Small-x Factorization from Effective Field Theory

Duff Neill, Aditya Pathak, Iain Stewart arXiv:2303.13710

Aditya Pathak QCD@LHC, Durham, September 4, 2023

Outline

Introduction

The small-x region and the BFKL equation LL resummation by Catani and Hautmann

EFT modes and power counting

Small-x factorization from Glauber SCET

Factorization formula
Collinear function & BFKL evolution
IR divergences

BFKL & DGLAP resummation

Consistency with twist factorization BFKL resummation of F_2 and F_L Comparison with previous work

Backup slides

Outline

Introduction

The small-x region and the BFKL equation LL resummation by Catani and Hautmann

EFT modes and power counting

Small-x factorization from Glauber SCET

Factorization formula Collinear function & BFKL evolution IR divergences

BFKL & DGLAP resummation

Consistency with twist factorization BFKL resummation of F_2 and F_L Comparison with previous work

Backup slides

DIS review: Twist expansion

Consider unpolarized, inclusive DIS:

$$Q^2 = -q^2 > 0$$
 , $x_b = \frac{Q^2}{2P \cdot q}$,

$$x_b = \frac{Q^2}{2P \cdot q}$$

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} x_b \, \mathrm{d} Q^2} (e^- p \to e^- X) = \frac{2 \pi y \alpha^2}{Q^4} L_{\mu\nu}(P_e, q) \left[W^{\mu\nu}(P, q) \right] \, .$$

$$e^ P_e^\mu$$
 P_X^μ
 P_X^μ

$$W^{\mu\nu} = e_L^{\mu\nu} \frac{1}{x_b} F_L(x_b, Q^2) + e_2^{\mu\nu} \frac{1}{x_b} F_2(x_b, Q^2).$$

Well-known twist-2 factorization:

$$\frac{1}{x_b}F_a(x_b,Q^2) = \sum_{\kappa} \int_{x_b}^1 \! \frac{\mathrm{d}\xi}{\xi} \; H_a^{(\kappa)}\Big(\frac{x_b}{\xi},Q,\mu\Big) f_{\kappa/p}(\xi,\mu) + \mathcal{O}\bigg(\frac{\Lambda_{\mathrm{QCD}}^2}{Q^2}\bigg) \,.$$

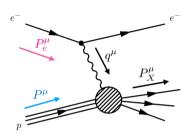
PDF absorbs all the IR divergences.

DIS review: Twist expansion

Consider unpolarized, inclusive DIS:

$$Q^2 = -q^2 > 0$$
 , $x_b = \frac{Q^2}{2P \cdot q}$,

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x_b\,\mathrm{d}Q^2}(e^-p\to e^-X) = \frac{2\pi y\alpha^2}{Q^4}L_{\mu\nu}(P_e,q) \left[W^{\mu\nu}(P,q) \right].$$



Take Mellin Transform:

$$\bar{F}_p(N,Q^2) = \int_0^1 \frac{dx}{x} x^N \Big(\frac{1}{x} F_p(x)\Big) \,, \qquad \Rightarrow \qquad \bar{F}_p^{(\kappa)}(N) = \sum_{\kappa'} \bar{H}_p^{(\kappa')}(N) \times \underbrace{\bar{\Gamma}_{\kappa'\kappa} \left(N,\epsilon\right)}_{\text{PDF}} \,.$$

IR divergences are exponentiated into PDFs (transition functions),

$$\bar{\Gamma}_{\kappa'\kappa} \big(\alpha_s(\mu^2), N, \epsilon \big) \equiv \mathsf{P} \, \exp \left(\, \int_0^{\alpha_s(\mu^2)} \frac{d\alpha}{\beta(\epsilon, \alpha)} \gamma^s(\alpha, N) \right)_{\kappa'\kappa}.$$

Mellin Transform

Mellin transform is very useful: (set N = n + 1)

$$\bar{f}(n) \equiv \int_0^1 \frac{dx}{x} x^{n+1} f(x)$$

Let us note that

f(x)	$ar{f}(n)$	singularity in $x \to 0$
$\frac{1}{x} \ln^{\ell-1}(x)$	$\sim rac{1}{n^\ell}$	pole at n = 0
$x^{p-1} \ln^{\ell-1}(x)$	$\sim rac{1}{(n+p)^\ell}$	

Small-x limit

Leading terms in $x_b \to 0$ limit:

$$\frac{\alpha_s^{\ell}}{x} \ln^{\ell-1}(x) \quad ,$$

Both coefficient function and the DGLAP anomalous dimension become singular in $x_b \to 0$ limit:

$$\bar{H}_{a}^{(\kappa)}(n) \sim \alpha_{s} \frac{\alpha_{s}}{n} + \alpha_{s} \left(\frac{\alpha_{s}}{n}\right)^{2} + \alpha_{s} \left(\frac{\alpha_{s}}{n}\right)^{3} + \dots,$$

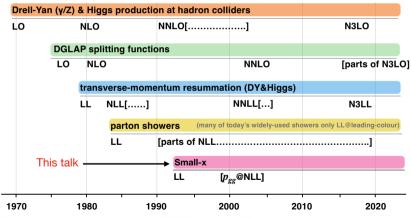
$$\gamma_{gg}(n) \sim \frac{\alpha_{s}}{n} + \left(\frac{\alpha_{s}}{n}\right)^{2} + \left(\frac{\alpha_{s}}{n}\right)^{3} + \dots,$$

$$\gamma_{qg}(n) \sim \alpha_{s} \frac{\alpha_{s}}{n} + \alpha_{s} \left(\frac{\alpha_{s}}{n}\right)^{2} + \alpha_{s} \left(\frac{\alpha_{s}}{n}\right)^{3} + \dots$$

Our goal is to resum these leading logarithmic series.

Progress (?) in small- x_b resummation

selected collider-QCD accuracy milestones



Phenomenological applications of small-x limit

Small- x_b data at N³LO plays a crucial role in improving PDFs:

A List of N³LO Ingredients

MSHT20aN3LO: McGowan, Cridge, Harland-Lang, Thorne Eur. Phys. J. C 83 (2023) 3, 185

N^3LO	No. of	Moments	Small-x	I anno m
Function	Moments	(Even only)	Small-x Large-x	
P_{qq}^{NS} P^{PS}	8	N = 2 - 16 [21]	[21]	[21]
P_{qq}^{PS}	4	N = 2 - 8 [35, 36]	LL [28]	N/A
P_{qg}	4	N = 2 - 8 [35, 36]	LL [28]	N/A
P_{gq}	4	N = 2 - 8 [35, 36]	LL [29–31]	N/A
P_{gg}	4	N = 2 - 8 [35, 36]	LL & NLL [29-33]	N/A
$A_{qq,H}^{NS}$	7	N = 2 - 14 [50]	N/A	N/A
A_{Hq}^{PS}	6	N = 2 - 12 [50]	[53]	[53]
A_{Hg}	5	N = 2 - 10 [50]	LL [49]	N/A
$A_{gq,H}$	7	N = 2 - 14 [50]	[54]	[54]
$A_{gg,H}$	5	N = 2 - 10 [50]	N/A	N/A

Table A.1: List of all the N^3LO ingredients used to construct the approximate N^3LO splitting functions and transition matrix elements. Where only a citation is provided, extensive knowledge i.e. beyond NLL is used. This table is a non-exhaustive list of the current knowledge about these functions, however information beyond that which is provided here is not currently in a usable format for phenomological studies.

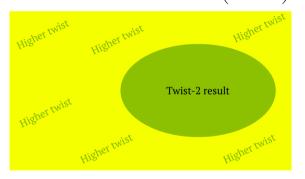
Two subtleties with small- x_b resummation

The box represents the full expression of the structure function (perturbative as well as nonperturbative):

The complete result for ${\cal F}_a$

Two subtleties with small- x_h resummation

Terms that are retained at leading power in twist expansion $\left(rac{\Lambda_{ extsf{QCD}}}{Q}\ll 1
ight)$



$$\frac{1}{x_b}F_a(x_b,Q^2) = \left[\sum_{\kappa} \int_{x_b}^1 \frac{\mathrm{d}\xi}{\xi} \; H_a^{(\kappa)}\Big(\frac{x_b}{\xi},Q,\mu\Big) f_{\kappa/p}(\xi,\mu) \right] + \mathcal{O}\bigg(\frac{\Lambda_{\mathrm{QCD}}^2}{Q^2}\bigg) \,.$$

Two subtleties with small- x_b resummation

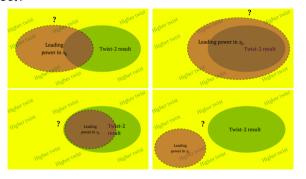
Terms that are leading power in $x_b \ll 1$ expansion ($\sim \frac{1}{x}$ or n=0 pole)



Where is this relative to leading twist terms?

