Exploring high-purity multi-parton scattering at hadron colliders

QCD@LHC
IPPP, Durham September 2023

Gavin Salam

Rudolf Peierls Centre for
Theoretical Physics
\& All Souls College, Oxford

Exploring high-purity multi-parton scattering at hadron colliders

Jeppe R. Andersen, ${ }^{1}$ Pier Francesco Monni, ${ }^{2}$ Luca Rottoli, ${ }^{3}$ Gavin P. Salam, ${ }^{4,5}$ and Alba Soto-Ontoso ${ }^{2}$

arXiv:2307.05693

Classic challenge in multi-parton interaction (MPI) studies

Distinguishing two contributions:
> two independent hard scatterings (2HS)
> a single hard scattering (1HS) with extra radiation

Both have experimental signature of Z boson ($\rightarrow 2$ leptons) + jets

Double-parton scattering (2HS)

Background from
Single-parton scattering (1HS) including radiation

Illustration: W+2-jets study

- E.g. ATLAS, $W \rightarrow \ell \nu+2$ jets 1301.6872
- Exploits fact that MPI jet-pair more likely to balance than radiation jet pair, so MPI should be enhanced for

$$
\Delta_{\mathrm{jets}}=\left|\vec{p}_{T}^{\mathrm{I} 1}+\vec{p}_{T}^{\mathrm{J} 2}\right| \rightarrow 0
$$

> That works to some extent, but relative MPI (2 HS) fraction is moderate ($\lesssim 25 \%$)

- Quantitative analysis requires very good understanding of radiation in single hard scattering (1HS)

Avoid radiation issue: same-sign WW

> even traditional "goldplated" MPI processes are difficult
> Here $W^{ \pm} W^{ \pm} \rightarrow$ same-sign leptons, CMS 2206.02681
> many other backgrounds \rightarrow need for BDT makes it difficult to study MPI physics

- 6.2σ observation with full Run 2 dataset

$\mathrm{pp} \rightarrow \mathrm{Z}+\mathrm{X}$: can we constrain radiation from Z scattering?

- Consider process with MPI simulation turned off (i.e. just 1HS)
> Look at avg. p_{t} of leading jet $\left(p_{t j}^{\ell}\right)$ as a function of $\mathrm{Z} p_{t}\left(p_{t Z}\right)$

$\mathrm{pp} \rightarrow \mathrm{Z}+\mathrm{X}$: can we constrain radiation from Z scattering?

- Consider process with MPI simulation turned off (i.e. just 1HS)
$>$ Look at avg. p_{t} of leading jet $\left(p_{t j}^{\ell}\right)$ as a function of $\mathrm{Z} p_{t}\left(p_{t Z}\right)$
> Most of $p_{t Z}$ range: almost perfect linear correlation, since leading jet balances $p_{t Z}$

$\mathrm{pp} \rightarrow \mathrm{Z}+\mathrm{X}$: can we constrain radiation from Z scattering?

- Consider process with MPI simulation turned off (i.e. just 1HS)
$>$ Look at avg. p_{t} of leading jet $\left(p_{t j}^{\ell}\right)$ as a function of $\mathrm{Z} p_{t}\left(p_{t Z}\right)$
> Most of $p_{t Z}$ range: almost perfect linear correlation, since leading jet balances $p_{t Z}$
- For $p_{t Z} \rightarrow 0:\left\langle p_{t j}^{\ell}\right\rangle$ saturates at about $2-3 \mathrm{GeV}$: two soft jets balance each other

$\mathrm{pp} \rightarrow Z+X$: can we constrain radiation from Z scattering?

$>$ For $p_{t Z} \rightarrow 0$, average p_{t} of leading jet can be calculated from resummation

$$
\begin{aligned}
\left\langle p_{t j}^{\ell}\right\rangle_{p_{t Z} \rightarrow 0} & \sim \Lambda\left(\frac{M}{\Lambda}\right)^{\kappa \ln \frac{2+\kappa}{1+\kappa}} \kappa=\frac{2 C_{F}}{\pi \beta_{0}} \\
& \sim \sqrt{\Lambda M}
\end{aligned}
$$

- By constraining $p_{t Z}$ we can forbid most radiation above this characteristic $2-3 \mathrm{GeV}$ scale

$\mathrm{pp} \rightarrow \mathrm{Z}+\mathrm{X}$: what is intrinsic scale of MPl jets?

> next step: turn MPI on
$>$ for $p_{t z} \rightarrow 0$, leading jet p_{t} is now $\sim 10 \mathrm{GeV}$ instead of 2-3 GeV [not so soft!]

- because there is almost always an MPI jet that is much harder than the soft jets from Z process
> suggests we should study MPI with help of a tight cut on $p_{t Z}$

Is this not obvious?

- There has been some past study of MPI with $p_{t Z}$ cuts

ATLAS 1409.3433 mostly an underlyingevent study, used $p_{t Z}<5 \mathrm{GeV}$

Bansal, Bansal, Kumar, Singh 1602.05392 suggested MPI studies with $p_{t Z}<10 \mathrm{GeV}$ for improved MPI purity

CMS 2210.16139
showed results with $p_{t Z}<10 \mathrm{GeV}$, confirming some MPI enhancement

This study: establish what cut to use, explore opportunities that open up

We want balance between

- maximising statistics (favours loose cut on Z)
> minimising radiation from Z hard system (favours tight cut on Z)
$p_{t j} \mathrm{v} . p_{t Z}$ plot tells us that the optimum is a requirement $p_{t Z} \lesssim 2 \mathrm{GeV}$
> any smaller and we lose statistics without reducing p_{t} scale of radiation from Z process
> any higher and we increase p_{t} scale of radiation
- [should also be realistic given experimental resolution]

This study: establish what cut to use, explore opportunities that open up

We want balan
$>$ maximisi
$>$ minimisi
ptz < 2 GeV cut retains 4 -5\% of Z-pole Drell-Yan events For $Z \rightarrow \mu^{+} \mu^{-}$, residual cross section is $\sim 40 \mathrm{pb}$
$p_{t j} \mathbf{v} \cdot p_{t Z}$ plot tells us that the optimum is a requirement $p_{t Z} \lesssim 2 \mathrm{GeV}$

- any smaller and we lose statistics without reducing p_{t} scale of radiation from Z process
> any higher and we increase p_{t} scale of radiation
> [should also be realistic given experimental resolution]

Simplest observable: cumulative inclusive jet spectrum for $\mathrm{p}_{\mathrm{z}}<2 \mathrm{GeV}$

For small jet radius (here $R=0.4$) this is a linear sum of
> cumulative jet spectrum from 1HS process
> cumulative jet spectrum from any additional hard scatters

Dominated by jets from additional hard scatters

pli...min	MPI purity
10 GeV	90%
20 GeV	78%
40 GeV	60%

Connection with "pocket formula" (sigma effective)

Pocket formula says that cross section for two processes A and B to happen simultaneously is

$$
\sigma_{A B}=\frac{\sigma_{A} \sigma_{B}}{\sigma_{\mathrm{eff}}}
$$

where $\sigma_{\text {eff }}$ is a normalisation factor roughly connected with area over which partons are concentrated in the proton.

Connection with "pocket formula" (sigma effective)

$\sigma_{A B}=\frac{\sigma_{A} \sigma_{B}}{\sigma_{\mathrm{eff}}}$
$\left\langle n\left(p_{t j, \min }\right)\right\rangle_{C_{Z}}=$ average number of jets above $p_{t j, \min }$ for a given cut C_{Z} on $p_{t Z}$

$$
\left\langle n\left(p_{t j, \min }\right)\right\rangle_{C_{Z}}=\frac{1}{\sigma\left(p_{t Z}<C_{Z}\right)} \int_{p_{t j, \min }} d p_{t j} \frac{d \sigma_{\mathrm{jet}}\left(p_{t Z}<C_{Z}\right)}{d p_{t j}}
$$

Pure MPI part extracted by subtracting no-MPI calculation (thanks to linearity)

$$
\left\langle n\left(p_{t j, \min }\right)\right\rangle_{C_{Z}}^{\text {pure-MPI }} \equiv\left\langle n\left(p_{t j, \min }\right)\right\rangle_{C_{Z}}-\left\langle n\left(p_{t j, \min }\right)\right\rangle_{C_{Z}}^{\mathrm{no}-\mathrm{MPI}}
$$

In $\sigma_{\text {eff }}$ picture, pure-MPI part can be connected with jet rate in min-bias events (i.e. no Z) NB: can be directly measured on data, identical systematics (e.g. with charge-track jets at low $p_{t j}$)

$$
\left\langle n\left(p_{t j, \min }\right)\right\rangle_{C_{Z}}^{\text {pure-MPI }} \simeq \frac{1}{\sigma_{\mathrm{eff}}} \int_{p_{t j, \min }} d p_{t j} \frac{d \sigma_{\mathrm{jet}}^{\mathrm{min}-\mathrm{bi}}}{d p_{t j}}
$$

Questions you can ask

Within pocket formula picture
> how does $\sigma_{\text {eff }}$ depend on kinematics of the jets? (\rightarrow in Pythia, $\sigma_{\text {eff }} \simeq 30 \mathrm{mb}$, fairly independently of jet p_{t})

Beyond DPS pocket formula

- QFT effects \& potential breakdown of pocket formula?
> can one use this to measure 3HS, etc.? (cf. d'Enterria and Snigirev 1612.05582)

Beyond the pocket formula

- Pocket formula is based on independent scatterings, with some effective transverse size over which partons are spread

> But we expect some partons to come from splitting of common parents,"perturbative interconnection"
- Such splittings tend to give more p_{t} to the partons \rightarrow higher $p_{t Z}$
> We should see an change of MPI jet rate
 if we relax the $p_{t Z}$ cut

Studies of interconnection include Diehl \& Schafer 1102.3081; Blok, Dokshitzer, Frankfurt \& Strikman 1106.5533; Diehl, Gaunt \& Schönwald, 1702.06486

Can one see effect of perturbative interconnection?

Measure cumulative jet rate with two $p_{t Z}$ cuts:
> tight (2 GeV)

- loose (15 GeV)

Take ratio of pure-MPI jet rates

$$
r_{15 / 2}=\frac{\left\langle n\left(p_{t j, \min }\right)\right\rangle_{15}^{\text {pure-MPI }}}{\left\langle n\left(p_{t j, \text { min }}\right)\right\rangle_{2}^{\text {pure-MPI }}}
$$

Compare to
> Pythia: no interconnection (expect $r=1$)
> dShower: with option of interconnection [Cabouat, Gaunt, Ostrolenk, 1906.04669;
Cabouat, Gaunt, 2008.01442]

NB: 15 GeV cut reduces MPI purity, making this a difficult measurement

Plots show significance v. $p_{t j \text { min }}$ of perturbative interconnection in simulation
> for dShower-sized effect

- with various possible assumptions for sizes of theory uncertainties on 1HS subtraction + their correlation between the two $p_{t Z}$ cuts
> Just barely feasible?
> motivates NNLO (matched) Z+2j calculations

NB: 15 GeV cut reduces MPI purity, making this a difficult measurement

Plots show significance v. $p_{t j \text { min }}$ of perturbative interconnection in simulation

- for dShower-sized effect
> with various possible assumptions for sizes of theory uncertainties on 1HS subtraction + their correlation between the two $p_{t Z}$ cuts
> Just barely feasible?
> motivates NNLO (matched) Z+2j calculations

50% correlated

uncorrelated

Final topic: seeing 3HS [easy!]

> Only measurements of 3HS are in J / ψ production, which is a difficult process
 to interpret even with just 1HS!
\geqslant Instead, put tight $p_{t Z}<2 \mathrm{GeV}$ cut and look at $\Delta \phi$ between two leading charged-track jets, with low $p_{t j}$ cuts (\sim 5 GeV on charged-track sum)
> gives clear 2HS peak at $|\Delta \phi| \simeq \pi$

- gives distribution \sim independent of $|\Delta \phi|$, when the Z and the 2 jets each come from different hard scattens (total of 3HS)

Final topic: seeing 3HS [easy!]

Can one go beyond 3HS? [Not so easy]

> Select four leading jets

- Pair them up (first two, next two)
- Require first two to be back-to-back
- Require $|\Delta y|>1$ rapidity separations between first two and next two
\geqslant examine $\left|\Delta \phi_{34}\right|$
> see small peak around $\left|\Delta \phi_{34}\right|=\pi$ (3HS)
> continuum includes substantial 4HS contribution!

Conclusions

Study of Drell-Yan events with tight cut on $p_{t Z}$ opens door to numerous new MPI studies:
> high-purity 2HS samples
> QFT effects that interconnect primary and secondary hard scatters
> easy 3HS studies (maybe even 4HS)
> perhaps still more (flavour, $\mathrm{\gamma} \rightarrow \ell^{+} \ell^{-}$off Z-peak, etc.)?

Overall

potential for significant impact on conceptual and quantitative understanding of multi-parton interactions.

backup

MPI purity with $p_{t z}<15 \mathrm{GeV}$ cut

Using $10<\mathrm{p}_{\mathrm{t}}<15 \mathrm{GeV}$ for the loose sample: increases interconnection, reduces purity

Extracting partonic hard-scattering classification from Pythia (via HepMC)

Validation of simple parton \rightarrow charged hadron conversion for hard-scatter classification

Higgs production (gg channel said to have smaller $0_{\text {eff }}$, mainly from J / ψ)

Historical small p_{72} studies

ATLAS 1409.3433

- mostly a UE study
$>$ uses $p_{T}^{Z}<5 \mathrm{GeV}$

Fig. 1 Definition of UE regions as a function of the azimuthal angle with respect to the Z-boson.

CMS 1711.04299

> mostly a UE study
> uses $p_{T}^{Z}<5 \mathrm{GeV}$

Alioli, Bauer, Guns, Tackmann, 1605.07192

- explores $p_{T}^{Z}<5 \mathrm{GeV}$
> mainly a "UE" study

Bansal, Bansal, Kumar, Singh 1602.05392

> explores $p_{T}^{Z}<10 \mathrm{GeV}$ as central part of their study
> explores various jet cuts, including $p_{T}^{\text {jet }}>5 \mathrm{GeV}$

CMS 2210.16139

> includes $p_{T}^{Z}<10 \mathrm{GeV}$ bin, with $25-50 \%$ MPI contribution for jets with $p_{T}^{J}>30 \mathrm{GeV}$

- includes $\Delta \phi_{j_{1} j_{2}}$, though high p_{T}^{J} cut means only 2HS

