Exploring high-purity multi-parton scattering at hadron colliders

Gavin Salam

Rudolf Peierls Centre for Theoretical Physics & All Souls College, Oxford

QCD@LHC **IPPP, Durham** September 2023

UNIVERSITY OF OXFORD

Exploring high-purity multi-parton scattering at hadron colliders Jeppe R. Andersen,¹ Pier Francesco Monni,² Luca Rottoli,³ Gavin P. Salam,^{4, 5} and Alba Soto-Ontoso²

arXiv:2307.05693

Classic challenge in multi-parton interaction (MPI) studies

Distinguishing two contributions:

- two independent hard scatterings (2HS)
- ► a single hard scattering (1HS) with extra radiation

Both have experimental signature of Z boson (\rightarrow 2 leptons) + jets

Background from Single-parton scattering (1HS) including radiation

6

Illustration: W+2-jets study

► E.g. ATLAS, $W \rightarrow \ell \nu + 2$ jets 1301.6872

Exploits fact that MPI jet-pair more likely to balance than radiation jet pair, so MPI should be enhanced for

$$\Delta_{\text{jets}} = \bigotimes_{\substack{0,1^2\\p_T}\\0.1} + \widetilde{p}_{Table}^{J2} \rightarrow 0$$

- > That works to some extend by long at relative A+H+J inclusive prediction MPI (2HS) fragtion is moderate ($\leq 25\%$)
- Quantitative analysis requires very good understanding of radiation in single hard scattering (1HS) $^{0}_{0}$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Avoid radiation issue: same-sign WW

- even traditional "goldplated" MPI processes are difficult
- ► Here $W^{\pm}W^{\pm} \rightarrow$ same-sign leptons, CMS 2206.02681
- \blacktriangleright many other backgrounds \rightarrow need for BDT makes it difficult to study MPI physics
- \blacktriangleright 6.2 σ observation with full Run 2 dataset

- Consider process with MPI simulation turned off (i.e. just 1HS)
- \blacktriangleright Look at avg. p_t of leading jet (p_{ti}^{ℓ}) as a function of $Z p_t (p_{tZ})$

- Consider process with MPI simulation turned off (i.e. just 1HS)
- Look at avg. p_t of leading jet (p_{ti}^{ℓ}) as a function of $Z p_t (p_{tZ})$
- > Most of p_{tZ} range: almost perfect linear correlation, since leading jet balances p_{tZ}

- Consider process with MPI simulation turned off (i.e. just 1HS)
- \blacktriangleright Look at avg. p_t of leading jet (p_{ti}^{ℓ}) as a function of $Z p_t (p_{tZ})$
- > Most of p_{tZ} range: almost perfect linear correlation, since leading jet balances p_{tZ}
- ► For $p_{tZ} \rightarrow 0$: $\langle p_{ti}^{\ell} \rangle$ saturates at about 2–3 GeV: two soft jets balance each other

For $p_{tZ} \rightarrow 0$, average p_t of leading jet can be calculated from resummation

$$\langle p_{tj}^{\ell} \rangle_{p_{tZ} \to 0} \sim \Lambda \left(\frac{M}{\Lambda} \right)^{\kappa \ln \frac{2+\kappa}{1+\kappa}} \kappa \sim \sqrt{\Lambda M}$$

> By constraining p_{tZ} we can forbid most radiation above this characteristic 2–3 GeV scale

[classic Parisi-Petronzio '79]

$pp \rightarrow Z + X$: what is intrinsic scale of MPI jets?

next step: turn MPI on

- ► for $p_{tZ} \rightarrow 0$, leading jet p_t is now ~10 GeV instead of 2–3 GeV [not so soft!]
- because there is almost always an MPI jet that is much harder than the soft jets from Zprocess
- suggests we should study MPI with help of a tight cut on p_{tZ}

Is this not obvious?

There has been some past study of MPI with p_{tZ} cuts

ATLAS <u>1409.3433</u> mostly an underlyingevent study, used $p_{tZ} < 5 \,\mathrm{GeV}$

Gavin P. Salam

 $p_{T}^{Z} < 10, p_{T}^{jet} > 20$

Bansal, Bansal, Kumar, Singh <u>1602.05392</u> suggested MPI studies with $p_{tZ} < 10 \,\text{GeV}$ for improved MPI purity

CMS 2210.16139 showed results with $p_{tZ} < 10 \,{\rm GeV},$ confirming some MPI enhancement

This study: establish what cut to use, explore opportunities that open up

We want balance between

- ► maximising statistics (favours loose cut on Z)
- \blacktriangleright minimising radiation from Z hard system (favours tight cut on Z)
- p_{tj} v. p_{tZ} plot tells us that the optimum is a requirement $p_{tZ} \lesssim 2 \,\text{GeV}$
- > any smaller and we lose statistics without reducing p_t scale of radiation from Z process
- > any higher and we increase p_t scale of radiation
- [should also be realistic given experimental resolution]