Two subtleties with small- x_b resummation

Which scenario is correct?

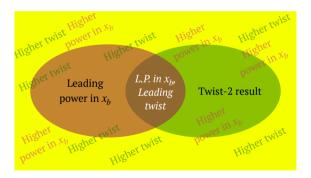


Can partly answer this by inspecting the perturbative series of the coefficient function.

$$H_L^{(g)}(x) \sim \left[\alpha_s \, x(1-x)\right] + \mathcal{O}\left(\frac{\alpha_s^2}{x}\right) \quad \Leftrightarrow \quad \bar{H}_L^{(g)}(x) \sim \left[\alpha_s \left(\frac{1}{n+2} - \frac{1}{n+3}\right)\right] + \mathcal{O}\left(\frac{\alpha_s^2}{n}\right)$$

Subtlety # 1: Non-trivial overlap between twist and small- x_b expansions

Small- x_b expansion is based on rapidity factorization and makes no reference to Λ_{QCD} (more on this coming up), and hence includes leading as well as higher twist pieces.



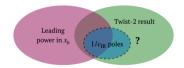
Our first goal is to compute the overlap between the two expansions.

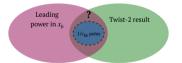
Factorization of nonperturbative pieces

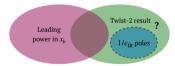
Using dim-reg $d=4-2\epsilon$ and simple partonic states we can kill higher twist pieces. IR divergences appear as $1/\epsilon_{\rm IR}$ poles in the PDF.

$$\bar{\Gamma}_{\kappa'\kappa} \big(\alpha_s(\mu^2), n\big) = \mathsf{P} \exp\bigg(-\frac{1}{\epsilon} \int_0^{\alpha_s(\mu^2)} \frac{\mathrm{d}\alpha}{\alpha} \gamma^s(\alpha, n) \bigg)_{\kappa'\kappa} \,, \qquad \text{(fixed coupling)}$$

Where are exactly all the leading twist-2 $1/\epsilon_{IR}$ poles?

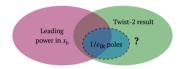


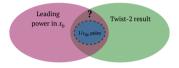


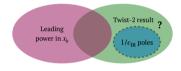


Factorization of nonperturbative pieces

Where are exactly all the leading twist-2 $1/\epsilon_{IR}$ poles?







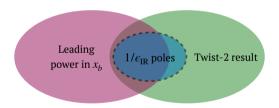
We can answer this by inspecting the perturbative series of the anomalous dimension:

$$\gamma_{gg}(n) = \left[\frac{\alpha_s C_A}{\pi n} \right] + \dots,$$

$$\gamma_{qg}(n) = \left[\begin{array}{c} \frac{\alpha_s T_F}{3\pi} \end{array} \right] + \mathcal{O}\left(\begin{array}{c} \frac{\alpha_s}{n} \end{array} \right)$$

Subtlety # 2: Non-trivial overlap also of IR poles between twist and small- x_b expansions

There are IR divergences associated with small- x_b logs as well as those appearing at higher powers in $x_b \ll 1$ expansion:



Our second goal is to consistently factorize IR poles of these two origins into the twist-2 PDF.

The BFKL equation

Resummation of small- x_b logs invovles solving the BFKL equation. For a function $f(x, q_\perp)$

$$f(x, \mathbf{q}_{\perp}) \sim x^{p-1} (\log \operatorname{sof} x),$$

that satisfies BFKL equation in 4 dimensions:

$$x\frac{d}{dx}f(x,\boldsymbol{q}_{\perp}) = (p-1)f(x,\boldsymbol{q}_{\perp}) + c[K \otimes_{\perp} f](\boldsymbol{q}_{\perp})$$

where

$$\left[K\otimes_{\perp}f\right](\boldsymbol{q}_{\perp})\equiv(2\pi)\int\frac{\mathrm{d}^{2}k_{\perp}}{(2\pi)^{2}}\Bigg\{\frac{2f(\boldsymbol{k}_{\perp})}{(\boldsymbol{q}_{\perp}-\boldsymbol{k}_{\perp})^{2}}-\frac{\boldsymbol{q}_{\perp}^{2}}{\boldsymbol{k}_{\perp}^{2}(\boldsymbol{q}_{\perp}-\boldsymbol{k}_{\perp})^{2}}f(\boldsymbol{q}_{\perp})\Bigg\}\,,$$

In the n-space we have an iterative equation

$$\bar{f}(n, \boldsymbol{q}_{\perp}) = \frac{1}{n+p} \times \underbrace{f(x=1, \boldsymbol{q}_{\perp})}_{\text{Boundary condition}} - \frac{c}{n+p} \big[K \otimes_{\perp} \bar{f}(n) \big] (\boldsymbol{q}_{\perp})$$

The BFKL equation

Resummation of small- x_b logs invovles solving the BFKL equation. For a function $f(x, q_\perp)$

$$f(x, \mathbf{q}_{\perp}) \sim x^{p-1} (\log \operatorname{sof} x),$$

that satisfies BFKL equation in 4 dimensions:

$$x\frac{d}{dx}f(x,\boldsymbol{q}_{\perp}) = (p-1)f(x,\boldsymbol{q}_{\perp}) + c\big[K\otimes_{\perp} f\big](\boldsymbol{q}_{\perp})$$

where

$$\left[K\otimes_{\perp}f\right](\boldsymbol{q}_{\perp})\equiv(2\pi)\int\frac{\mathrm{d}^{2}k_{\perp}}{(2\pi)^{2}}\Bigg\{\frac{2f(\boldsymbol{k}_{\perp})}{(\boldsymbol{q}_{\perp}-\boldsymbol{k}_{\perp})^{2}}-\frac{\boldsymbol{q}_{\perp}^{2}}{\boldsymbol{k}_{\perp}^{2}(\boldsymbol{q}_{\perp}-\boldsymbol{k}_{\perp})^{2}}f(\boldsymbol{q}_{\perp})\Bigg\}\,,$$

Eigenfunctions of BFKL Kernel:

$$\left[K \otimes_\perp \left(\frac{1}{{\pmb k}_\perp^{2(1-\gamma)}} e^{\mathrm{i} n \phi} \right) \right] ({\pmb q}_\perp) = \chi(n,\gamma) \frac{1}{{\pmb q}_\perp^{2(1-\gamma)}} e^{\mathrm{i} n \phi} \,, \qquad \frac{0 < \mathrm{Re} \, \gamma < 1}{} \;. \label{eq:K_def}$$

Bad boundary condition = IR divergence!

What happens for $\gamma = 0$?

$$\gamma = 0: \qquad \qquad \left[K \otimes_{\perp} \frac{1}{\boldsymbol{k}_{\perp}^2} \right] (\boldsymbol{q}_{\perp}) = \frac{1}{\boldsymbol{q}_{\perp}^2} (2\pi) \int \frac{\mathrm{d}^2 k_{\perp}}{(2\pi)^2} \frac{\boldsymbol{q}_{\perp}^2}{\boldsymbol{k}_{\perp}^2 (\boldsymbol{q}_{\perp} - \boldsymbol{k}_{\perp})^2}$$

This Integral is divergent! But we can make sense of it in dimensional regularization:

$$\begin{split} (2\pi)I_{\epsilon} \Big[\boldsymbol{q}_{\perp}^2 \Big] &\equiv (2\pi) \Big(\frac{\mu^2 e^{\gamma_E}}{4\pi} \Big)^{\epsilon} \int \frac{\mathrm{d}^{2-2\epsilon} k_{\perp}}{(2\pi)^{2-2\epsilon}} \frac{\boldsymbol{q}_{\perp}^2}{\boldsymbol{k}_{\perp}^2 \big(\boldsymbol{q}_{\perp} - \boldsymbol{k}_{\perp} \big)^2} \\ &= \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2} \Big)^{-\epsilon} \Gamma(-\epsilon) e^{\epsilon \gamma_E} \frac{\Gamma(1-\epsilon)\Gamma(1+\epsilon)}{\Gamma(1-2\epsilon)} \\ &= -\frac{1}{\epsilon} + \log \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2} \Big) + \mathcal{O}(\epsilon) \,. \end{split}$$

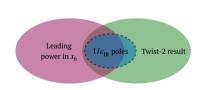
Bad boundary condition = IR divergence!

