by an O(1) factor.
In practice, multiplying P̂ by a factor of ten typically leads to stable results.4 The final
event weight w0 can also become large in cases when the baseline and alternative probability
distributions have limited overlap, i.e., the baseline distribution does not provide proper
support for the alternative distribution. A good indicator of the fidelity of the reweighting
is the weight sum

P
iw

0
i (or, equivalently, the mean weight) or the effective number of

events (
P

iw
0
i)
2/

P
iw

02
i . If the mean event weight is not near unity, or if the effective

number of events is significantly lower than the actual number of simulated events, care
should be taken when interpreting the weighted results.

2.3 Variation Details

Currently, we have implemented variations for the a, b, rc, and rb parameters of the Lund
string fragmentation function f(z) given by eq. (1), and the hadron transverse momentum
�pT of eq. (2). The variation weight for one selection of �pT does not require the use of the
accept-reject algorithm but can be calculated directly using the Box–Muller transform:

w0 =
�2

�02 exp

✓
�

✓
�2

�02 � 1

◆◆
, (11)

where  = (n2
1 + n2

2)/2 and ni are normally distributed random variates.
The two event weights arising from variations in eqs. (1) and (2) can be combined into

a single event weight by multiplication, due to the fact that we are sampling in a sequential
manner from P (�px,�py) and P (z|�px,�py), i.e., P (�px,�py) does not depend upon
z. However, variations of the parameters of f(z) must be considered as a group. While a
variation of the a parameter for a fixed b parameter can be calculated and vice versa, the
product of weights from these two calculations is not equivalent to varying both a and b
simultaneously. This is because, e.g., the maximum weight fmax(a1, b1) is different from
the maximum weights fmax(a1, b0) and fmax(a0, b1). This applies to all of the parameters
that enter into eq. (1): a, b, rc, and rb.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event
weights w0 to produce the desired distributions using the original sample of events, rather
than generating a new sample for each alternative parameter value. Therefore, we validate
the method by generating samples of 106 events using Pythia 8 configured with a set
of baseline parameter values. During this generation, we also calculate, using the modi-
fied accept-reject algorithm, a per-event weight w0 corresponding to an alternative set of
parameter values. We then compare the w0-weighted distributions to those obtained by
generating new samples using Pythia 8 configured with the alternative parameter values
as the baseline and without using the modified accept-reject algorithm.

4This factor may be adjusted within Pythia 8 by modifying the corresponding overSample parameter
for each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR spec-
ifies the over-sample factor for QCD final-state radiation enabled by the fsr:* set of variation keywords.
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Figure 4: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter �pT is (top) explicitly set to different
values, or (bottom) when the parameter �pT is varied using different methods.
In the top panel, the lower row shows the ratios of the distributions generated
with various values of �pT to that generated with �pT = 0.350. In the bottom
panel, the distributions labeled e were generated with the value of the parameter
�pT explicitly set to (left) 0.283 and (right) 0.360. The distributions labeled w0

are all taken from the same sample generated with �pT = �base
pT = 0.350, but

with different sets of alternative event weights, calculated using the accept-reject
algorithm applied according to the alternative values of �pT . The bottom row
shows the ratios of the latter distributions to the former.
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8, these follow a product of Gaussian distributions for px, py [17]:

P (�px,�py,�pT ) =
1

2⇡�2
pT

exp

✓
�
(�px)2 + (�py)2

2�2
pT

◆
, (2)

where the width parameter �pT is such that E[(�px)2] = E[(�py)2] = �2
pT and thus

E[(pkick
T )2] = 2�2

pT , where pkick
T is the transverse momentum kick, related to the hadron

transverse momentum via conservation of momentum.3 Gaussian distributions can be
sampled with complete efficiency, e.g., using the Box–Muller transform [18].

Our key interest is to calculate uncertainties arising from different choices of the pa-
rameters a, a0s, a0D, b, rc, rb, and �pT as they enter into eqs. (1) and (2). In the following,
we first review the accept-reject algorithm so as to later introduce a modified version of it,
best suited for the uncertainty estimation on the parameters of eq. (1). We also explain
how to perform uncertainty estimation for �pT by taking advantage of the direct sampling
from eq. (2).

It should be noted that the hadronization algorithm described above is used while the
mass of the remaining string is sufficiently large, such that suitable phase space exists to
produce a hadron and a remaining string. When the remaining string reaches a sufficiently
low mass, a specialized splitting is performed where two hadrons are produced without
a remaining string, rather than a hadron and the remaining string [19]. However, this
splitting is not always successful; if the remaining string has an m? smaller than the
summed m? of the two hadrons, then the entire hadronization of the string is rejected,
and started over. In principle, we do not account for this possible final rejection in our
modified accept-reject algorithm, since any effect from this should only be noticeable when
variations of the parameters from their default values are large, in which case, the support
of the underlying distribution will also not be sufficient.

2.1 Standard Accept-Reject Algorithm

The accept-reject algorithm can be used to sample a probability distribution when the
maximum value of the probability distribution, or a reliable overestimate thereof, is known.
The algorithm for sampling the probability distribution P (z, ci) begins by defining an
acceptance probability Paccept(z, ci) for a trial value of z,

Paccept(z, ci) ⌘
P (z, ci)

bP
 1 . (3)

Both the acceptance probability Paccept(z, ci) and the probability distribution P (z, ci) de-
pend on a set of parameter values ci, that we will later vary. The constant bP is cho-
sen so that the relation in eq. (3) is satisfied; it can be either the analytic maximum or
a numerically estimated overestimate. A trial value for z is accepted only if Paccept is
larger than a random uniform variate. If the trial value of z is rejected, with probability
Preject = 1� Paccept, a new trial z is then selected. The algorithm continues until a given
z value is accepted. That is, in the standard accept-reject algorithm, the value of z is
selected with probability p given by the product of the final accept probability times a
factor accounting for all of the rejected trials:

p(z) = Paccept(z)
1X

n=0

An , where A =

Z 1

0
dz0

�
1� Paccept(z

0)
�
, (4)

3Within Pythia 8, �pT is set with the parameter name StringPT:sigma.
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as desired.
A few considerations are worth mentioning. As in the case of parton-shower variations,

the modified rejection ratio in eq. (7) is inversely proportional to the difference P̂ �P and
can become large if P̂ ' P , leading to large weights. It is thus advantageous for P̂ to not
approximate the maximum value of P (z, ci) too closely, but to be larger by an O(1) factor.
In practice, multiplying P̂ by a factor of ten typically leads to stable results.4 The final
event weight w0 can also become large in cases when the baseline and alternative probability
distributions have limited overlap, i.e., the baseline distribution does not provide proper
support for the alternative distribution. A good indicator of the fidelity of the reweighting
is the weight sum

P
iw

0
i (or, equivalently, the mean weight) or the effective number of

events (
P

iw
0
i)
2/

P
iw

02
i . If the mean event weight is not near unity, or if the effective

number of events is significantly lower than the actual number of simulated events, care
should be taken when interpreting the weighted results.

