Recent Double Parton Scattering Measurements

Recent Double Parton Scattering Measurements Introduction

•nPS processes are important for fundamental studies

- background of new physics signatures
- probe of the partonic structure of the proton
- input for the tuning of MC generators
- •nPS sensitive to interplay between perturbative and non-perturbative QCD
 - models can be tuned using data measurements
- •Rate of nPS processes increases with \sqrt{s}
 - parton densities increase
 - cross section of nPS

• in certain processes, contributions from DPS are significant

•We have results from many experiments, using many final states and in different \sqrt{s}

Recent Double Parton Scattering Measurements DPS effective cross section

- First appearance of Double Parton Scattering in theory in the 80s
- DPS cross section can be expressed as:

$$\frac{\mathrm{d}\sigma_{\mathrm{DPS}}}{\mathrm{d}x_{1}\,\mathrm{d}x_{2}\,\mathrm{d}\bar{x}_{1}\,\mathrm{d}\bar{x}_{2}} = \frac{1}{C} \int_{x_{1}}^{1-x_{2}} \frac{\mathrm{d}x_{1}'}{x_{1}'} \int_{x_{2}}^{1-x_{1}'} \frac{\mathrm{d}x_{2}'}{x_{2}'} \int_{\bar{x}_{1}}^{1-\bar{x}_{2}} \frac{\mathrm{d}\bar{x}_{1}'}{\bar{x}_{1}'} \int_{\bar{x}_{2}}^{1} \times \sum_{a_{1}a_{2}b_{1}b_{2}}^{R} \hat{\sigma}_{a_{1}b_{1}}^{(1)} (x_{1}'\bar{x}_{1}'s,\mu_{1})^{R} \hat{\sigma}_{a_{2}b_{2}}^{(2)} (x_{2}'\bar{x}_{2}'s,\mu_{2}'s$$

•Ignoring any correlations between the individual partons (m=2 if ψ_1 != ψ_2):

• $\sigma_{eff,DPS}$ holds the effects of the transversity and is the parameter calculated from experiments

- •plenty of measurements the past decade
- final states (so far) include jets, photons, EW bosons and quarkonia!

•DPS is a proton-proton scattering process where two partons from each proton interact separately

Riccardo Nagar's thesis

 $\sigma_{\text{DPS}}^{\text{pp}\to\psi_1\psi_2+X} = \left(\frac{\mathfrak{m}}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{rr}}}{2}$ $\sigma_{\rm eff,DPS}$

Recent Double Parton Scattering Measurements Same sign WW production with CMS

arXiv:2206.02681

Recent Double Parton Scattering Measurements

J/ψ +Y production with **LHCb**

JHEP 08 (2023) 093

$\sigma(J/\psi - \Upsilon(1S)) = 133 \pm 22 \pm 7 \pm 3\,\mathrm{pb}$ $\sigma(J/\psi - \Upsilon(2S)) = 76 \pm 21 \pm 4 \pm 7 \,\mathrm{pb}$

U. Zurich

- PRL 117 (2016) 062001

Recent Double Parton Scattering Measurements J/ψ pair production with LHCb

LHCb-PAPER-2023-022

LHCb-PAPER-2023-022

)	• $\sigma_{\rm eff} = 13.1 \pm 1.8 ({\rm stat}) \pm 2.3 ({\rm syst}) {\rm mb}$
)	<i>pp</i> @13 TeV
	preliminary LHCb $(J/\psi - J/\psi)$
	LHCb $(J/\psi - \Upsilon(1S))$
DC	LHCb $(J/\psi - \Upsilon(2S))$
	<i>pp</i> @8 TeV
-	$ATLAS (J/\psi - Z^0) *$
	$\mathbf{ATLAS} (J/\psi - J/\psi)$
	LHCb $(\Upsilon(1S)-D^0)$
-	<i>pp</i> @7 TeV
Ψ –	$ATLAS (J/\psi - W^{\pm})^{*}$
	$\leftarrow CMS (J/\psi - J/\psi)^*$
	$ LHCb (J/\psi - D^0)^* $
_	$\square \qquad \qquad LHCb (D^0 - D^0)$
	$\square \qquad \qquad \text{ATLAS } (W^{\pm}-2 \text{ jets})$
TV-	$CMS (W^{\pm}-2 \text{ jets})$
	$p \overline{p} @ 1.96 \text{ TeV}$
	$D0 (J/\psi - \Upsilon)^*$
_	$D0 (J/\psi - J/\psi)$
) —	$D0 (\gamma-3 \text{ jets})$
-	<i>pp@</i> 1.8 TeV
-	CDF (4 jets)
	$\Box F (\gamma-3 \text{ jets})$
2.5	0 20 40 60 80 100
Δy	σ _{eff} [mb]