What happens for $\gamma = 0$?

$$\gamma = 0: \qquad \qquad \left[K \otimes_{\perp} \frac{1}{\boldsymbol{k}_{\perp}^2} \right] (\boldsymbol{q}_{\perp}) = \frac{1}{\boldsymbol{q}_{\perp}^2} (2\pi) \int \frac{\mathrm{d}^2 k_{\perp}}{(2\pi)^2} \frac{\boldsymbol{q}_{\perp}^2}{\boldsymbol{k}_{\perp}^2 (\boldsymbol{q}_{\perp} - \boldsymbol{k}_{\perp})^2}$$

This Integral is divergent! But we can make sense of it in dimensional regularization:

$$\begin{split} (2\pi)I_{\epsilon} \Big[\boldsymbol{q}_{\perp}^2 \Big] &\equiv (2\pi) \Big(\frac{\mu^2 e^{\gamma_E}}{4\pi} \Big)^{\epsilon} \int \frac{\mathrm{d}^{2-2\epsilon} k_{\perp}}{(2\pi)^{2-2\epsilon}} \frac{\boldsymbol{q}_{\perp}^2}{\boldsymbol{k}_{\perp}^2 \big(\boldsymbol{q}_{\perp} - \boldsymbol{k}_{\perp} \big)^2} \\ &= \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2} \Big)^{-\epsilon} \Gamma(-\epsilon) e^{\epsilon \gamma_E} \frac{\Gamma(1-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2\epsilon)} \\ &= -\frac{1}{\epsilon} + \log \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2} \Big) + \mathcal{O}(\epsilon) \,. \end{split}$$



This is relevant: Nature produces bad boundary conditions for the BFKL equation and these IR divergences go into the PDF, but *not every* IR divergence is generated this way.

LL small- x_b resummation consistent with twist factorization by Catani and Hautmann [CH94]:

$$\bar{F}_L^{(g)}(n) = h_L(\gamma_{gg}) \times R(n) \times \left(\frac{Q^2}{\mu^2}\right)^{\gamma_{gg}} \times \bar{\Gamma}_{gg},$$

- > At LL, the IR divergences in F_L^g appear in $\bar{\Gamma}_{gg}$.
- h_L : describes coupling with photon, IR finite, defined via an *off-shell* cross section.
- > R: scheme chosen to factorize the IR divergences.

$$h_L(\gamma) = \gamma \int_0^\infty \frac{\mathrm{d} \boldsymbol{k}_\perp^2}{\boldsymbol{k}_\perp^2} \left(\frac{\boldsymbol{k}_\perp^2}{Q^2}\right)^\gamma \hat{\sigma}_L^g \left(\frac{\boldsymbol{k}_\perp^2}{Q^2}, \alpha_s, \epsilon = 0\right).$$

LL small- x_b resummation consistent with twist factorization by Catani and Hautmann [CH94]:

$$\bar{F}_L^{(g)}(n) = h_L(\gamma_{gg}) \times R(n) \times \left(\frac{Q^2}{\mu^2}\right)^{\gamma_{gg}} \times \bar{\Gamma}_{gg},$$

- > At LL, the IR divergences in F_L^g appear in $\bar{\Gamma}_{gg}$.
- > h_L: describes coupling with photon, IR finite, defined via an *off-shell* cross section.
- R: scheme chosen to factorize the IR divergences.

[CH94] resummed $(\frac{\alpha_s}{n})^\ell$ terms in $\gamma_{gg}(\alpha_s,n)$ by inventing a gluon Green's function $\bar{\mathcal{F}}_g^{(0)}$:

$$\bar{\mathcal{F}}_g^{(0)}(n, \boldsymbol{q}_\perp) = \delta^{(2-2\epsilon)}(\boldsymbol{q}_\perp) + \frac{\bar{\alpha}_s}{n} \left[K \otimes_\perp \bar{\mathcal{F}}_g^{(0)}(n) \right] (\boldsymbol{q}_\perp) , \qquad \bar{\alpha}_s \equiv \frac{\alpha_s C_A}{\pi}$$

 $\bar{\mathcal{F}}_g^{(0)}$ is determined completely by the $\delta^{(2-2\epsilon)}(q_\perp)$ boundary condition and iterations of the BFKL kernel.

Notice how BFKL kernel acts on $\delta^{(2-2\epsilon)}(q_{\perp})$:

$$\begin{split} K \otimes_{\perp} \delta^{(2-2\epsilon)}(\boldsymbol{q}_{\perp}) &\sim \frac{1}{\boldsymbol{k}_{\perp}^{2-2\epsilon}} \Big(\frac{\boldsymbol{k}_{\perp}^{2}}{\mu^{2}}\Big)^{-\epsilon} \\ K \otimes_{\perp} \frac{1}{\boldsymbol{k}_{\perp}^{2-2\epsilon}} \Big(\frac{\boldsymbol{k}_{\perp}^{2}}{\mu^{2}}\Big)^{-\epsilon} &\sim \frac{1}{\epsilon} \frac{1}{\boldsymbol{k}_{\perp}^{2-2\epsilon}} \Big(\frac{\boldsymbol{k}_{\perp}^{2}}{\mu^{2}}\Big)^{-2\epsilon} \\ &\vdots \\ K \otimes_{\perp} \frac{1}{\boldsymbol{k}_{\perp}^{2-2\epsilon}} \Big(\frac{\boldsymbol{k}_{\perp}^{2}}{\mu^{2}}\Big)^{-\ell\epsilon} &\sim \frac{1}{\ell\epsilon} \frac{1}{\boldsymbol{k}_{\perp}^{2-2\epsilon}} \Big(\frac{\boldsymbol{k}_{\perp}^{2}}{\mu^{2}}\Big)^{-(\ell+1)\epsilon} \end{split}$$

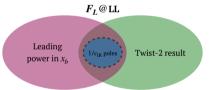
This generates an IR divergent series solution for $\bar{\mathcal{F}}_a^{(0)}$:

$$\bar{\mathcal{F}}_g^{(0)} \sim \delta^{(2-2\epsilon)}(\boldsymbol{q}_\perp) + \frac{1}{\boldsymbol{k}_\perp^{2-2\epsilon}} \sum_{\ell=1}^{\infty} c_\ell(\epsilon) \left(\frac{\bar{\alpha}_s}{n} \left(\frac{\boldsymbol{k}_\perp^2}{\mu^2} \right)^{-\epsilon} \right)^{\ell}, \qquad c_\ell(\epsilon) = \frac{1}{\ell!} \left(-\frac{1}{\epsilon} \right)^{\ell} \left(1 + \mathcal{O}(\epsilon^2) \right)$$

A special property of the LL series and F_L channel

$$\bar{\mathcal{F}}_g^{(0)} \sim \delta^{(2-2\epsilon)}(\boldsymbol{q}_\perp) + \frac{1}{\boldsymbol{k}_\perp^{2-2\epsilon}} \sum_{\ell=1}^{\infty} c_\ell(\epsilon) \left(\frac{\bar{\alpha}_s}{n} \left(\frac{\boldsymbol{k}_\perp^2}{\mu^2} \right)^{-\epsilon} \right)^{\ell}, \qquad c_\ell(\epsilon) = \frac{1}{\ell!} \left(-\frac{1}{\epsilon} \right)^{\ell} \left(1 + \mathcal{O}(\epsilon^2) \right)$$

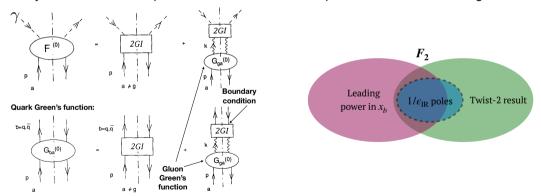
A special property of the LL series and F_L channel: All the IR divergences at LL for F_L are generated by BFKL equation



 $\bar{\Gamma}_{gg}$ absorbs the IR divergences in $\bar{\mathcal{F}}_g^{(0)}$:

$$\bar{\mathcal{F}}_g^{(0)}ig(n, m{q}_\perpig) = rac{1}{\pi m{k}_\perp^2} imes \gamma_{gg} imes ilde{R}ig(n, m{k}_\perp, \epsilonig) imes ar{\Gamma}_{gg} \,.$$

- > Resummation of F_2 and γ_{qg} is not straightforward in this framework, because F_2 involves IR divergences NOT generated by BFKL evolution alone!.
- They introduced a new quark's Green's function to capture this non-BFKL divergence.



Importance of higher order small- x_b resummation

- The approach of Catani and Hautmann [CH94] has not been extended beyond LL.
- > Higher order resummation is crucial: Large corrections from next-to-leading log small- x_b resummation.

Goal of this work: provide a new framework for higher order resummation using a factorization derived in SCET with Glauber operators of Rothstein and Stewart [RS16].

See also Ciafaloni et al. [Cia+04], Altarelli, Ball, and Forte [ABF06], and Thorne [Tho01] and references therein.

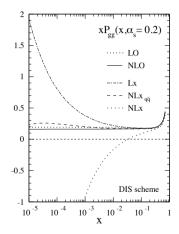


Figure from Blumlein et al. [Blu+98].

Outline

Introduction

The small-x region and the BFKL equation LL resummation by Catani and Hautmann

EFT modes and power counting

Small-x factorization from Glauber SCET

Factorization formula
Collinear function & BFKL evolution
IR divergences

BFKL & DGLAP resummation

Consistency with twist factorization BFKL resummation of F_2 and F_L Comparison with previous work

Backup slides

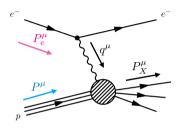
Center of mass light cone coordinates:

$$\begin{split} P^{\mu} &= \frac{\sqrt{s}}{2} n^{\mu} \,, \quad P^{\mu}_{e} &= \frac{\sqrt{s}}{2} \bar{n}_{\mu} \quad n^{2} = \bar{n}^{2} = 0 \,, \quad n \cdot \bar{n} = 2 \,. \\ p^{\mu} &= p^{+} \frac{\bar{n}^{\mu}}{2} + p^{-} \frac{n^{\mu}}{2} + p^{\mu}_{\perp} \,, \qquad p^{2} = p^{+} p^{-} - p_{\perp}^{2} \end{split}$$

Power counting parameters: $\lambda' \sim \frac{\Lambda_{\rm QCD}}{O}$ and $\lambda \sim x_b$.

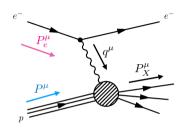
$$\lambda' \sim \frac{\Lambda_{\rm QCD}}{Q}$$

$$\lambda \sim x_b$$



Center of mass light cone coordinates:

$$\begin{split} P^{\mu} &= \frac{\sqrt{s}}{2} n^{\mu} \,, \quad P^{\mu}_{e} &= \frac{\sqrt{s}}{2} \bar{n}_{\mu} \quad n^{2} = \bar{n}^{2} = 0 \,, \quad n \cdot \bar{n} = 2 \,. \\ p^{\mu} &= p^{+} \frac{\bar{n}^{\mu}}{2} + p^{-} \frac{n^{\mu}}{2} + p^{\mu}_{\perp} \,, \qquad p^{2} = p^{+} p^{-} - p^{2}_{\perp} \end{split}$$



Power counting parameters: $\lambda' \sim \frac{\Lambda_{\rm QCD}}{Q}$ and $\lambda \sim x_b$.

$$\lambda' \sim \frac{\Lambda_{\rm QCD}}{Q}$$

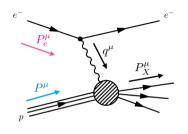
$$\lambda \sim x_b$$

Two possible scenarios based on the scaling of the invariant mass of hadronic state:

Hard scattering Forward scattering $\frac{P_X^2}{s} = \frac{(q+P)^2}{s} = \frac{Q^2}{s} \frac{(1-x_b)}{x_b}$ $\sim \lambda^0$ or $q^{\mu} = -\frac{Q^2}{\sqrt{s}} \frac{n^{\mu}}{2} + \frac{Q^2}{2} \frac{\bar{n}^{\mu}}{2} + q^{\mu}_{\perp} \qquad \sim \sqrt{s}(1, \lambda, \sqrt{\lambda})$ or $\sim \sqrt{s}(\lambda, \lambda^2, \lambda)$

Center of mass light cone coordinates:

$$\begin{split} P^{\mu} &= \frac{\sqrt{s}}{2} n^{\mu} \,, \quad P^{\mu}_{e} &= \frac{\sqrt{s}}{2} \bar{n}_{\mu} \quad n^{2} = \bar{n}^{2} = 0 \,, \quad n \cdot \bar{n} = 2 \,. \\ p^{\mu} &= p^{+} \frac{\bar{n}^{\mu}}{2} + p^{-} \frac{n^{\mu}}{2} + p^{\mu}_{\perp} \,, \qquad p^{2} = p^{+} p^{-} - p_{\perp}^{2} \end{split}$$



Power counting parameters: $\lambda' \sim \frac{\Lambda_{\rm QCD}}{O}$ and $\lambda \sim x_b$.

$$\lambda' \sim \frac{\Lambda_{\rm QCD}}{Q}$$

$$\lambda \sim x_b$$

photon momentum in forward scattering:	$q^{\mu} \sim \sqrt{s}(\lambda, \lambda^2, \lambda) \Leftrightarrow \frac{Q^2}{s} \sim \lambda^2$
Collinear modes in the proton:	$p_c^{\mu} \sim \sqrt{s} \left(\frac{\Lambda_{\rm QCD}^2}{s}, 1, \frac{\Lambda_{\rm QCD}}{\sqrt{s}} \right) \sim \sqrt{s} \left((\lambda \lambda')^2, 1, \lambda \lambda' \right)$
Small- x_b resummation requires collinear modes with higher virtuality $p_n^2 \sim Q^2$:	$p_n^\mu \sim \sqrt{s}(\lambda^2, 1, \lambda)$

We do not enforce $\lambda' \ll 1$ until later.

Forward scattering

$$P_X^2/s$$
 $\sim \lambda$ q^{μ} $\sim \sqrt{s} \left(\frac{\lambda}{\lambda}, \lambda^2, \lambda\right)$ p_n^{μ} $\sim \sqrt{s} \left(\frac{\lambda^2}{\lambda}, 1, \lambda\right)$

The photon cannot interact directly with collinear mode without knocking it offshell. The leading terms start at $\mathcal{O}(\alpha_s^2)$ due to intermediate soft sector:

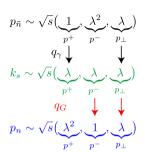
$$p_s = (p_s^+, p_s^-, p_{s\perp}) \sim \sqrt{s}(\lambda, \lambda, \lambda)$$
.

Need additional Glauber modes for soft-collinear interaction:

$$q_G^{\mu} = q'^{\mu} \sim \sqrt{s}(\lambda^2, \lambda, \lambda)$$
.

Having only soft and collinear particles in the final state is consistent with $P_X^2/s \sim \lambda$:

$$P_X^2 \sim (p_n + p_s)^2 \sim p_n^- p_s^+ \sim s\lambda$$
.



Outline

Small-r factorization from Glauber SCFT

Factorization formula Collinear function & BFKL evolution IR divergences

Comparison with previous work

SCET with Glauber operators

SCET Lagrangian:

$$\mathcal{L}_{\mathsf{SCET}} = \sum_{n_i} \mathcal{L}_{n_i} + \mathcal{L}_s + \mathcal{L}_G$$
 .

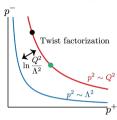
Glauber operators derived in Rothstein and Stewart [RS16] account for forward scattering phenomena.

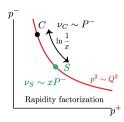
$$S_G^{(n_is)} = 8\pi\alpha_s \sum_{ij} \int \mathrm{d}^4x \int \mathrm{d}^4z \, \int \frac{\mathrm{d}^4q}{(2\pi)^4} \frac{e^{\mathrm{i}q\cdot(x-z)}}{\mathbf{q}_\perp^2} \mathcal{O}_{n_i}^{iA}(x) \, \mathcal{O}_s^{j_{n_i}A}(z) \label{eq:SG}$$

$$\begin{aligned} \mathcal{O}_s^{n_i,qA} & \qquad \mathcal{O}_s^{n_i,qA} = \overline{\psi}_S^{n_i} \mathbf{T}_i^A \frac{\not n}{2} \psi_S^{n_i} \;, \qquad \mathcal{O}_s^{n_i,gA} = \frac{1}{2} \mathcal{B}_{S\perp\mu}^{n_iB} (\mathrm{i} f^{ABC}) \frac{n_i}{2} \cdot (\mathcal{P} + \mathcal{P}^\dagger) \mathcal{B}_{S\perp}^{n_iC\mu} \;, \\ \mathcal{O}_n^{iA} & \qquad \mathcal{O}_{n_i}^{qA} = \overline{\chi}_{n_i} \mathbf{T}_i^A \frac{\not n_i}{2} \chi_{n_i} \;, \qquad \mathcal{O}_{n_i}^{gA} = \frac{1}{2} \mathcal{B}_{n\perp\mu}^B (\mathrm{i} f^{ABC}) \frac{\bar{n}_i}{2} \cdot (\mathcal{P} + \mathcal{P}^\dagger) \mathcal{B}_{n\perp}^{C\mu} \;, \end{aligned}$$

Dotted propagator represents insertion of operators from the Glauber Lagrangian.

Twist vs. rapidity factorization





> Hard matching at scale Q.

- No hard matching. The EFT at scale Q reproduces QCD in the forward scattering limit.
- > IR divergences in QCD \leftrightarrow UV divergences in the low energy theory at $p^2 \sim \Lambda_{\rm QCD}^2$.
- No rapidity divergences in QCD (but large rapidity logs). Rapidity divergences in EFT ↔ an artifact of separating soft and collinear modes.

> IR divergences can be regulated in dimensional regularization.

> Rapidity divergences require new regulators.

Small-x factorization formula

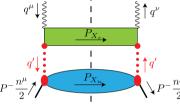
We include two insertions of the ns Glauber action:

$$S_G^{ns} = 8\pi\alpha_s \sum_{i,j,A} \int d^d y \int d^d x \int \frac{d^d q'}{(2\pi)^d} \frac{e^{\mathrm{i}(x-y)\cdot \mathbf{q'}}}{\mathbf{q'}_{\perp}^2} \mathcal{O}_n^{iA}(x) \mathcal{O}_s^{j_n A}(y) .$$

Factorization formula at NLL:

$$W^{\alpha\beta}(q,P) = \int \mathsf{d}^{d-2} q'_{\perp} \left[S^{\alpha\beta} \left(q, q'_{\perp}, \frac{\nu}{x_b P^{-}}, \epsilon \right) \right] \left[C \left(q'_{\perp}, P, \frac{\nu}{P^{-}}, \epsilon \right) \right] + \dots$$

$$C\left(q'_{\perp}, P, \frac{\nu}{P^{-}}, \epsilon\right) + \dots$$



Small-x factorization formula

We include *two insertions* of the ns Glauber action:

The collinear and soft functions are defined as

$$\begin{split} C &\equiv \frac{1}{\pi \nu} \frac{1}{{\bm q}_{\perp}^{\prime 2}} \sum_{i,j,A} \int \frac{\mathrm{d} q'^+}{2\pi} \int \mathrm{d}^d x \, e^{\mathrm{i} \frac{x^- q'^+}{2} + \mathrm{i} x_{\perp} \cdot q'_{\perp}} \langle P | \mathcal{O}_n^{i,A}(x) \mathcal{O}_n^{j,A}(0) | P \rangle_{\nu} \,, \\ S^{\alpha\beta} &\equiv \frac{\nu}{{\bm q}_{\perp}^{\prime 2}} \frac{(2\pi \iota \mu^2)^{4-d} \left(8\pi \alpha_s(\mu^2)\right)^2}{16\pi^2 \left(N_c^2 - 1\right)} \sum_{i,j,A} \int \frac{\mathrm{d} q'^-}{4\pi} \int \mathrm{d}^d z \, e^{\mathrm{i} z \cdot q} \int \mathrm{d}^d y_L \mathrm{d}^d y_R \\ &\quad \times e^{-\mathrm{i} \frac{q'^- (y_L^+ - y_R^+)}{2} - \mathrm{i} q'_{\perp} \cdot (y_{L\perp} - y_{R\perp})} \langle 0 | \bar{T} \{ J^{\alpha}(z) \mathcal{O}_s^{i_n A}(y_L) \} T \{ J^{\beta}(0) \mathcal{O}_s^{j_n A}(y_R) \} | 0 \rangle_{\nu} \,. \end{split}$$

Small-x factorization formula

We include *two insertions* of the ns Glauber action:

Here small- x_b logs are resummed via *rapidity evolution* for $\nu_S \sim x_b P^-$ and $\nu_C \sim P^-$

$$\frac{\nu_S}{\nu_C} = x_l$$

Collinear function at NLO

We computed the collinear function at NLO

$$C_{\kappa}^{\mathsf{LO}}(q'_{\perp}) = \frac{P^{-}}{\nu} \frac{c_{\kappa}}{\pi q'_{\perp}^{2}}, \qquad c_{\kappa} = C_{F}, C_{A} \qquad \text{(bad boundary condition!)}$$

$$C_{q}^{\mathsf{NLO}} = \bar{\alpha}_{s} C_{q}^{\mathsf{LO}} \times (-2\pi) \ I_{\epsilon} \left[q'_{\perp}^{2} \right] \left(\frac{1}{\eta} + \ln \left(\frac{\nu}{P^{-}} \right) + \frac{3}{4} \right), \qquad P^{-\frac{\eta r}{2}} \left(\frac{1}{\eta} + \ln \left(\frac{\nu}{P^{-}} \right) + \frac{3}{4} \right), \qquad P^{-\frac{\eta r}{2}} \left(\frac{1}{\eta} + \ln \left(\frac{\nu}{P^{-}} \right) + \frac{11}{12} - \frac{n_{f} T_{R}}{4C_{A}} \left(1 - \frac{1}{3(1 - \epsilon)} \right) \right), \qquad (a) \qquad (b) \qquad (c)$$

$$\times \left(\frac{1}{\eta} + \ln \left(\frac{\nu}{P^{-}} \right) + \frac{11}{12} - \frac{n_{f} T_{R}}{4C_{A}} \left(1 - \frac{1}{3(1 - \epsilon)} \right) \right), \qquad (g) \qquad (h) \qquad (i) \qquad (i)$$

We see that the one-loop contribution is IR divergent and exhibits a rapidity divergence.

Process independence and the BFKL equation

Rothstein and Stewart [RS16] showed that for $pp \rightarrow pp$ forward scattering

$$\sigma^{pp \to pp} \sim C_n \otimes S^{pp} \otimes C_{\bar{n}}$$

and S^{pp} satisfies the BFKL equation:

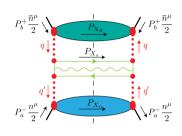
$$\nu \frac{\mathsf{d}}{\mathsf{d}\nu} S^{pp} \sim +2\bar{\alpha}_s \iota^{\epsilon} K \otimes_{\perp} S^{pp}$$

The collinear function is process independent and is expected to satisfy the BFKL equation from RG consistency:

$$\nu \frac{d}{d\nu} C = -C - \bar{\alpha}_s \iota^{\epsilon} K \otimes_{\perp} C.$$

The predicted rapidity logarithm agrees with our NLO result:

$$C_{\kappa\,\mathsf{LL}} = rac{
u}{P^-} rac{c_\kappa}{\pi oldsymbol{q}_\perp'^2} \Biggl(1 - rac{ar{lpha}_s(2\pi) I_\epsilon ig[oldsymbol{q}_\perp'^2 ig] \mathsf{ln} \Bigl(rac{
u}{P^-} \Bigr)} \Biggr) + \mathcal{O}(lpha_s^2) \,.$$



Drell-Yan

$$\frac{1}{x_b}F_a(q,P) = \int_{0}^{\infty} \mathbf{d}^{d-2}q'_{\perp} S_a\left(q, \mathbf{q}'_{\perp}, \frac{\nu}{x_b P^{-}}, \epsilon\right) C\left(\mathbf{q}'_{\perp}, \frac{\nu}{P^{-}}, \epsilon\right), \quad \left[S^{\mu\nu}\right] = 4 - d, \quad \left[C\right] = -2.$$

The convolution itself generates IR divergences as nothing prevents q'_{\perp} from entering the IR region. To see this explicitly, let us note that the SCET_{II} collinear function has the all-orders expansion:

$$C\left(\mathbf{q}'_{\perp}, \frac{\nu}{P^{-}}, \alpha_{s}(\mu^{2}), \epsilon\right) = \frac{1}{\mathbf{q}'_{\perp}^{2}} \sum_{\ell=0}^{\infty} C^{(\ell)}\left(\alpha_{s}(\mu^{2}), \frac{\nu}{P^{-}}, \epsilon\right) \left(\frac{\mathbf{q}'_{\perp}^{2}}{\mu^{2}}\right)^{-\ell \epsilon}.$$

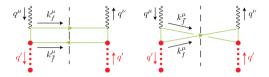
Alternative form of the factorization formula:

$$\frac{1}{x_b} F_a = \sum_{\ell=0}^{\infty} \left(\frac{\mathbf{q}_{\perp}^2}{\mu^2} \right)^{-(\ell+2)\epsilon} C^{(\ell)} \times \tilde{S}_a \left(\begin{array}{c} \gamma = -\ell \epsilon \end{array} \right).$$

The γ -transform of the soft function:

$$\tilde{S}_a(\gamma) \sim \int \frac{\mathsf{d}^{2-2\epsilon} q'_{\perp}}{q'_{\perp}^2} \left(\frac{q'_{\perp}^2}{\mu^2}\right)^{\gamma} S_a(q_{\perp}, q'_{\perp}, \epsilon).$$

Leading order soft function calculated from



is IR finite for $\gamma \neq 0$:

$$\begin{split} \tilde{S}_2^{\text{LO}}(\gamma) &= \alpha_s^2 n_f T_F \Big(\frac{\nu}{x_b P^-}\Big) \bigg(\frac{\pi^2 \left(-3 \gamma^2 + 3 \gamma + 2\right) \csc^2 \left(\pi \gamma\right)}{8 \Gamma \left(\frac{5}{2} - \gamma\right) \Gamma \left(\frac{3}{2} + \gamma\right)} \bigg) + \mathcal{O}(\epsilon) \,, \\ \tilde{S}_L^{\text{LO}}(\gamma) &= \alpha_s^2 n_f T_F \bigg(\frac{\nu}{x_b P^-}\bigg) \bigg(\frac{\pi^2 \left(-\gamma + 1\right) \csc^2 \left(\pi \gamma\right)}{4 \Gamma \left(\frac{5}{2} - \gamma\right) \Gamma \left(\frac{3}{2} + \gamma\right)} \bigg) + \mathcal{O}(\epsilon) \,. \end{split}$$

In the convolution the collinear function forces us to set $\gamma = -\ell\epsilon$,

$$\frac{1}{x_b} F_a = \sum_{\ell=0}^{\infty} \left(\frac{q_{\perp}^2}{\mu^2} \right)^{-(\ell+2)\epsilon} C^{(\ell)} \times \tilde{S}_a \left(\gamma = -\ell \epsilon \right).$$

which implies

$$\lim_{\epsilon \to 0} \tilde{S}_2^{\text{LO}} \left(-\ell \epsilon \right) = \frac{2\alpha_s^2 n_f T_F}{3\pi} \frac{1}{(\ell+1)(\ell+2)} \left(\frac{1}{\epsilon^2} + \frac{2}{\epsilon} + \mathcal{O}(\epsilon^0) \right),$$

$$\lim_{\epsilon \to 0} \tilde{S}_L^{\text{LO}} \left(-\ell \epsilon \right) = \frac{2\alpha_s^2 n_f T_F}{3\pi} \frac{1}{(\ell+1)} \left(-\frac{1}{\epsilon} + \mathcal{O}(\epsilon^0) \right).$$

The \tilde{S}_a soft function will also contribute to the PDF despite being a vacuum matrix element.

In the convolution the collinear function forces us to set $\gamma = -\ell\epsilon$,

$$\frac{1}{x_b} F_a = \sum_{\ell=0}^{\infty} \left(\frac{q_{\perp}^2}{\mu^2} \right)^{-(\ell+2)\epsilon} C^{(\ell)} \times \tilde{S}_a \left(\gamma = -\ell \epsilon \right).$$

We find that for $\gamma \neq 0$, \tilde{S}_L and \tilde{S}_2 are proportional to the off-shell cross section that appear in [CH94]:

$$\tilde{S}_{2}(\gamma, \epsilon = 0) = \left(\frac{\nu}{x_{b}P^{-}}\right)\alpha_{s}\frac{h_{2}(\gamma)}{\gamma^{2}}, \qquad (1)$$

$$\tilde{S}_{L}(\gamma, \epsilon = 0) = \left(\frac{\nu}{x_{b}P^{-}}\right)\alpha_{s}\frac{h_{L}(\gamma)}{\gamma}.$$

This is not the right limit for us and the full ϵ dependence is needed to perform small- x_b resummation.

> In [CH94] these IR divergences were separately captured in the gluon and quark Green's functions.

Leading log small- x_b resummation

Setting $\nu = \nu_S$ trivializes rapidity logs in the soft function:

$$\frac{1}{x_b}F_a^\kappa(x_b,Q^2) = \int \mathsf{d}^{d-2}q_\perp' S_a\big(1,q_\perp,q_\perp',\epsilon\big) C_\kappa\big(x_b,q_\perp',\epsilon\big)$$

Mellin space :

$$ar{C}_{\kappa}ig(n,q'_{\perp},\epsilonig) = rac{c_{\kappa}}{n\pim{q}'^{2}_{\perp}} + rac{ar{lpha}_{s}\iota^{\epsilon}}{n}K\otimes_{\perp}ar{C}_{\kappa}ig(n,q'_{\perp},\epsilonig) \ , \quad c_{\kappa} = C_{F},C_{A}\,, \quad ar{lpha}_{s} = rac{lpha_{s}C_{A}}{\pi}$$

Solve for \bar{C}_{κ} as a power series as before:

$$\bar{C}_{\kappa,\mathsf{LL}}(n,q'_{\perp},\epsilon) = \frac{1}{n} \frac{c_{\kappa}}{\pi \boldsymbol{q}'^{2}_{\perp}} \sum_{\ell=0}^{\infty} c_{\ell+1}(\epsilon) \left(\frac{\bar{\alpha}_{s}}{n} \frac{e^{\epsilon \gamma_{E}}}{\Gamma(1-\epsilon)} \left(\frac{\boldsymbol{q}'^{2}_{\perp}}{\mu^{2}} \right)^{-\epsilon} \right)^{\ell}, \qquad c_{\ell}(\epsilon) = \frac{1}{\ell!} \left(\frac{-1}{\epsilon} \right)^{\ell} \left(1 + \mathcal{O}(\epsilon^{2}) \right)$$

Now include the soft contribution to arrive at small- x_b resummed structure functions:

$$\bar{F}_{a,\mathrm{LL}}^{\kappa}(n,Q^2) = \frac{c_{\kappa}}{n\pi} \left(\frac{q_{\perp}^2}{\mu^2}\right)^{-2\epsilon} \sum_{\ell=0}^{\infty} d_{a,\ell+1}(\epsilon) \left(\frac{\bar{\alpha}_s}{n} \frac{e^{\epsilon \gamma_E}}{\Gamma(1-\epsilon)} \left(\frac{q_{\perp}^2}{\mu^2}\right)^{-\epsilon}\right)^{\ell} \ , \quad d_{a,\ell+1}(\epsilon) \equiv c_{\ell+1}(\epsilon) \tilde{S}_a(1,-\ell\epsilon,\alpha_s,\epsilon)$$

Outline

Introduction

The small-x region and the BFKL equation LL resummation by Catani and Hautmann

EFT modes and power counting

Small-x factorization from Glauber SCET

Factorization formula
Collinear function & BFKL evolution
IR divergences

BFKL & DGLAP resummation

Consistency with twist factorization BFKL resummation of F_2 and F_L Comparison with previous work

Backup slide:

Small-x vs. twist expansion

Here we are dealing with two different power expansions simultaneously:

$$\lambda \sim x_b$$
 and $\lambda' \sim rac{\Lambda_{
m QCD}}{Q}$.

Key subtleties:

- Small-x_b and twist expansions do not commute.
- Both expansions have terms that are leading power in one but subleading in the other.

Consider the fixed order series: Leading twist-2 contributions at $\mathcal{O}(\alpha_s^0)$ and $\mathcal{O}(\alpha_s)$ are actually power suppressed in x_b -expansion. For example,

$$H_L^{(g)}(x) \sim \left[\alpha_s x(1-x)\right] + \mathcal{O}(\alpha_s^2) \qquad \Leftrightarrow \qquad \bar{H}_L^{(g)}(x) \sim \left[\alpha_s \left(\frac{1}{n+2} - \frac{1}{n+3}\right)\right] + \mathcal{O}(\alpha_s^2)$$

Thus in connecting with the twist expansion we will have to include power suppressed pieces. (See an illustration in the backup.)

BFKL Resummation of F_L

We set $\mu^2=Q^2$ and start with formula involving unknown pieces (HP = higher power)

$$\bar{F}_{L,\mathrm{HP}}^g \ + \bar{F}_{L,\mathrm{LL}}^g(n) = \ \bar{H}_L^{(g)}\Big(n, \frac{Q^2}{\mu^2} = 1, \alpha_s\Big) \bar{\Gamma}_{gg} \left(\alpha_s, n\right) \ . \label{eq:FLHP}$$

Parameterize the the terms we want to determine for LL results as

$$\begin{split} \bar{H}_L^{(g)} &= \frac{\alpha_s}{\pi} \sum_{k=0}^\infty \epsilon^k h_{L,g}^{(0,k)} + \frac{\alpha_s}{\pi} \sum_{\ell=1}^\infty \left(\frac{\alpha_s}{\pi n}\right)^\ell \sum_{k=0}^\infty \epsilon^k h_{L,g}^{(\ell,k)} \,, \\ \gamma_{gg} &= \sum_{\ell=1}^\infty \gamma_{gg,\ell-1} \Big(\frac{\bar{\alpha}_s}{\pi}\Big)^\ell \,, \\ \bar{F}_{L,\mathrm{HP}}^g &= \frac{\alpha_s}{\pi} \sum_{l=1}^\infty \epsilon^k f_{L,g}^{(k)} \,. \end{split}$$

We have truncated the higher power pieces to $\mathcal{O}(\alpha_s)$ which is sufficient for LL resummation in small- x_b .

BFKL Resummation of F_L

We set $\mu^2 = Q^2$ and start with formula involving unknown pieces (HP = higher power)

$$\bar{F}_{L,\mathrm{HP}}^g \ + \bar{F}_{L,\mathrm{LL}}^g(n) = \ \bar{H}_L^{(g)}\Big(n, \frac{Q^2}{\mu^2} = 1, \alpha_s\Big) \bar{\Gamma}_{gg} \left(\alpha_s, n\right) \ . \label{eq:flower}$$

By sequentially comparing the coefficients of $(\alpha_s/\epsilon)^{\ell}$, $\alpha_s(\alpha_s/\epsilon)^{\ell}$, ... terms we find

$$\begin{split} \gamma_{gg} &= \frac{\bar{\alpha}_s}{n} + 2\zeta_3 \left(\frac{\bar{\alpha}_s}{n}\right)^4 + \dots, \\ \bar{H}_L^{(g)} &= \frac{2\alpha_s n_f T_F}{3\pi} \left(1 - \frac{1}{3}\frac{\bar{\alpha}_s}{n} + \left(\frac{34}{9} - \zeta_2\right) \left(\frac{\bar{\alpha}_s}{n}\right)^2 + \left(-\frac{40}{27} + \frac{\pi^2}{18} + \frac{8}{3}\zeta_3\right) \left(\frac{\bar{\alpha}_s}{n}\right)^3 + \dots\right), \\ \bar{F}_{L, \mathsf{HP}}^g &= \frac{2\alpha_s n_f T_F}{3\pi} \left(1 + 3\epsilon + \left(6 - \frac{1}{2}\zeta_2\right)\epsilon^2 + \left(12 - \frac{\pi^2}{4} - \frac{7}{3}\zeta_3\right)\epsilon^3 + \dots\right). \end{split}$$

- ✓ Series agree with LL results in Catani and Hautmann [CH94]. Interestingly, we simultaneously determine the LL results for γ_{gg} and $\bar{H}_L^{(g)}$.
- √ We determined the unknown power suppressed pieces self-consistently!
- \checkmark $F_{L \text{ HP}}^g$ has no IR poles \rightarrow All the poles in F_L channel generated through BFKL evolution.

Resummation of F_2

For F_2 , we write

$$\bar{F}^g_{2, {\rm HP}} \ + \bar{F}^g_{2, {\rm LL}}(n) = 2 n_f \ \bar{\Gamma}_{qg} \ + \ \bar{H}^{(g)}_2 \ \bar{\Gamma}_{gg}$$

Following the same steps as before, we find

$$\begin{split} \gamma_{qg} &= \frac{\alpha_s T_F}{3\pi} \left(1 + \frac{5}{3} \frac{\bar{\alpha}_s}{n} + \frac{14}{9} \Big(\frac{\bar{\alpha}_s}{n} \Big)^2 + \Big(\frac{82}{81} + 2\zeta_3 \Big) \Big(\frac{\bar{\alpha}_s}{n} \Big)^3 + \ldots \right), \\ \bar{H}_2^{(g)} &= \frac{\alpha_s n_f T_F}{3\pi} \left(1 + \Big(\frac{43}{9} - 2\zeta_2 \Big) \frac{\bar{\alpha}_s}{n} + \Big(\frac{1234}{81} - \frac{13}{3}\zeta_2 + \frac{4}{3}\zeta_3 \Big) \Big(\frac{\bar{\alpha}_s}{n} \Big)^3 + \ldots \right), \\ \bar{F}_{2, \text{HP}}^g &= \frac{\alpha_s n_f T_F}{3\pi} \left(-\frac{2}{\epsilon} \right) + 1 + (1 + \zeta_2)\epsilon + \Big(1 - \frac{1}{2}\zeta_2 + \frac{14}{3}\zeta_3 \Big) \epsilon^2 + \ldots \right). \end{split}$$

The IR pole in $\bar{F}_{2,HP}^g$ does not result from BFKL evolution. This required [CH94] to introduce a new auxiliary object, the quark Green's function (see backup). For us it results straightforwardly from our soft function \tilde{S}_2 .

Comparison with previous work

> Objects in factorization:

- [CH94] Made use of off-shell cross sections which can only be guaranteed to be gauge invariant at leading order.
 - here Employed individually gauge invariant (to all orders) collinear and soft functions.
 - > Resummation of F_L vs. F_2 :
- [CH94] Needed to define a separate quark Green's function for F_2
 - here Resummation of both F_2 and F_L follow from the same soft function.
 - > Manifest power counting
- [CH94] Included $\mathcal{O}(\alpha_s)$ higher power pieces from the beginning.
 - here The resummed structure function $\bar{F}_{a,\text{LL}}^{\kappa}$ is manifestly leading power. We could self-consistently determine the power suppressed pieces by demanding consistency with twist factorization.
 - NLO computation
- [CC99] Calculated *impact factor* analogous to our collinear function, but required a careful subtraction of Green's function pieces, inducing factorization scheme dependencies.
 - here Computation of factorized functions in our formalism follow straightforwardly from operator definitions. No process or factorization scheme dependence.

Conclusion

- We have shown how to construct from the SCET framework with Glauber interactions
 - small-x_b factorization to NLL.
 - and resummation done explicitly to LL.
- Factorization involves a universal collinear function. Such universality is not obvious in the traditional approach.
- Advantages of the EFT approach:
 - Factorization functions gauge invariant to all orders.
 - No separate Green's functions needed to be calculated.
 - Off-shell cross sections replaced by one soft function $S^{\alpha\beta}$ for all DIS channels.
 - Manifest power counting.
 - No factorization or scheme dependencies.
 - Universal, process independent, collinear-function.
- This work provides a new framework for extending resummed calculations for coefficient functions and anomalous dimensions to higher logarithmic orders.

Thank you!

Contact

DESY. Deutsches

Elektronen-Synchrotron

Aditya Pathak

© 0000-0001-8149-2817

Theory Group

aditya.pathak@desy.de

www.desy.de +49-40-8998-4589

Outline

Introduction

The small-*x* region and the BFKL equation LL resummation by Catani and Hautmann

EFT modes and power counting

Small-x factorization from Glauber SCET

Factorization formula
Collinear function & BFKL evolution
IR divergences

BFKL & DGLAP resummation

Consistency with twist factorization BFKL resummation of F_2 and F_L Comparison with previous work

Backup slides

Backup

Resummation of γ_{qg} by Catani and Hautmann [CH94]

For F_2 structure function, they showed

$$\gamma_{gg}(N,\alpha_s)\bar{H}_2^{(g)}(n,Q^2/\mu^2=1,\alpha_s)+2n_f\gamma_{qg}(\alpha_s,n)=h_2(\gamma)R(n,\alpha_s),$$

where

$$h_2(\gamma) = \gamma \int_0^\infty \frac{\mathrm{d} \boldsymbol{k}_\perp^2}{\boldsymbol{k}_\perp^2} \left(\frac{\boldsymbol{k}_\perp^2}{Q^2} \right)^\gamma \frac{\partial}{\partial \ln Q^2} \hat{\sigma}_2^g \left(\frac{\boldsymbol{k}_\perp^2}{Q^2}, \alpha_s, \epsilon = 0 \right).$$

Notice that they needed to take $\ln Q^2$ derivative as $\hat{\sigma}_2^g$ is not collinear safe. The structure of IR divergences in γ_{qg} gets polluted by $1/\epsilon$ divergence in $\hat{\sigma}_2^g$, so define a new *quark Green function*:

$$G_{qg}^{(0)}ig(n,lpha_s,\epsilonig) = \int \mathsf{d}^{d-2}m{k}_\perp \, \hat{K}_{qg}igg(rac{m{k}_\perp^2}{Q^2},lpha_s,\mu,\epsilonigg) \mathcal{F}_g^{(0)}ig(n,m{k}_\perp,lpha_s,\mu,\epsilonigg) \,.$$

 K_{qg} includes the $1/\epsilon$ pole associated with $\hat{\sigma}_2^g$ (same as what we saw in $\bar{F}_{2,\mathrm{HP}}^g$ above). Consistency with DGLAP resummation then enables determination of γ_{qg} anomalous dimension using $G_{qg}^{(0)}$, although not in a closed form as in γ_{gg} .

How do IR poles exponentiate?

After resumming the leading $(\bar{\alpha}_s/n)^{\ell}$ terms:

$$\bar{F}_{a,\mathrm{LL}}^{\kappa}(n,Q^2) = \frac{c_{\kappa}}{n\pi} \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2}\Big)^{-2\epsilon} \sum_{\ell=0}^{\infty} d_{a,\ell+1}(\epsilon) \bigg(\frac{\bar{\alpha}_s}{n} \frac{e^{\epsilon \gamma_E}}{\Gamma(1-\epsilon)} \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2}\Big)^{-\epsilon}\bigg)^{\ell}$$

In twist expansion the bare structure function (in dim-reg) factorizes as

$$\bar{F}_p^{\kappa}(n,Q^2) = \sum_{\kappa'} \bar{H}_p^{(\kappa')} \left(n, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) \bar{\Gamma}_{\kappa'\kappa} \left(\alpha_s(\mu^2), n \right) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2} \right).$$

In the fixed coupling approximation the partonic PDF is

$$\bar{\Gamma}_{\kappa'\kappa}\big(\alpha_s(\mu^2),n\big) = \mathsf{P} \exp\bigg(-\frac{1}{\epsilon} \int_0^{\alpha_s(\mu^2)} \frac{\mathsf{d}\alpha}{\alpha} \pmb{\gamma}^s(\alpha,n)\bigg)_{\kappa'\kappa} \,.$$

For parton $\kappa \to \kappa'$ it captures the infra-red divergences of the perturbative calculation.

How do IR poles exponentiate?

After resumming the leading $(\bar{\alpha}_s/n)^{\ell}$ terms:

$$\bar{F}_{a,\mathrm{LL}}^{\kappa}(n,Q^2) = \frac{c_{\kappa}}{n\pi} \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2}\Big)^{-2\epsilon} \sum_{\ell=0}^{\infty} d_{a,\ell+1}(\epsilon) \bigg(\frac{\bar{\alpha}_s}{n} \frac{e^{\epsilon \gamma_E}}{\Gamma(1-\epsilon)} \Big(\frac{\boldsymbol{q}_{\perp}^2}{\mu^2}\Big)^{-\epsilon}\bigg)^{\ell}$$

Let us illustrate how the leading $(\alpha_s/\epsilon)^\ell$ IR poles exponentiate. The $d_{a,\ell}$ coefficients for a=L behave as

$$\frac{1}{n} \left(\frac{\bar{\alpha}_s}{n} \right)^{\ell} d_{L,\ell+1}(\epsilon) = \frac{2\alpha_s n_f T_F}{3\pi} \left[\frac{1}{(\ell+1)!} \left(-\frac{1}{\epsilon} \frac{\bar{\alpha}_s}{n} \right)^{\ell+1} + \mathcal{O}(\epsilon^{-\ell}) \right]$$

Thus,

$$\begin{split} \bar{F}_{L,\mathrm{LL}}^g(n) + \left[\frac{2\alpha_s n_f T_F}{3\pi} \right] &= \frac{2\alpha_s n_f T_F}{3\pi} \left[\sum_{\ell=0}^\infty \frac{1}{\ell!} \left(-\frac{1}{\epsilon} \frac{\bar{\alpha}_s}{n} \right)^\ell \left(1 + \mathcal{O}(\epsilon) \right) \right] \\ &= \frac{2\alpha_s n_f T_F}{3\pi} \exp\left(-\frac{1}{\epsilon} \frac{\bar{\alpha}_s}{n} \right) \left(1 + \mathcal{O}\left(\frac{\bar{\alpha}_s}{n} \right) \right) + \mathcal{O}\left(\frac{1}{\epsilon} \left(\frac{\bar{\alpha}_s}{n} \right)^2 \right) \end{split}$$

Necessary to add by hand the $\mathcal{O}(\alpha_s)$ term to factorize IR divergences.

References I

- [CH94] S. Catani and F. Hautmann. "High-energy factorization and small x deep inelastic scattering beyond leading order". In: Nucl. Phys. B427 (1994), pp. 475–524. DOI: 10.1016/0550-3213 (94) 90636-X. arXiv: hep-ph/9405388 [hep-ph].
- [Blu+98] J. Blumlein et al. "The Unpolarized gluon anomalous dimension at small x". In: 6th International Workshop on Deep Inelastic Scattering and QCD (DIS 98). Apr. 1998, pp. 211–216. arXiv: hep-ph/9806368.
- [CC99] M. Ciafaloni and D. Colferai. "K factorization and impact factors at next-to-leading level". In: Nucl. Phys. B 538 (1999), pp. 187–214. arXiv: hep-ph/9806350.
- [Tho01] Robert S. Thorne. "The Running coupling BFKL anomalous dimensions and splitting functions". In: Phys. Rev. D 64 (2001), p. 074005. arXiv: hep-ph/0103210.
- [Cia+04] Marcello Ciafaloni et al. "The Gluon splitting function at moderately small x". In: Phys. Lett. B 587 (2004), pp. 87–94. arXiv: hep-ph/0311325.
- [ABF06] Guido Altarelli, Richard D. Ball, and Stefano Forte. "Perturbatively stable resummed small x evolution kernels". In: Nucl. Phys. B 742 (2006), pp. 1–40. arXiv: hep-ph/0512237.

References II

[RS16] Ira Z. Rothstein and Iain W. Stewart. "An Effective Field Theory for Forward Scattering and Factorization Violation". In: JHEP 08 (2016), p. 025. DOI: 10.1007/JHEP08(2016)025. arXiv: 1601.04695 [hep-ph].