2.3 Variation Details

Currently, we have implemented variations for the a, b, rc, and rb parameters of the Lund
string fragmentation function f(z) given by eq. (1), and the hadron transverse momentum
�pT of eq. (2). The variation weight for one selection of �pT does not require the use of the
accept-reject algorithm but can be calculated directly using the Box–Muller transform:

w0 =
�2

�02 exp

✓
�

✓
�2

�02 � 1

◆◆
, (11)

where  = (n2
1 + n2

2)/2 and ni are normally distributed random variates.
The two event weights arising from variations in eqs. (1) and (2) can be combined into

a single event weight by multiplication, due to the fact that we are sampling in a sequential
manner from P (�px,�py) and P (z|�px,�py), i.e., P (�px,�py) does not depend upon
z. However, variations of the parameters of f(z) must be considered as a group. While a
variation of the a parameter for a fixed b parameter can be calculated and vice versa, the
product of weights from these two calculations is not equivalent to varying both a and b
simultaneously. This is because, e.g., the maximum weight fmax(a1, b1) is different from
the maximum weights fmax(a1, b0) and fmax(a0, b1). This applies to all of the parameters
that enter into eq. (1): a, b, rc, and rb.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event
weights w0 to produce the desired distributions using the original sample of events, rather
than generating a new sample for each alternative parameter value. Therefore, we validate
the method by generating samples of 106 events using Pythia 8 configured with a set
of baseline parameter values. During this generation, we also calculate, using the modi-
fied accept-reject algorithm, a per-event weight w0 corresponding to an alternative set of
parameter values. We then compare the w0-weighted distributions to those obtained by
generating new samples using Pythia 8 configured with the alternative parameter values
as the baseline and without using the modified accept-reject algorithm.

4This factor may be adjusted within Pythia 8 by modifying the corresponding overSample parameter
for each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR spec-
ifies the over-sample factor for QCD final-state radiation enabled by the fsr:* set of variation keywords.
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samples. Finally, in section 4, we summarize our findings and draw conclusions.

2 Method

An event produced by an event generator, like Pythia 8, begins from a small number
of partons that evolve through various stages. At each stage the color quantum numbers
are tracked in the large color Nc limit, such that each new color is assigned a new color
index. In this limit, only planar color flows are retained, and colored partons can be
assigned a unique pair of integers to represent color and anticolor. After the perturbatively-
motivated evolution of the parton shower, one of the last stages in the event development
is hadronization. Prior to this step, the collection of quarks, antiquarks, and gluons can
be partitioned into color-singlet objects (strings) based on their color quantum numbers.
The Lund string model of hadronization [5,13,14] is then applied to reduce strings into the
observed hadrons. The string represents a flux tube of the non-perturbative strong force
between a quark and an antiquark that successively breaks into hadrons, represented by
stable oscillating string states characterized by their four-momentum ph and flavor. The
full probability of a given fragmentation can be split into a flavor selection, a transverse
momentum sampling, and a longitudinal momentum sampling, which are all combined to
ensure a physical emission. A detailed discussion of the Lund fragmentation function as
implemented in Pythia 8 can be found in ref. [15]. Here, we summarize those elements
needed for the uncertainty estimation of the hadronization.

The Lund fragmentation function, or scaling function, determines the probability for
a hadron to be emitted with longitudinal lightcone momentum fraction z related to the
z-component of the hadron momentum ph,z, hadron energy Eh, and total string energy
Estring via the relation z = (ph,z + Eh)/Estring, valid in the rest-frame of the string for
hadron emitted in the +z direction. The fragmentation function has the following form:

f(z) /
1

z1+rQbm2
Q

(1� z)a exp

✓
�
bm2

?
z

◆
, (1)

where Q is the quark flavor, mQ is the quark mass, m2
? ⌘ m2 + p2T is the square of the

transverse mass, m is the hadron mass, pT is the transverse momentum of the hadron,
and rQ, a, and b are constant parameters fixed by fits to experimental data.1 The Bowler
modification z�rQbm2

Q in eq. (1) is only included for heavy quarks, i.e., rQ = 0 unless
Q 2 {c, b} [16]. Pythia 8 also allows for modifications to the a-parameter to be used in
splittings involving strange quarks s or diquarks D, parameterized by the form a0i = a+�ai,
where �ai represents an adjustable parameter2 within Pythia 8 with i 2 {s,D} (the form
of f(z) is also modified from (1), accounting for the fact that the emitted quarks can be of
a different flavor than the endpoints of the original string). The maximum of f(z), denoted
fmax, can be determined analytically for a given set of input parameter values, denoted ci.
Sampling z from f(z) is done by selecting a pseudo-random number x until one satisfies
x < f(z)/fmax  1, a method known as the accept-reject algorithm, further described in
section 2.1.

The transverse momentum pT of each emitted hadron is sampled via the two compo-
nents, �px = phadron

x � pstring
x and �py = phadron

y � pstring
y . In the default model of Pythia

1The default parameter names and values as implemented in Pythia 8 are StringZ:aLund = 0.68,
StringZ:bLund = 0.98, StringZ:rFactC = 0, and StringZ:rFactB = 0.855 for a, b, rc, and rb, respec-
tively.

2The default parameter names and values as implemented in Pythia 8 are StringZ:aExtraSQuark =

0 and StringZ:aExtraDiquark = 0.97, for s and D respectively.
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where the dependence on the chosen parameter values ci has been suppressed for brevity.
Summing the geometric series in A gives,

p(z) =
Paccept(z)

1�A
=

Paccept(z)Z 1

0
dz0 Paccept(z

0)

= P (z) , (5)

showing that the algorithm yields the desired distribution. The exact value of bP , provided
that Paccept  1, only affects the efficiency of the algorithm; the further bP is from the
actual maximum of P (z, ci), the less efficient the sampling.

2.2 Modified Accept-Reject Algorithm

Next, we present a modification of the accept-reject algorithm that assigns appropriate
weights to the existing event, depending on how the parameter values ci are varied. We
refer to the original set of parameter values ci as the baseline and the new set c0i as the
alternative. If the event generated with the baseline parameters has weight w (typically
in Pythia 8, w = 1), the modified accept-reject algorithm calculates the weight w0 that
corresponds to the alternative values of the parameters. If w0 > w, the event is more
probable given the alternative parameter values; if w0 < w, it is less probable.

For the calculation of the weight w0, one needs to keep track of all the trial z values
in the standard accept-reject algorithm. For each z that was rejected, w is multiplied
by R0

reject(z), while for the accepted value of z, the multiplication is by R0
accept(z). Here,

R0
accept(z) is the ratio of alternative and baseline acceptance probabilities,

R0
accept(z) =

P 0
accept(z)

Paccept(z)
=

P 0(z)

P (z)
, with P 0

accept(z, c
0
i) =

P 0(z, c0i)
bP

, (6)

while R0
reject(z) is the ratio of the alternative and the baseline rejection probabilities,

R0
reject(z) =

P 0
reject(z)

Preject(z)
=

1� P 0
accept(z)

1� Paccept(z)
=

bP � P 0(z)
bP � P (z)

. (7)

The value of bP can always be chosen such that both P 0
accept  1 and Paccept  1, albeit at

some loss of efficiency when the equality does not hold for the latter. Explicitly, we can
write the per-event hadronization weight as

w0 = w
Y

i2accepted

R0
i,accept(z)

Y

j2rejected

R0
j,reject(z), (8)

where w is the baseline event weight, the first product is over accepted trials of z, and the
second product is over the rejected trials of z.