Zurich

Recent Double Parton Scattering Measurements J/ψ pair production with ALICE

- • $N(J/\psi + J/\psi) = 59.3 \pm 13.5 \text{ (stat)} \pm 4.4 \text{ (syst)}$
- • $\sigma (J/\psi + J/\psi) = 10.3 \pm 2.3 \text{ (stat)} \pm 1.3 \text{ (syst) nb}$
- • $\sigma_{\text{prompt}} \left(J/\psi + J/\psi \right) = 7.3 \pm 1.7 \text{ (stat)} ^{+1.9}_{-2.1} \text{ (syst) nb}$
- • $\sigma_{\text{non-prompt}} \left(J/\psi + J/\psi \right) = 2.97 \pm 0.09 \text{ (stat)} + 0.68 \text{ (syst) nb}$

9

arXiv:2303.13431

Assuming all di-J/ ψ events are DPS DPS effective cross section from prompt: $\sigma_{eff} = 6.7 \pm 1.4$ (stat) ± 1.1 (syst) mb non-prompt: $\sigma_{eff} = 6.7 \pm 1.6$ (stat) ± 2.7 (syst) mb st) nb

u. Zurích

Recent Double Parton Scattering Measurements

 $J/\psi+\psi(2S)$ production with **LHCb**

- $\bullet N\left(J/\psi + \psi(2S)\right) = 629 \pm 50$

LHCb-PAPER-2023-023

Recent Double Parton Scattering Measurements Triple J/ ψ meson production with CMS

- $N(J/\psi + J/\psi + J/\psi) = 5.0^{+2.6}_{-1.9}$
- • $\sigma (J/\psi + J/\psi + J/\psi + X) = 272^{+141}_{-104} (\text{stat}) \pm 17 (\text{syst}) \text{ fb}$

- Assuming that
 - •generalised triple PDF can factorise into longitudinal & transverse components
 - Iongitudinal triple PDF is the product of 3 single PDFs (ignoring parton correlations in colour, momentum, etc)

(2023) 338 NP 19

•calculate the inverse of the cube of the transverse pp overlap reaching $\sigma_{\rm eff, TPS} = (0.82 \pm 0.11) \times \sigma_{\rm eff, DPS}$

PRL 118 (2017) 122001

U. Zurich

Recent Double Parton Scattering Measurements Triple J/ ψ meson production with **CMS**

 $\sigma_{\text{eff}} = 2.7^{+1.4}_{-1.0} (\text{exp}) \,{}^{+1.5}_{-1.0} (\text{theo}) \,\text{mb}$

Triple J/ ψ fractions: ~6% SPS, ~74% DPS and ~20% TPS

NP 19 (2023) 338

IIIGINS						
•Status in 2019	Observables	Experiments	CSM	CEM	NRQCD	Interest
	$J/\psi + J/\psi$	LHCb, CMS, AT- LAS, D0, NA3	NLO, NNLO*	NLO	LO	Test of the CSM; DPS; Gluon TMDs;
	$J/\psi + \psi(2S)$ or $J/\psi + \chi_c$	_	LO	NLO	LO	DPS vs SPS;
	$J/\psi + \Upsilon$	D0	LO	NLO	LO	Test of the CSM; DPS;
	$\Upsilon + \Upsilon$	CMS	NLO (?)	NLO	LO	Test of the CSM; DPS; Gluon TMDs;
	J/ψ +charm	LHCb	LO	-4/	LO	$c \rightarrow J/\psi$ fragmentation & CTs; DPS.
	J/ψ +bottom or J/ψ +nonprompt J/ψ	- jet	-	- 4	LO	Test of the COM; DPS;
	Υ +bottom or Υ +nonprompt J/ψ	- 000	LO	-	LO	Test of the CSM/COM; DPS;
	Υ+charm	LHCb	LO	_	LO	DPS;
	$J/\psi + Z$	ATLAS	NLO	NLO	Partial NLO	Test of the CSM/COM; DPS;
	$J/\psi + W$	ATLAS	LO	NLO	NLO (?)	Test of the COM; DPS;
	$\Upsilon + Z$	_	NLO	_		Test of the CSM/COM; DPS;
	$\Upsilon + W$	_	LO	_		Test of the COM; DPS;