QCD@LHC, Durham, September 2023

This study: establish what cut to use, explore opportunities that open up

We want balance ptz < 2 GeV cut retains 4 – 5% of Z-pole Drell-Yan events ► maximisi For $Z \rightarrow \mu^+\mu^-$, residual cross section is ~40pb Corresponds to 12 million events for 300fb⁻¹ in Run 3 ► minimisi

- p_{tj} v. p_{tZ} plot tells us that the optimum is a requirement $p_{tZ} \lesssim 2 \,\text{GeV}$
- > any smaller and we lose statistics without reducing p_t scale of radiation from Z process
- > any higher and we increase p_t scale of radiation
- [should also be realistic given experimental resolution]

Gavin P. Salam

QCD@LHC, Durham, September 2023

Simplest observable: cumulative inclusive jet spectrum for p_{tZ} < 2 GeV

For small jet radius (here R = 0.4) this is a **linear sum** of

- cumulative jet spectrum from 1HS process
- cumulative jet spectrum from any additional hard scatters

Dominated by jets from additional hard scatters

P tj,min	MPI purity
10 GeV	90%
20 GeV	78%
40 GeV	60%

Connection with "pocket formula" (sigma effective)

Pocket formula says that cross section for two processes A and B to happen simultaneously is

 σ_{AB}

where $\sigma_{\rm eff}$ is a normalisation factor roughly connected with area over which partons are concentrated in the proton.

$$\sigma_{A} = \frac{\sigma_{A} \sigma_{B}}{\sigma_{eff}}$$

Connection with "pocket formula" (sigma effective)

 $\langle n(p_{tj,\min}) \rangle_{C_7}$ = average number of jets above $p_{tj,\min}$ for a given cut C_Z on p_{tZ}

$$\langle n(p_{tj,\min}) \rangle_{C_Z} = \frac{1}{\sigma(p_{tZ} < \sigma)}$$

Pure MPI part extracted by subtracting no-MPI calculation (thanks to linearity)

$$\langle n(p_{tj,\min}) \rangle_{C_Z}^{\text{pure-MPI}} \equiv \langle n(p_{tj,\min}) \rangle_{C_Z}^{\text{pure-MPI}}$$

In σ_{eff} picture, pure-MPI part can be connected with jet rate in min-bias events (i.e. no Z) NB: can be directly measured on data, identical systematics (e.g. with charge-track jets at low p_{ti})

$$\langle n(p_{tj,\min}) \rangle_{C_Z}^{\text{pure-MPI}}$$

Gavin P. Salam

QCD@LHC, Durham, September 2023

 $\sigma_{AB} = \frac{\sigma_{A}\sigma_{B}}{\sigma_{\text{eff}}}$

 $\frac{1}{C(C_Z)} \int_{p_{t,i}} \frac{dp_{t,j}}{dp_{t,j}} \frac{d\sigma_{jet}(p_{t,Z} < C_Z)}{dp_{t,j}}$

 $(p_{tj,\min})\rangle_{C_Z} - \langle n(p_{tj,\min})\rangle_{C_Z}^{\text{no-MPI}}$

Questions you can ask

Within pocket formula picture

independently of jet p_t)

Beyond DPS pocket formula

- ► QFT effects & potential breakdown of pocket formula?
- ➤ can one use this to measure 3HS, etc.? (cf. d'Enterria and Snigirev <u>1612.05582</u>)

► how does σ_{eff} depend on kinematics of the jets? (→ in Pythia, $\sigma_{\text{eff}} \simeq 30$ mb, fairly

Beyond the pocket formula

- Pocket formula is based on independent scatterings, with some effective transverse size over which partons are spread
- But we expect some partons to come from splitting of common parents, "perturbative interconnection"
- Such splittings tend to give more p_t to the partons \rightarrow higher p_{tZ}
- ► We should see an change of MPI jet rate if we relax the p_{tZ} cut

Studies of interconnection include Diehl & Schafer 1102.3081; Blok, Dokshitzer, Frankfurt & Strikman 1106.5533; Diehl, Gaunt & Schönwald, 1702.06486

Can one see effect of perturbative interconnection?

Measure cumulative jet rate with two p_{tZ} cuts:

- ► tight (2 GeV)
- \blacktriangleright loose (15 GeV)

Take ratio of pure-MPI jet rates

$$r_{15/2} = \frac{\langle n(p_{tj,\min}) \rangle_{15}^{\text{pure-MPI}}}{\langle n(p_{tj,\min}) \rangle_{2}^{\text{pure-MPI}}}$$

Compare to

> Pythia: no interconnection (expect r = 1)

► **dShower**: with option of interconnection [Cabouat, Gaunt, Ostrolenk, <u>1906.04669</u>; Cabouat, Gaunt, <u>2008.01442</u>]

Gavin P. Salam

QCD@LHC, Durham, September 2023

NB: 15 GeV cut reduces MPI purity, making this a difficult measurement Plots show significance v. $p_{tj,min}$ of significance of signal perturbative interconnection in $\rho = 1.0, f_x = 0.05, f_2 = 0.05$ dShower $66 < m_{\mu\nu}$ *x* = 15 GeV *x* = 10 GeV 6 6 10 < *x* < 15 GeV 5σ $1)/\Delta r_{\chi/2}$ $1)/\Delta r_{\chi/2}$ anti- $k_t R = 0.4$ (r_{×/2} (*r_{x/2}* UЛ 20 0 20 0 L 20 25 30 35 50 55 25 30 35 40 45 45 50 40 60 $p_{tj, \min}$ [GeV] $p_{tj, \min}$ [GeV] September 2023 Gavin P.

NB: 15 GeV cut reduces MPI purity, making this a difficult measurement

Plots show significance v. $p_{ti,min}$ of perturbative interconnection in simulation

1HS Th.

- ► for dShower-sized effect
- with various possible assumptions for sizes of <u>theory uncertainties</u> on 1HS subtraction + their <u>correlation</u> between the two p_{tZ} cuts
- Just barely feasible?
- ► motivates NNLO (matched) Z+2j calculations

QCD@LHC, Durham, September 2023

Final topic: seeing 3HS [easy!]

- > Only measurements of 3HS are in J/ψ production, which is a difficult process to interpret even with just 1HS!
- ► Instead, put tight $p_{tZ} < 2 \text{ GeV}$ cut and look at $\Delta \phi$ between two leading charged-track jets, with low p_{ti} cuts (~ 5 GeV on charged-track sum)
- ► gives clear 2HS peak at $|\Delta \phi| \simeq \pi$
- ► gives distribution ~independent of $|\Delta \phi|$, when the Z and the 2 jets each come from different hard scatters (total of 3HS)

Final topic: seeing 3HS [easy!]

Can one go beyond 3HS? [Not so easy]

- Select four leading jets
- ► Pair them up (first two, next two)
- ► Require first two to be back-to-back
- ► Require $|\Delta y| > 1$ rapidity separations between first two and next two
- ► examine $|\Delta \phi_{34}|$
- > see small peak around $|\Delta \phi_{34}| = \pi$ (3HS)
- continuum includes substantial 4HS contribution!

dd η_{μ} TONIC catio

Conclusions

Study of Drell-Yan events with tight cut on p_{tZ} opens door to numerous new MPI studies:

- high-purity 2HS samples
- > QFT effects that interconnect primary and secondary hard scatters
- easy 3HS studies (maybe even 4HS)
- > perhaps still more (flavour, $\gamma\gamma \rightarrow \ell^+ \ell^-$ off Z-peak, etc.)?

Overall potential for significant impact on conceptual and quantitative understanding of multi-parton interactions.

QCD@LHC, Durham, September 2023

MPI purity with $p_{tZ} < 15$ GeV cut

Gavin P. Salam

Using $10 < p_{tZ} < 15$ GeV for the loose sample: increases interconnection, reduces purity

Extracting partonic hard-scattering classification from Pythia (via HepMC)

Gavin P. Salam

QCD@LHC, Durham, September 2023

Validation of simple parton \rightarrow charged hadron conversion for hard-scatter classification

QCD@LHC, Durham, September 2023

Gavin P. Salam

Higgs production (gg channel said to have smaller σ_{eff} , mainly from J/ ψ)

Historical small p_{TZ} studies

ATLAS <u>1409.3433</u>

► mostly a UE study

► uses $p_T^Z < 5 \,\text{GeV}$

Gavin P. Salam

Fig. 1 Definition of UE regions as a function of the azimuthal angle with respect to the Z-boson.

CMS <u>1711.04299</u>

► mostly a UE study

► uses $p_T^Z < 5 \,\text{GeV}$

Alioli, Bauer, Guns, Tackmann, <u>1605.07192</u>

► explores $p_T^Z < 5 \,\mathrm{GeV}$

► mainly a "UE" study

Bansal, Bansal, Kumar, Singh <u>1602.05392</u>

- ► explores $p_T^Z < 10 \,\mathrm{GeV}$ as central part of their study
- ► explores various jet cuts, including $p_T^{\text{jet}} > 5 \,\text{GeV}$

CMS 2210.16139

- ► includes $p_T^Z < 10 \text{ GeV}$ bin, with 25-50% MPI contribution for jets with $p_T^J > 30 \,\text{GeV}$
- ► includes $\Delta \phi_{i_1 i_2}$, though high p_T^J cut means only 2HS

Gavin P. Salam