We can readily show that the weight w0 corresponds to the correct probability p0(z) for
selecting the final trial-z value using the alternative parameter values c0i:

p0(z) = Paccept(z)R
0
accept(z)

1X

n=0

A0n , where A0 =

Z 1

0
dz0

�
1� Paccept(z

0)
�
R0

reject(z
0) . (9)

Summing the geometric series in A0 gives

p0(z) =
P 0

accept(z)

1�A0 =
P 0

accept(z)Z 1

0
dz0 P 0

accept(z
0)

= P 0(z) , (10)
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Figure 4: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter �pT is (top) explicitly set to different
values, or (bottom) when the parameter �pT is varied using different methods.
In the top panel, the lower row shows the ratios of the distributions generated
with various values of �pT to that generated with �pT = 0.350. In the bottom
panel, the distributions labeled e were generated with the value of the parameter
�pT explicitly set to (left) 0.283 and (right) 0.360. The distributions labeled w0

are all taken from the same sample generated with �pT = �base
pT = 0.350, but

with different sets of alternative event weights, calculated using the accept-reject
algorithm applied according to the alternative values of �pT . The bottom row
shows the ratios of the latter distributions to the former.
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8, these follow a product of Gaussian distributions for px, py [17]:

P (�px,�py,�pT ) =
1

2⇡�2
pT

exp

✓
�
(�px)2 + (�py)2

2�2
pT

◆
, (2)

where the width parameter �pT is such that E[(�px)2] = E[(�py)2] = �2
pT and thus

E[(pkick
T )2] = 2�2

pT , where pkick
T is the transverse momentum kick, related to the hadron

transverse momentum via conservation of momentum.3 Gaussian distributions can be
sampled with complete efficiency, e.g., using the Box–Muller transform [18].

Our key interest is to calculate uncertainties arising from different choices of the pa-
rameters a, a0s, a0D, b, rc, rb, and �pT as they enter into eqs. (1) and (2). In the following,
we first review the accept-reject algorithm so as to later introduce a modified version of it,
best suited for the uncertainty estimation on the parameters of eq. (1). We also explain
how to perform uncertainty estimation for �pT by taking advantage of the direct sampling
from eq. (2).

It should be noted that the hadronization algorithm described above is used while the
mass of the remaining string is sufficiently large, such that suitable phase space exists to
produce a hadron and a remaining string. When the remaining string reaches a sufficiently
low mass, a specialized splitting is performed where two hadrons are produced without
a remaining string, rather than a hadron and the remaining string [19]. However, this
splitting is not always successful; if the remaining string has an m? smaller than the
summed m? of the two hadrons, then the entire hadronization of the string is rejected,
and started over. In principle, we do not account for this possible final rejection in our
modified accept-reject algorithm, since any effect from this should only be noticeable when
variations of the parameters from their default values are large, in which case, the support
of the underlying distribution will also not be sufficient.

2.1 Standard Accept-Reject Algorithm

The accept-reject algorithm can be used to sample a probability distribution when the
maximum value of the probability distribution, or a reliable overestimate thereof, is known.
The algorithm for sampling the probability distribution P (z, ci) begins by defining an
acceptance probability Paccept(z, ci) for a trial value of z,

Paccept(z, ci) ⌘
P (z, ci)

bP
 1 . (3)

Both the acceptance probability Paccept(z, ci) and the probability distribution P (z, ci) de-
pend on a set of parameter values ci, that we will later vary. The constant bP is cho-
sen so that the relation in eq. (3) is satisfied; it can be either the analytic maximum or
a numerically estimated overestimate. A trial value for z is accepted only if Paccept is
larger than a random uniform variate. If the trial value of z is rejected, with probability
Preject = 1� Paccept, a new trial z is then selected. The algorithm continues until a given
z value is accepted. That is, in the standard accept-reject algorithm, the value of z is
selected with probability p given by the product of the final accept probability times a
factor accounting for all of the rejected trials:

p(z) = Paccept(z)
1X

n=0

An , where A =

Z 1

0
dz0

�
1� Paccept(z

0)
�
, (4)

3Within Pythia 8, �pT is set with the parameter name StringPT:sigma.
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as desired.
A few considerations are worth mentioning. As in the case of parton-shower variations,

the modified rejection ratio in eq. (7) is inversely proportional to the difference P̂ �P and
can become large if P̂ ' P , leading to large weights. It is thus advantageous for P̂ to not
approximate the maximum value of P (z, ci) too closely, but to be larger by an O(1) factor.
In practice, multiplying P̂ by a factor of ten typically leads to stable results.4 The final
event weight w0 can also become large in cases when the baseline and alternative probability
distributions have limited overlap, i.e., the baseline distribution does not provide proper
support for the alternative distribution. A good indicator of the fidelity of the reweighting
is the weight sum

P
iw

0
i (or, equivalently, the mean weight) or the effective number of

events (
P

iw
0
i)
2/

P
iw

02
i . If the mean event weight is not near unity, or if the effective

number of events is significantly lower than the actual number of simulated events, care
should be taken when interpreting the weighted results.

2.3 Variation Details

Currently, we have implemented variations for the a, b, rc, and rb parameters of the Lund
string fragmentation function f(z) given by eq. (1), and the hadron transverse momentum
�pT of eq. (2). The variation weight for one selection of �pT does not require the use of the
accept-reject algorithm but can be calculated directly using the Box–Muller transform:

w0 =
�2

�02 exp

✓
�

✓
�2

�02 � 1

◆◆
, (11)

where  = (n2
1 + n2

2)/2 and ni are normally distributed random variates.
The two event weights arising from variations in eqs. (1) and (2) can be combined into

a single event weight by multiplication, due to the fact that we are sampling in a sequential
manner from P (�px,�py) and P (z|�px,�py), i.e., P (�px,�py) does not depend upon
z. However, variations of the parameters of f(z) must be considered as a group. While a
variation of the a parameter for a fixed b parameter can be calculated and vice versa, the
product of weights from these two calculations is not equivalent to varying both a and b
simultaneously. This is because, e.g., the maximum weight fmax(a1, b1) is different from
the maximum weights fmax(a1, b0) and fmax(a0, b1). This applies to all of the parameters
that enter into eq. (1): a, b, rc, and rb.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event
weights w0 to produce the desired distributions using the original sample of events, rather
than generating a new sample for each alternative parameter value. Therefore, we validate
the method by generating samples of 106 events using Pythia 8 configured with a set
of baseline parameter values. During this generation, we also calculate, using the modi-
fied accept-reject algorithm, a per-event weight w0 corresponding to an alternative set of
parameter values. We then compare the w0-weighted distributions to those obtained by
generating new samples using Pythia 8 configured with the alternative parameter values
as the baseline and without using the modified accept-reject algorithm.

4This factor may be adjusted within Pythia 8 by modifying the corresponding overSample parameter
for each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR spec-
ifies the over-sample factor for QCD final-state radiation enabled by the fsr:* set of variation keywords.
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Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.

8

SciPost Physics Submission

Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.

8

SciPost Physics Submission

Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.

8

SciPost Physics Submission

Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.

8

SciPost Physics Submission

Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.

8

SciPost Physics Submission

Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.

8

SciPost Physics Submission

Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to
that generated with a = 0.68. In the bottom panel, the distributions labeled
e were generated with the value of the parameter a explicitly set to (left) 0.30,
(middle) 0.55, and (right) 0.76. The distributions labeled w0 are all taken from
the same sample generated with a = abase = 0.68, but with different sets of
alternative event weights, calculated using the accept-reject algorithm applied
according to the alternative values of a. The bottom row shows the ratios of the
latter distributions to the former.

8

Charged Multiplicity 
Brute-Force Variations 

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

W
ei

gh
te

d
B

ru
te

−
Fo

rc
e

(+ can vary 5 further parameters, in addition to )a

Nch

SciPost Physics Submission

samples. Finally, in section 4, we summarize our findings and draw conclusions.

2 Method

An event produced by an event generator, like Pythia 8, begins from a small number
of partons that evolve through various stages. At each stage the color quantum numbers
are tracked in the large color Nc limit, such that each new color is assigned a new color
index. In this limit, only planar color flows are retained, and colored partons can be
assigned a unique pair of integers to represent color and anticolor. After the perturbatively-
motivated evolution of the parton shower, one of the last stages in the event development
is hadronization. Prior to this step, the collection of quarks, antiquarks, and gluons can
be partitioned into color-singlet objects (strings) based on their color quantum numbers.
The Lund string model of hadronization [5,13,14] is then applied to reduce strings into the
observed hadrons. The string represents a flux tube of the non-perturbative strong force
between a quark and an antiquark that successively breaks into hadrons, represented by
stable oscillating string states characterized by their four-momentum ph and flavor. The
full probability of a given fragmentation can be split into a flavor selection, a transverse
momentum sampling, and a longitudinal momentum sampling, which are all combined to
ensure a physical emission. A detailed discussion of the Lund fragmentation function as
implemented in Pythia 8 can be found in ref. [15]. Here, we summarize those elements
needed for the uncertainty estimation of the hadronization.

The Lund fragmentation function, or scaling function, determines the probability for
a hadron to be emitted with longitudinal lightcone momentum fraction z related to the
z-component of the hadron momentum ph,z, hadron energy Eh, and total string energy
Estring via the relation z = (ph,z + Eh)/Estring, valid in the rest-frame of the string for
hadron emitted in the +z direction. The fragmentation function has the following form:

f(z) /
1

z1+rQbm2
Q

(1� z)a exp

✓
�
bm2

?
z

◆
, (1)

where Q is the quark flavor, mQ is the quark mass, m2
? ⌘ m2 + p2T is the square of the

transverse mass, m is the hadron mass, pT is the transverse momentum of the hadron,
and rQ, a, and b are constant parameters fixed by fits to experimental data.1 The Bowler
modification z�rQbm2

Q in eq. (1) is only included for heavy quarks, i.e., rQ = 0 unless
Q 2 {c, b} [16]. Pythia 8 also allows for modifications to the a-parameter to be used in
splittings involving strange quarks s or diquarks D, parameterized by the form a0i = a+�ai,
where �ai represents an adjustable parameter2 within Pythia 8 with i 2 {s,D} (the form
of f(z) is also modified from (1), accounting for the fact that the emitted quarks can be of
a different flavor than the endpoints of the original string). The maximum of f(z), denoted
fmax, can be determined analytically for a given set of input parameter values, denoted ci.
Sampling z from f(z) is done by selecting a pseudo-random number x until one satisfies
x < f(z)/fmax  1, a method known as the accept-reject algorithm, further described in
section 2.1.

The transverse momentum pT of each emitted hadron is sampled via the two compo-
nents, �px = phadron

x � pstring
x and �py = phadron

y � pstring
y . In the default model of Pythia

1The default parameter names and values as implemented in Pythia 8 are StringZ:aLund = 0.68,
StringZ:bLund = 0.98, StringZ:rFactC = 0, and StringZ:rFactB = 0.855 for a, b, rc, and rb, respec-
tively.

2The default parameter names and values as implemented in Pythia 8 are StringZ:aExtraSQuark =

0 and StringZ:aExtraDiquark = 0.97, for s and D respectively.
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where the dependence on the chosen parameter values ci has been suppressed for brevity.
Summing the geometric series in A gives,

p(z) =
Paccept(z)

1�A
=

Paccept(z)Z 1

0
dz0 Paccept(z

0)

= P (z) , (5)

showing that the algorithm yields the desired distribution. The exact value of bP , provided
that Paccept  1, only affects the efficiency of the algorithm; the further bP is from the
actual maximum of P (z, ci), the less efficient the sampling.

2.2 Modified Accept-Reject Algorithm

Next, we present a modification of the accept-reject algorithm that assigns appropriate
weights to the existing event, depending on how the parameter values ci are varied. We
refer to the original set of parameter values ci as the baseline and the new set c0i as the
alternative. If the event generated with the baseline parameters has weight w (typically
in Pythia 8, w = 1), the modified accept-reject algorithm calculates the weight w0 that
corresponds to the alternative values of the parameters. If w0 > w, the event is more
probable given the alternative parameter values; if w0 < w, it is less probable.

For the calculation of the weight w0, one needs to keep track of all the trial z values
in the standard accept-reject algorithm. For each z that was rejected, w is multiplied
by R0

reject(z), while for the accepted value of z, the multiplication is by R0
accept(z). Here,

R0
accept(z) is the ratio of alternative and baseline acceptance probabilities,

R0
accept(z) =

P 0
accept(z)

Paccept(z)
=

P 0(z)

P (z)
, with P 0

accept(z, c
0
i) =

P 0(z, c0i)
bP

, (6)

while R0
reject(z) is the ratio of the alternative and the baseline rejection probabilities,

R0
reject(z) =

P 0
reject(z)

Preject(z)
=

1� P 0
accept(z)

1� Paccept(z)
=

bP � P 0(z)
bP � P (z)

. (7)

The value of bP can always be chosen such that both P 0
accept  1 and Paccept  1, albeit at

some loss of efficiency when the equality does not hold for the latter. Explicitly, we can
write the per-event hadronization weight as

w0 = w
Y

i2accepted

R0
i,accept(z)

Y

j2rejected

R0
j,reject(z), (8)

where w is the baseline event weight, the first product is over accepted trials of z, and the
second product is over the rejected trials of z.

We can readily show that the weight w0 corresponds to the correct probability p0(z) for
selecting the final trial-z value using the alternative parameter values c0i:

p0(z) = Paccept(z)R
0
accept(z)

1X

n=0

A0n , where A0 =

Z 1

0
dz0

�
1� Paccept(z

0)
�
R0

reject(z
0) . (9)

Summing the geometric series in A0 gives

p0(z) =
P 0

accept(z)

1�A0 =
P 0

accept(z)Z 1

0
dz0 P 0

accept(z
0)

= P 0(z) , (10)
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corresponds to the alternative values of the parameters. If w0 > w, the event is more
probable given the alternative parameter values; if w0 < w, it is less probable.

For the calculation of the weight w0, one needs to keep track of all the trial z values
in the standard accept-reject algorithm. For each z that was rejected, w is multiplied
by R0

reject(z), while for the accepted value of z, the multiplication is by R0
accept(z). Here,

R0
accept(z) is the ratio of alternative and baseline acceptance probabilities,

R0
accept(z) =

P 0
accept(z)

Paccept(z)
=

P 0(z)

P (z)
, with P 0

accept(z, c
0
i) =

P 0(z, c0i)
bP

, (6)

while R0
reject(z) is the ratio of the alternative and the baseline rejection probabilities,

R0
reject(z) =

P 0
reject(z)

Preject(z)
=

1� P 0
accept(z)

1� Paccept(z)
=

bP � P 0(z)
bP � P (z)

. (7)

The value of bP can always be chosen such that both P 0
accept  1 and Paccept  1, albeit at

some loss of efficiency when the equality does not hold for the latter. Explicitly, we can
write the per-event hadronization weight as

w0 = w
Y

i2accepted

R0
i,accept(z)

Y

j2rejected

R0
j,reject(z), (8)

where w is the baseline event weight, the first product is over accepted trials of z, and the
second product is over the rejected trials of z.

We can readily show that the weight w0 corresponds to the correct probability p0(z) for
selecting the final trial-z value using the alternative parameter values c0i:

p0(z) = Paccept(z)R
0
accept(z)

1X

n=0

A0n , where A0 =

Z 1

0
dz0

�
1� Paccept(z

0)
�
R0

reject(z
0) . (9)

Summing the geometric series in A0 gives

p0(z) =
P 0

accept(z)

1�A0 =
P 0

accept(z)Z 1

0
dz0 P 0

accept(z
0)

= P 0(z) , (10)

5

with ;

For each pT (Box-Muller transform):
Accept-Reject Algorithm

Soft QCD in MC Event Generators
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as

d�2�2 ⇧
dt

t2
⇥ dp2

⇥
p4
⇥

. (1.13)

This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�2�2(p⇥min) = ⌥n�(p⇥min) �tot , (1.14)

with ⌥n�(p⇥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⇥min per hadron-hadron collision,

Pn(p⇥min) = (⌥n�(p⇥min))
n exp (�⌥n�(p⇥min))

n!
. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
p⇥min ⇤ �/rp ⇤ 0.3 GeV ⇤ �QCD, but empirically this appears to be far too low. In current
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Unitarity: Divergent cross section for one emission reinterpreted 
as finite cross section for a divergent number of emissions

QCD dijet cross section (cumulative)
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�2�2(p⇥min) = ⌥n�(p⇥min) �tot , (1.14)

with ⌥n�(p⇥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⇥min per hadron-hadron collision,

Pn(p⇥min) = (⌥n�(p⇥min))
n exp (�⌥n�(p⇥min))
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. (1.15)

This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
p⇥min ⇤ �/rp ⇤ 0.3 GeV ⇤ �QCD, but empirically this appears to be far too low. In current
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have

�2�2(p⇥min) = ⌥n�(p⇥min) �tot , (1.14)

with ⌥n�(p⇥min) giving the average of a Poisson distribution in the number of parton-parton
interactions above p⇥min per hadron-hadron collision,
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
p⇥min ⇤ �/rp ⇤ 0.3 GeV ⇤ �QCD, but empirically this appears to be far too low. In current
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2!2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have
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with hni(p?min) giving the average of a Poisson distribution in the number of parton-parton
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p?min ! 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ! 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p?
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p?, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of hni above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p? and
x, is color screening; if the wavelength ⇠ 1/p? of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p? ! 0, hence leading to suppressed interactions. This
provides an infrared cuto↵ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto↵ would be the proton size,
p?min ⇡ ~/rp ⇡ 0.3 GeV ⇡ ⇤QCD, but empirically this appears to be far too low. In current
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Earliest MC model (“old” PYTHIA 6 model) Sjöstrand, van Zijl PRD36 (1987) 2019

Interpret to mean that every pp collision has more 
than one  QCD scattering with 2 → 2 ̂p⊥ ≲ 4 GeV

MPI probe low pT scales down to  

And very low  scales, down to 

Q ∼ 1 GeV
x x ∼ 1/shh

QCD dijet cross section (cumulative)
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to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a⇥ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
propagators appearing in perturbative QCD 2 ⌅ 2 scattering almost go on shell at low p⇥,
causing the di⇥erential cross sections to become very large, behaving roughly as
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This cross section is an inclusive number. Thus, if a single hadron-hadron event contains
two parton-parton interactions, it will “count” twice in �2�2 but only once in �tot, and so
on. In the limit that all the interactions are independent and equivalent, one would have
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This simple argument in fact expresses unitarity; instead of the total interaction cross section
diverging as p⇥min ⌅ 0 (which would violate unitarity), we have restated the problem so that
it is now the number of MPI per collision that diverges, with the total cross section remaining
finite. At LHC energies, the 2 ⌅ 2 scattering cross sections computed using the full LO
QCD cross section folded with modern PDFs becomes larger than the total pp one for p⇥
values of order 4–5 GeV [74]. One therefore expects the average number of perturbative MPI
to exceed unity at around that scale.

Two important ingredients remain to fully regulate the remaining divergence. Firstly,
the interactions cannot use up more momentum than is available in the parent hadron.
This suppresses the large-n tail of the estimate above. In PYTHIA-based models, the MPI
are ordered in p⇥, and the parton densities for each successive interaction are explicitly
constructed so that the sum of x fractions can never be greater than unity. In the HERWIG
models, instead the uncorrelated estimate of ⌥n� above is used as an initial guess, but the
generation of actual MPI is stopped once the energy-momentum conservation limit is reached.

The second ingredient invoked to suppress the number of interactions, at low p⇥ and
x, is color screening; if the wavelength ⇥ 1/p⇥ of an exchanged colored parton becomes
larger than a typical color-anticolor separation distance, it will only see an average color
charge that vanishes in the limit p⇥ ⌅ 0, hence leading to suppressed interactions. This
provides an infrared cuto⇥ for MPI similar to that provided by the hadronization scale for
parton showers. A first estimate of the color-screening cuto⇥ would be the proton size,
p⇥min ⇤ �/rp ⇤ 0.3 GeV ⇤ �QCD, but empirically this appears to be far too low. In current

18

Unitarity: Divergent cross section for one emission reinterpreted 
as finite cross section for a divergent number of emissions

QF Q2⇥

to additional reconstructible jets is, however, quite small. Soft interactions that do not give
rise to observable jets are much more plentiful, and can give significant corrections to the
color flow and total scattered energy of the event. This a↵ects the final-state activity in a
more global way, increasing multiplicity and summed ET distributions, and contributing to
the break-up of the beam remnants in the forward direction.

The first detailed Monte Carlo model for perturbative MPI was proposed in [62], and
with some variation this still forms the basis for most modern implementations. Some useful
additional references can be found in [15]. The first crucial observation is that the t-channel
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๏(Summary of note originally written by T. Sjöstrand, from discussions with R. Thorne though any oversimplifications or misrepresentations are our own)

Low-x gluon  
Key constraint: DIS   

Low :  driven by  

LO Pq/g(z) ~ flat   of measured 
quark closely correlated with  of 
mother gluon.  

NLO Pq/g(z)  1/z for small z  
Integral over z produces an 
approximate  factor.  

➤ Effectively, the NLO gluon is 
probed more “non-locally” in .  

 at small  becomes too 
big unless positive contribution from 
medium-to-high-x gluons (derived 
from  in that region, and 
from other measurements) is 
combined with a negative 
contribution from low-x gluons. 
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Soft QCD in MC Event Generators

Not so important for high-pT processes because 1) DGLAP evolution fills up low-x region, 2) kinematics restricted to higher x, 3) smaller  αs

The issue with NLO gluons at low x
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๏(Summary of note originally written by T. Sjöstrand, from discussions with R. Thorne though any oversimplifications or misrepresentations are our own)

So indeed, for many MRST/MSTW tunes, the gluon is negative at small x for the
low Q0 starting scale at around 1 – 2 GeV. In CTEQ fits the parametrized form does not
allow the gluon PDF to turn negative, but it is very close to zero at small x and Q. One
reason CTEQ gets away with this is that only data above Q2 = 4 GeV2 are used, while
MRST/MSTW go down to 2 GeV2.

The key constraint on the low-x gluon PDF comes from the DIS F2, where dF2/d ln Q2

is driven by g ! qq branchings. At LO the Pq/g(z) splitting kernel is quite flat, so the
x of the measured quark is closely correlated with that of the mother gluon. At NLO
Pq/g(z) / 1/z for small z, and the integral over z values introduces an approximate ln(1/x)
factor. Since the gluon is now probed more non-locally, the dF2/d ln Q2 at small x would
become too big if not the positive contribution from medium-to-high-x gluons (derived
from dF2/d ln Q2 in that region, and from other measurements) were combined with a
negative contribution from low-x gluons.

The problem remains in NNLO, and is even aggravated by more singular splitting
kernels. Attempts at an all-order resummation of ln(1/x) terms gives a gluon that is
more like LO than like NLO. For details see section 4.3 in [1].

The problem becomes less relevant for higher-p? processes, because
• DGLAP evolution fills up the lower-x region,
• kinematics is restricted to higher x vales, and
• ↵s is reduced.
In summary, NLO implies small-x corrections proportional to ln(1/x), that may drive

PDFs negative at small x and Q.

3 A toy NLO calculation

To illustrate this, consider a process in pp collision, as a convolution of a ME and two
PDFs. For simplicity, study only the interplay between the ME and the PDF on one side
of the event, given the x scale there. A generalization to one x scale on each side of the
event is straightforward.

By standard perturbation theory the e↵ect of typical NLO matrix elements in pp
collisions leads to an enhancement by a factor

MENLO

MELO

= 1 + ↵s(A1 ln(1/x) + A0) (1)

The divergent ln(1/x) behaviour above is largely to be compensated in the definition
of NLO PDFs. With

PDFNLO

PDFLO

= 1 + ↵s(B1 ln(1/x) + B0) (2)

it should follow that B1 ⇡ �A1. Thereby the product of ME times PDF is well-behaved
to O(↵s). There is a cross-term of O(↵2

s
), which is beyond the stated NLO accuracy.

We now see the numerical problem. For reasonably large x and Q2 scales, where
↵s(Q2) is small, say ↵sA1 ln(1/x) = 0.2, the logarithmic terms give

MENLO PDFNLO

MELO PDFLO

= (1 + 0.2)(1� 0.2) = 0.96 , (3)
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๏(Summary of note originally written by T. Sjöstrand, from discussions with R. Thorne though any oversimplifications or misrepresentations are our own)
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2

๏👍 log terms cancel

i.e. they cancel to a good approximation. But if instead x and Q2 are small, say
↵sA1 ln(1/x) = 2, then

MENLO PDFNLO

MELO PDFLO

= (1 + 2)(1� 2) = �3, (4)

i.e. the PDF becomes negative, the cross-term of O(↵2

s
) dominates, and the simple cal-

culation derails.

4 Phenomenology in PYTHIA 8

Tunes have been produced both with LO and with NLO PDFs. In general they both give
comparably good descriptions of data, which would seem to contradict the arguments
above.

What is notable is that tunes for NLO PDFs require a significantly smaller p?0 scale,
where p?0 is used to tame the 1/p4

? divergence of the QCD cross sections to 1/(p2

?+p2

?0
)2.

This reduced p?0 is precisely what is needed to compensate for the low amount of small-
x gluons in NLO PDFs. It is here useful to recall that, for the integrated QCD cross
sections, it is the number density fi(x, Q2) that enters the integrals, rather than the
momentum-weighted xfi(x, Q2) expressions. Thus the small-x partons play an important
role.

In the NLO tunes, the MPI collisions would tend to be symmetric, i.e. with x1 ⇠ x2,
and both not too small. Asymmetric collisions, where one x is small, would be killed by
the respective NLO PDFs vanishing or at least being tiny there (a negative PDF is reset
to 0 in Pythia). One therefore expects to find di↵erences in the rapidity spectrum of
minijets from MPIs. The main reason that MPIs contribute so significantly to the charged
multiplicity distribution and to dnchg/d⌘ is not the minijets in itself, however, but the
strings that are stretched out to the beam remnants. (Or, with colour reconnection
included, between the di↵erent MPIs.) Therefore the number of MPIs may be more
important than their exact location in rapidity.

The bottom line is that the MPI and string fragmentation frameworks are su�ciently
resilient that a rather significant change of PDF shape can be compensated by a retuning
of relevant parameters. Di↵erences could probably be found in more detailed studies, e.g.
in dnminijet/d⌘ distributions over a large ⌘ range. Irrespective of that, there is no reason
to use NLO PDFs in regions where they are known not to be trustworthy.

5 Recommendation

If one is not satisfied to use an LO PDF set throughout, Pythia 8 o↵ers the possibility
to use two separate PDF sets in the simulation, with the switch PDF:useHard = on.

One set can then be used exclusively for the hard process itself, where presumably
both x and Q2 are large. None of the issues raised above therefore matter, and one is
at liberty to use LO or NLO PDFs to calculate the (di↵erential and total) cross section
of the process. Insofar as the PDFs are combined with the built-in LO MEs, the overall

3

๏👎 Cross term dominates;  
๏The PDF becomes negative
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and connect (very) high and (very) low scales ➤ Big dynamical range!
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Main point: MPI can probe a large range of , beyond the usualx ∼ 10−4

(Extreme limits are mainly relevant for ultra-forward / beam-remnant fragmentation)

3. Photons included as partons
Bread and butter for part of the user community

4. LO or equivalent in some form (possibly with , relaxed momentum sum rule, …)αeff
s

Since MPI Matrix Elements are LO; ISR shower kernels also LO (so far)

5. Happy to have NnLO ones in a similar family. 
E.g., for use with higher-order MEs for the hard process. 

Useful (but possible?) for these to satisfy the other properties too?
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๏Hadronization 

‣ Map: Partons (defined at a low factorisation scale, after showering)  Hadrons 

‣ Between which partons do the confining potentials form?

→
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๏Hadronization 

‣ Map: Partons (defined at a low factorisation scale, after showering)  Hadrons 

‣ Between which partons do the confining potentials form?

→

๏Starting point for MC generators = Leading Colour limit  
๏  Probability for any given colour charge to accidentally be same as any other .  
๏  Each colour appears only once & is matched by a unique anticolour.

NC → ∞
⟹ → 0
⟹
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Example (from new Pythia 8.3 manual): 

 + parton showere+e− → Z0 → qq̄

Colour flow represented using  
“Les Houches colour tags” 

Eg., 101, 102, … [hep-ph/0109068 , hep-ph/0609017]

3) Colour (Re)connections 

https://arxiv.org/abs/hep-ph/0109068
https://arxiv.org/abs/hep-ph/0609017
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๏Starting point for MC generators = Leading Colour limit  
๏  Probability for any given colour charge to accidentally be same as any other .  
๏  Each colour appears only once & is matched by a unique anticolour.

NC → ∞
⟹ → 0
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๏In  collisions (LEP): 

‣ Corrections to the Leading-Colour 
picture suppressed by  

‣ Also: coherence  not much overlap 
in phase space (except in WW ➞ 4q) 

๏

e+e−

1/N2
C ∼ 10 %

⟹
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Colour Connections: Between which partons do confining potentials form?

16

๏High-energy pp collisions with QCD bremsstrahlung + multi-parton interactions 

‣ Final states with very many coloured partons 

‣ With significant overlaps in phase space 

‣ Who gets confined with whom? 

‣ If each has a colour ambiguity ~ 10%, 
CR becomes more likely than not
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MPIMPI

d�̂0

Example (from new Pythia 8.3 manual): 

   (all-jets)pp → tt̄

Prob(no CR) ∝ (1 −
1

N2
C )

nMPI
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   (all-jets)pp → tt̄
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1

N2
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Note: in this context, the word “colour 
reconnections” simply refers to an ambiguity 
beyond Leading NC, which is known to exist.  

But the term “CR” can also be used more 
broadly to incorporate further physics concepts. 

Detailed physics not yet fully known.
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How many MPI are we talking about? 

17

How many parton-parton systems are there in pp collisions? 
Multi-Parton Interactions (MPI) 

Peter Skands Soft QCD in MC Event Generators
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Unique feature of SU(3): Y-Shaped 3-String “Junctions” ➤ Baryons

18

๏“Colour reconnection” modelling based on stochastic sampling of SU(3) group 
probabilities: allows for random (re)connections
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Figure 2.6. Junction system, involving a Y-shaped string topology between three quarks.

Figure 2.7 shows the formation of junctions due to CR, showing the reconfiguration

of three qq̄ pairs into a junction and antijunction.

(a) (b)

Figure 2.7. (a) Strings spanning qq̄ pairs. (b) A reconfiguration of the strings instead forming

a junction and corresponding antijunction. This junction configuration can only form if the

overall qqq (and thus also q̄q̄q̄) are in an overall colour singlet state.

The string-fragmentation mechanism for junctions can be formulated as an exten-

sion (albeit a complicated one) of the model for a simple string stretched between a

qq̄ pair [17]. The inclusion of junction fragmentation results in a higher number of
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Figure 12. The average p? as a function of multiplicity [52] (a), the average charged multiplicity as a func-
tion of pseudorapidity [113] (b), and the ⇤/Ks ratio [114] (c). All observables from the CMS collaboration
and plotted with the Rivet framework [115]. All PYTHIA simulations were non single diffractive (NSD)
with a lifetime cut-off ⌧max = 10 mm/c and no p? cuts applied to the final state particles. The yellow error
band represents the experimental 1� deviation.

• Cj (ColourReconnection:junctionCorrection): multiplicative factor, m0j/m0,
applied to the string-length measure for junction systems, thereby enhancing or suppressing
the likelihood of junction reconnections. Controls the junction component of the baryon to
meson fraction and is tuned to the ⇤/K0

s ratio.

• pref
? (MultiPartonInteractions:pT0Ref): lower (infrared) regularisation scale of

the MPI framework. Controls the amount of low p? MPIs and is therefore closely related to
the total multiplicity and can be tuned to the d hnchi /d⌘ distribution.
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s ratio.

• pref
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the total multiplicity and can be tuned to the d hnchi /d⌘ distribution.
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QCD-based CR 
with junctions

Mode 0, 2, 3 are different causality restrictions (0 = none)

Without string-junction CR

We fit 
to this

Christiansen & PS 2015

For example:

String Formation Beyond Leading Colour: Christiansen & PS 1505.01681

Baryon Number Violation & String Topologies: Sjöstrand & PS hep-ph/0212264

https://arxiv.org/abs/1505.01681
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Figure 12. The average p? as a function of multiplicity [52] (a), the average charged multiplicity as a func-
tion of pseudorapidity [113] (b), and the ⇤/Ks ratio [114] (c). All observables from the CMS collaboration
and plotted with the Rivet framework [115]. All PYTHIA simulations were non single diffractive (NSD)
with a lifetime cut-off ⌧max = 10 mm/c and no p? cuts applied to the final state particles. The yellow error
band represents the experimental 1� deviation.

• Cj (ColourReconnection:junctionCorrection): multiplicative factor, m0j/m0,
applied to the string-length measure for junction systems, thereby enhancing or suppressing
the likelihood of junction reconnections. Controls the junction component of the baryon to
meson fraction and is tuned to the ⇤/K0

s ratio.

• pref
? (MultiPartonInteractions:pT0Ref): lower (infrared) regularisation scale of

the MPI framework. Controls the amount of low p? MPIs and is therefore closely related to
the total multiplicity and can be tuned to the d hnchi /d⌘ distribution.
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QCD-based CR 
with junctions

Mode 0, 2, 3 are different causality restrictions (0 = none)

Without string-junction CR

We fit 
to this

Charm hadron composition – 1

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers

Charm hadronization in pp (1):

26

More charm quarks in baryons in pp than in e+e– and ep collisions

Charm quarks hadronize into baryons 40% of the time

~ 4 times more than in e+e–

arXiv:2105.06335 talk Luigi Dello Stritto

K. Reygers, EPS-HEP 2021

EPS-HEP 2021 | Highlights from the ALICE experiment | K. Reygers
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 = 5 TeVspp, 
 = 13 TeVspp, 

PYTHIA 8.243, Monash 2013

          PYTHIA 8.243, CR-BLC:
Mode 0 Mode 2
Mode 3

SHM+RQM
Catania
QCM

ALI-DER-493847

Charm hadronization in pp (3)

28

 ratio in pp significantly different than in e+e–�+c /D0
arXiv:2011.06079

Charm quark fragmentation not universal!

e+e�
Standard PYTHIA 8 below data

Fair description by 
‣ PYTHIA 8 with CR 
‣ Coalescence + fragmentation (Catania) 
‣ SH mode + RQM  

(T = 170 MeV, additional states crucial)

Measurement of charmed hadrons down to 
unprecedentedly low pT at midrapidity

�+c (udc) � pK��+
� pK0s

arXiv:2106.08278

⇤+
c /D0 four times higher

than in e+e�!
But e+e� result recovered
at large p?.

Torbjörn Sjöstrand Nonperturbative models in PYTHIA slide 6/23

Pythia Default 
(Monash) ~ LEP High pT ~ LEP

ALICE 2021: also in charm

×
10

Pre-
dicted 

this

(& LHCb: Also in beaty)

Christiansen & PS 2015

For example:

String Formation Beyond Leading Colour: Christiansen & PS 1505.01681

Baryon Number Violation & String Topologies: Sjöstrand & PS hep-ph/0212264

https://arxiv.org/abs/1505.01681
https://arxiv.org/abs/hep-ph/0212264
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4) Strangeness, Ropes, and Close-Packing 

20

๏Clear observations of strangeness enhancements in high-multiplicity pp collisions 
(relative to LEP and low-multiplicity pp) [e.g., ALICE Nature Phys. 13, 535 (2017)]  

‣ Much activity to understand dynamics of effective breakdown of strangeness universality

๏In string context, MPI + Colour Ropes [e.g., Bierlich et al. 1412.6259] have been proposed: 

‣ Casimir scaling of effective string tension  less strangeness suppression in string breaks ⟹
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๏Clear observations of strangeness enhancements in high-multiplicity pp collisions 
(relative to LEP and low-multiplicity pp) [e.g., ALICE Nature Phys. 13, 535 (2017)]  

‣ Much activity to understand dynamics of effective breakdown of strangeness universality

๏In string context, MPI + Colour Ropes [e.g., Bierlich et al. 1412.6259] have been proposed: 

‣ Casimir scaling of effective string tension  less strangeness suppression in string breaks ⟹

๏Simplified alternative: Close-Packing [Fischer, Sjöstrand 1610.09818] string tension scales 
with effective background  nMPI (global) or nstrings (local) 

‣ Local version updated with Monash student J. Altmann to account for directional colour 
flows (p and q), junction topologies, and effective diquark suppression in octet-type 
fields (“Altmann mechanism”): 

∝

Peter Skands Soft QCD in MC Event Generators
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 (or ) fluctuation 
increases tension from C8 to C6

RR̄ R̄R

R R̄

 (or ) fluctuation 

Can just break the other string

GḠ ḠG

G Ḡ

“Popcorn picture” in which diquark formation is 
viewed as a fluctuation of first one colour 
followed by another of a different colour

https://arxiv.org/abs/1610.09818
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Effective energy density per unit length could be different from vacuum case near a junction?

String break
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New: Strange Junctions



๏What do we really know about the field strength near a QCD junction? 

‣ Probably related to baryon spectroscopy / lattice, but unaware of any specific answers

21Peter Skands Soft QCD in MC Event Generators

Versus

Effective energy density per unit length could be different from vacuum case near a junction?

Enhanced string tension on the string breaks closest to junction? 
➞ Model of “strange junctions” (with Monash PhD student Javira Altmann) 
Mechanism for strangeness enhancement specifically for junction baryons

String break

String break

New: Strange Junctions



QCD CR + Advanced Close-Packing: First Results

22Peter Skands Soft QCD in MC Event Generators
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Being finalised 
now, with 

publication on 
the way.

J. Altmann, PS
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Cosmic-Ray Air Showers

24

๏New: PythiaCR     [Based on Sjöstrand + Utheim, 2005.05658 & 2108.03481]

‣ Provide hadron-air cross sections  perform collisions  simulate hadron decays⊕ ⊕
๏ (Air ~ 14N + 16O; currently also 40Ar, 208Pb; few hours of manual labour to add more) 

‣ Cosmic-ray “beams” are heterogenous and not mono-energetic: 
๏ Achieved by initialising multiple beams in energy grids + rapid beam switching

‣ CR (re-)interactions “fixed-target”; can probe low CM energies (by HEP standards)
๏ Standard (collider) Pythia only applies for s > 10 GeV
๏ New extensive low-energy (re)interaction models

๏ ➡ Arbitrary hadron-hadron collisions at low E, and arbitrary hadron-p/n at any energy)
๏ Extend to hadron-nucleus using nuclear-geometry part of ANGANTYR

Peter Skands Soft QCD in MC Event Generators

• Single incident particle ➡ billions of final-state particles (forget about GEANT).  
•Recently started a collaboration with CORSIKA 8 fast/optimised air-shower tracker
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๏So far limited comparisons with data - interested in feedback

‣ A positive technical note: native C++ simplifies CORSIKA 8 - PYTHIA 8 interfacing

Peter Skands Soft QCD in MC Event Generators

• Single incident particle ➡ billions of final-state particles (forget about GEANT).  
•Recently started a collaboration with CORSIKA 8 fast/optimised air-shower tracker

๏See also M. Reininghaus et al. Pythia 8 as hadronic interaction model in air shower simulations, 2303.02792



Last: mcplots.cern.ch — New and Updated coming soon!
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๏mcplots.cern.ch started in 2010, as browsable repository of MC validations (via Rivet) 

‣ Running continuously on ~ 1000 cores donated by BOINC LHC@home volunteers (+ Grid backfill) 

Peter Skands Soft QCD in MC Event Generators

The interface was 
technically 

advanced but 
visually perhaps a 

bit dated, and 
somewhat 
cluttered 

“Old School”

http://mcplots.cern.ch
http://mcplots.cern.ch


mcplots.cern.ch — New and Updated coming soon!

26

๏Modern clean interface developed through 2023 (+ many improvements under the hood)  

‣ Mainly driven by Natalia Korneeva, now an adjoint at Monash U (with support from LPCC)

Peter Skands Soft QCD in MC Event Generators

Being finalised 
now, with 

publication on 
the way.

Join Test4Theory on 
LHC@home 

(Runs when computer is idle) 

More than 100 
Rivet analyses 
(simple to add 

new ones)

Tools to compare different 
generators / tunes, or different 

versions of same generator

http://mcplots.cern.ch
https://lhcathome.web.cern.ch


Extra Slides



An Achilles’ Heel? Protons!

28

๏So far, physics models have focused heavily on strangeness 

‣ The original ALICE paper from 2017 also included the proton/pion ratio 

‣ In many model setups, enhancement of strangeness is accompanied by more 
heavier states in general  non-strange baryons also enhanced  

‣ Also, QCD CR model acts in colour space; junction structures are flavour-blind

⟹

Peter Skands Soft QCD in MC Event Generators

?
Baryon-to-Meson Ratios
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5.1. Light Flavours584

One of the clearest and most intensely studied observables is the strong585

multiplicity dependence of the yield ratio to pions for various strange particle586

species, as observed in particular by ALICE [104] across pp, pA, and AA587

collisions.588

We note that it would be interesting to indicate also the values measured589

in ee collisions when showing these plots, for a clearer “vacuum” reference590

value. Interesting attempts were also made to separate this into quark and591

gluon jets [163] but these are complex to interpret since the results depended on592

the details of the method used to separate the classes. Non-trivial multiplicity593

dependence of these quantities in ee collisions is also possible [164], though so594

far little explored.595
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Jing Wang (MIT), LBNL HF/MVTX Workshop (Berkeley)Recap: Hadronization, QCD Challenge (Feb 17, 2023) 5

Correlation Between Baryons

• Dip around Δφ ~ 0 not expected

• Very low-pT particles (pT > 0.6 GeV)

‣ Should be effects in fragmentation


• Similar difference for baryon-antibaryon 
pairs as well


• Similar study should be extended to 
heavy flavors 

Figure 6: Left: Baryon-to-meson ratios measured by ALICE [104], with approximate indications
of the values measured at LEP (DELPHI [165]) superimposed. Right: proton-� correlations in
azimuth [166]

An important conundrum that any physical model of these e�ects will need to596

address is the fact that the proton-to-pion ratio has been observed to exhibit very597

little (if any) dependence on multiplicity, combined with the intriguing fact that598

the values of this ratio observed in LHC collisions appears to be a bit below the599

value observed at LEP, see Fig. 6 (left). According to the PDG table of average600

identified-particle multiplicities in ee collisions [167], ÈNpÍ / ÈNfiÍ at LEP is about601

0.062 ± 0.002, whereas the values measured by ALICE in pp collisions [104]602

range from about 0.048 ± 0.006 for the lowest charged-particle densities to about603

0.055 ± 0.005 for the highest ones. This presents a challenge for many of the604

current dynamical models on the market, for which the LEP value typically acts605

as an e�ective lower bound. Even in models (or tunes) that do not use the LEP606

value as a direct constraint, one would still have to address at least in principle607

what physical mechanism accounts for the universality breakdown between ee and608

pp collisions. One potential mechanism that has been hypothesised to possibly609

reduce the number of proton–antiproton pairs is hadronic re-annihilation [168]610

though it may be doubtful if that could be su�ciently active even for the lowest-611

multiplicity bins, as required by data. Another point that was made during the612

18
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Peter Skands Soft QCD in MC Event Generators

Data shows that the  ratio at LHC is a bit 
smaller than at LEP! 

With ~ no evolution with Nch 

Protons are the most abundant baryons! 

EPOS captures this behaviour  

(what about @ LEP?) 

From a CR perspective, baryon 
enhancement appears very correlated with 
strangeness …

p/π
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