More and more processes are newly	Observables	Experiments	CSM	CEM	NIPOCD	Interest
discovered/studied	Observables	+ALICE		CEIVI	NKQCD	Interest
 still space to fill in phase-space 	$J/\psi + J/\psi$	LHCb, CMS, AT- LAS, D0, NA3	NLO, NNLO*	NLO	LO	Test of the CSM; DPS; Gluon TMDs;
• processes are in our datasets - we	$J/\psi + \psi(2S)$ or $J/\psi + \chi_c$	LHCb	LO	NLO	LO	DPS vs SPS;
Worth having this table updated	$J/\psi + \Upsilon$	D0 +LHCb	LO	NLO	LO	Test of the CSM; DPS;
ogether with the TPS processes	$\Upsilon + \Upsilon$	CMS	NLO (?)	NLO	LO	Test of the CSM; DPS; Gluon TMDs;
preliminary $pp @ 13 \text{ TeV}$ LHCb $(J/\psi - J/\psi)$	$J/\psi + charm$ J/ψ	LHCb	LO	- Ý/	LO	$c \rightarrow J/\psi$ fragmentation & CTs DPS.
LHCb $(J/\psi - \Upsilon(1S))$ LHCb $(J/\psi - \Upsilon(2S))$ pp @8 TeV $\Delta TLAS (Ibw 7^0)*$	J/ψ +Y -J/ ψ J/ψ +bottom or J/ψ J/ψ +nonprompt J/ψ	LHCb	-	- 4	LO	Test of the COM; DPS;
ATLAS $(J/\psi-Z)^{*}$ ATLAS $(J/\psi-J/\psi)$ LHCb $(\Upsilon(1S)-D^0)$ pp @7 TeV ATLAS $(J/\psi-J/\psi)$ LHCb $(\Upsilon(1S)-D^0)$ pp @7 TeV ATLAS $(J/\psi-Z)^{*}$ D0, $Vs=8 \text{ TeV}, Z+D$ D0, $Vs=1.96 \text{ TeV}, \gamma+3-D$ D0, $Vs=1.96 \text{ TeV}, 2-\gamma+D$	$ \begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & $	LHCb	LO	-	LO	Test of the CSM/COM; DPS;
ATLAS $(J/\psi - W^{\pm})^{*}$ CMS $(J/\psi - J/\psi)^{*}$ D0 , $V_{S}=1.96$ TeV, $\gamma+3-$ CDF , $V_{S}=1.8$ TeV, $\gamma+3-$ LIA2 $V_{S}=640$ GeV 4-ie	jet jet Y+charm	LHCb	LO	_	LO	DPS;
LHCb $(J/\psi-D^0)^*$ LHCb (D^0-D^0) ATLAS $(W^{\pm}-2 \text{ jets})$ LHCb $(W^{\pm}-2 \text{ jets})$	$J/\psi + Z$	ATLAS	NLO	NLO	Partial NLO	Test of the CSM/COM; DPS;
$\frac{\text{CMS} (W^{\perp}-2 \text{ jets})}{p \overline{p} @ 1.96 \text{ TeV}}$ $D0 (J/\psi-\Upsilon)*$ $D0 (J/\psi-J/\psi)$ M^{\perp} $D0 (J/\psi-J/\psi)$ M^{\perp} $M^$	jet 2-je $J/\psi + W$	ATLAS	LO	NLO	NLO (?)	Test of the COM; DPS;
$\begin{array}{c} D0 \left(\gamma - 3 \text{ jets} \right) & 20 \\ p \overline{p} @ 1.8 \text{ TeV} \\ CDF \left(4 \text{ jets} \right) & \sigma_{eff, DPS} \text{ [mb]} \end{array}$	$\Upsilon + Z$	_	NLO	_		Test of the CSM/COM; DPS;
$\begin{array}{c} \text{CDF} (\gamma - 3 \text{ jets}) \\ 40 & 60 & 80 & 100 \end{array}$	$\Upsilon + W$	_	LO	_		Test of the COM; DPS:

