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DIS review: Twist expansion

Consider unpolarized, inclusive DIS:

2
2 _ 2 _ Q
Q=-¢>0, T =9pg
d?c _ _ 2mya’ o
W(e p—e X):TLHV(P(ﬂQ) WH(P,q) .

L1 s 1
WH = b — Fy (x4, Q%) + eb” — Fa (3, Q?) .
Ty Ty

Well-known twist-2 factorization:

1 A2
xibFa(meQ) = Z/df H (T8 Qo) fugpl€m) + O( °°D> :

Q2
PDF absorbs all the IR divergences.
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DIS review: Twist expansion

Consider unpolarized, inclusive DIS:

2
2 2 Q
= — 0 =
Q >0, T =9pg
d?c _ _ 2mya’ "
(6 p—e X): L,U,V(PEDQ) wh (Paq) .

da, dQ? Q*

Take Mellin Transform:

o T € ———
PDF

1
FP(Na Q2) = dj]"N(lFP('T)) ) = F‘p(’{)(N) = ZH;)H/)(*N) X fN’K(N; 6)

IR divergences are exponentiated into PDFs (transition functions),

_ 9 O‘S(.U'z) dOé
T (s ,N,e) =P ex / *(a, N .
(as(u®), Nye) ) Bea)” (a,N) y
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Mellin Transform

Mellin transform is very useful: (set N =n + 1)

Let us note that

1
/ 9 ot ()
0
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Ly ~ L _
I (@) o pole atn =0
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P77 In" T () ~ n 1)t poleatn = —p
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Small-z limit

Leading terms in x; — 0 limit:

£
Og -1
g In (x)

)

Both coefficient function and the DGLAP anomalous dimension become singular in x; — 0 limit:
H (n) ~ L ta (%)24-04 (%)3—&-
a S n s n S n cee

« o\ 2 g\ 3
)~ e (T () e

s )2 (%)3
’ng(n) ozsn+ozs(n) + o " + ...
Our goal is to resum these leading logarithmic series.
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Progress (?) in small-z; resummation

selected collider-QCD accuracy milestones

Drell-Yan (y/Z) & Higgs production at hadron colliders
LO NLO NNLO[.....covemrnnnnnnn 1 N3LO

DGLAP splitting functions
LO NLO NNLO [parts of N3LO]

transverse-momentum resummation (DY&Higgs)
LL  NLL[...... I NNLL][...] N3LL

parton showers (many of today’s widely-used showers only LL@Ieading-colour)

LL [parts of NLL......cccuiireiireiiiie e ]
This talk ——p 'Small-x
LL [p,z@NLL]
1970 1980 1990 2000 2010 2020
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Phenomenological applications of small-x limit

Small-z;, data at N3LO plays a crucial role in improving PDFs:

A List of N°LO Ingredients
MSHT20aN3LO: McGowan, Cridge, Harland-Lang, Thorne Eur.Phys.J.C 83 (2023) 3, 185

N3LO No. of Moments Smallz Larse-s
Function | Moments (Even only) ) e
P 8 N =2-16 21] 1] 21
pEs 14 | N=2-8[3536 LL 28] N/A
P, 1 | N=2-8[3536 LL 28] N/A
P, 1 | N=2-8[3530 LL [29 31] N/A
P, 4 | N=2-8[3536] | LL & NLL[2033] | N/A
s 7 N=2-1450] N/A N/A
AL 6 N=2-12[50] 53] [53]
Am, 5 N =2-10 [50] LL [49] N/A
Ayt 7 N =2— 14 [50] [54] [54]
Ayt 5 N =2-10 [50] N/A N/A

Table A.1: List of all the N3LO ingredients used to construct the approximate N3LO splitting
functions and transition matrix elements. Where only a citation is provided, extensive knowledge
ie. beyond NLL is used. This table is a non-exhaustive list of the current knowledge about these
functions, however information beyond that which is provided here is not currently in a usable format
for phenomological studies.
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Two subtleties with small-x; resummation

The box represents the full expression of the structure function (perturbative as well as
nonperturbative):

The complete result for F,
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Two subtleties with small-z; resummation

Terms that are retained at leading power in twist expansion (% < 1)

& st
(\ P (2
< R i
\X\é\e y\.\?}\e‘x W
o "\N\S‘
Y\'\‘%‘f\
,0,4\5\ ‘\ﬂ\ﬁ\
w w

AQ
:cib .'L’b, Z/wb H(H) an >fn/p(£hu) +O(%) :
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Two subtleties with small-z; resummation

Terms that are leading power in x;, < 1 expansion (~ % orn = 0 pole)

<
' 5 . ‘(\Q i
we® e \X\%e\i A0 Xb
o 9"
\/\.\(g(\e.‘\w
ot
Y
. goet
‘e\\% - M
. R\
\X\%@; o ¥ QO\NP}

Where is this relative to leading twist terms?
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Subtlety # 1: Non-trivial overlap between twist and small-z,,
expansions

Small-x;, expansion is based on rapidity factorization and makes no reference to Aqcp (more on
this coming up), and hence includes leading as well as higher twist pieces.

B \(\8‘ '\3\,
< e e e
i Qo““e‘ ‘«'\sK WS 5y W

Ouir first goal is to compute the overlap between the two expansions.
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Factorization of nonperturbative pieces

Using dim-reg d = 4 — 2¢ and simple partonic states we can kill higher twist pieces.
IR divergences appear as 1/¢r poles in the PDF.

_ 1 as(p?) da
Conalin) =Pexp (~ 2 [ %optan)) L (ixed coupling
€ 0 « s

Where are exactly all the leading twist-2 1/¢r poles?
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Factorization of nonperturbative pieces

Where are exactly all the leading twist-2 1/ poles?

We can answer this by inspecting the perturbative series of the anomalous dimension:

a,Cy

ng(n)z 7 +,

asT [P
Yag (1) = 3—7TF +0< o >
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Subtlety # 2: Non-trivial overlap also of IR poles between
twist and small-z;, expansions

There are IR divergences associated with small-z; logs as well as those appearing at higher
powers in x;, < 1 expansion:

Our second goal is to consistently factorize IR poles of these two origins into the twist-2 PDF.
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The BFKL equation

Resummation of small-z; logs invovles solving the BFKL equation. For a function f(z,q )

flz,q) ~ xp_l(logs of x) ,

that satisfies BFKL equation in 4 dimensions:

v f(ea0) = (0~ 17w a,) + oK @1 fl(a,)

where

d2 2
(K@ f](q.) = (27T)/ (27]:; { (qiffk,:j)z - ki(qlqi kL)gf(ql)} ’

In the n-space we have an iterative equation

Fln,q,) = x flx=1,q,) ——[K @ f(n)](q.)

n+p Se— ——— n+p

Boundary condition
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The BFKL equation

Resummation of small-z; logs invovles solving the BFKL equation. For a function f(z,q )
flz,q) ~ ;vp_l(logs of x) ,

that satisfies BFKL equation in 4 dimensions:

e feg) = (- Df(e.q,) +e[K o, fl(a))

dx
where
d?k 2f (k1) q’
K® = (27 / - L ,
[ J.f:l(qj_) ( ) (QW)Z{(ql 7’9L)2 ki(ql —kL)2f<qJ_)
Eigenfunctions of BFKL Kernel:

K 1 ing _ 1 ing 0 R 1

®L WB (q1) —X(%’Y)me ) <hRey <l .

1 q,
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Bad boundary condition = IR divergence!
What happens for v = 0?

1 1 koL q2
Kou g (@) =z | i
ki] o a (2m) k2 (q, —k1)”

v=0:

This Integral is divergent! But we can make sense of it in dimensional regularization:

2 YE € d272ekl q2
om) . [q2 ] = (2m) (HE / L
(2m) [ l] ( )( 4 ) (2m)2—2¢ ki(ql—kl)?’

g\ e L= T(1+¢)
- (ﬁ) T(=e)e T(1— 2¢)

= —% + log (Z%) + O(e) .
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Bad boundary condition = IR divergence!
What happens for v = 0?

v=0:

1 1 d2kJ_ q2
K®, —|(q :—2#/ L
e e g ey

This Integral is divergent! But we can make sense of it in dimensional regularization:

2,7E\ € d2726k i
om L [q% ] = (2m) (P / > =
(2m)I[q] (ﬂ)( 47 ) (2m)22e ki(QL_kL)2

q2 —¢ eYE F(l — G)F(l + 6)
- (M_é) L(=e)e T(1— 2¢)

= —% + log (Z—%) + O(e).

This is relevant: Nature produces bad boundary conditions for the BFKL equation and these IR
divergences go into the PDF, but not every IR divergence is generated this way.

®
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LL small-x resummation by Catani and Hautmann

LL small-z;, resummation consistent with twist factorization by Catani and Hautmann [CH94]:

_ Q*\ves

F9(n) = hy (149) x R(n) x (F) x gy,
> AtLL, the IR divergences in F{ appearin I',,.
> hp: describes coupling with photon, IR finite, defined via an off-shell cross section.
> R: scheme chosen to factorize the IR divergences.

< dk? (kTN\7 ., (k]
hL(’Y)*’Y/O ﬁ(@) UL<Q2,045,€0>-
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LL small-x resummation by Catani and Hautmann

LL small-z;, resummation consistent with twist factorization by Catani and Hautmann [CH94]:

_ 2 Ygg _
P ) = hi(og0) ) x ()" % T,

At LL, the IR divergences in Fy appearin [',,.
hr: describes coupling with photon, IR finite, defined via an off-shell cross section.
R: scheme chosen to factorize the IR divergences.

[CH94] resummed (=) terms in vy, (cv;, n) by inventing a gluon Green’s function ]:‘g(o):

o as _ o
FO(nay) =097 g )+ Kol FOM)](y), 6=

ﬁg(o) is determined completely by the §(2~2¢)(¢, ) boundary condition and iterations of the BFKL
kernel.

DESY. | Small-x Factorization from Effective Field Theory | Aditya Pathak | QCD@LHC, Durham, September 4, 2023 Page 15


http://creativecommons.org/licenses/by/4.0/

LL small-x resummation by Catani and Hautmann

Notice how BFKL kernel acts on 6(2=29)(q  ):

K@y 6729 (q,) ~ L(ﬁ)—e

ki—2€ M2
1ok 1 1 (k72
ki 2 FLQ € ki 2 /~L2
1 /kiN—te 1 1 K3 \-(+De
Koo g (e) ~ e (e)

This generates an IR divergent series solution for ]T‘g(o):

AP i) + gt S0 E(E) ) L at= (- 1) (1eow)

n
(=1 H
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A special property of the LL series and F, channel

o0

00+ e S (2(5) ) a0 - 4(- 1) (o)

(=1 H

A special property of the LL series and F;, channel: All the IR divergences at LL for F, are
generated by BFKL equation

F,@LL

T',, absorbs the IR divergences in F4:

_ 1 B B
]:-‘50) (n,q.) = % X Ygg X R(n, ki €) x Tgg.
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LL small-x resummation by Catani and Hautmann

> Resummation of I, and v, is not straightforward in this framework, because I, involves IR
divergences NOT generated by BFKL evolution alonel.

> They introduced a new quark’s Green’s function to capture this non-BFKL divergence.

!
Boundary
condition

®
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Importance of higher order small-x; resummation

> The approach of Catani and Hautmann . ‘ ]
kY ngg(x,aS: 0.2) ]

[CH94] has not been extended beyond LL. A

> Higher order resummation is crucial: Large -
corrections from next-to-leading log
small-z; resummation.

Goal of this work: provide a new framework
for higher order resummation using a

factorization derived in SCET with Glauber 05 L 1
operators of Rothstein and Stewart [RS16]. . S Dsectome ]
See also Ciafaloni et al. [Cia+04], Altarelli, Ball, and Forte ol e sl ER

10 10 10 10 10 1

[ABF06], and Thorne [Tho01] and references therein.

Figure from Blumlein et al. [Blu+98].
Page 19
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Outline

EFT modes and power counting
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EFT modes and power counting

Center of mass light cone coordinates:

pro Yo pr Vo,
2 b €

2 -2
—nu n"=n"=0, n-n=2.

nt _n* 2 _ 2
=t 4Pl P =T -l
. A
Power counting parameters: N~ and A~

Q
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EFT modes and power counting

Center of mass light cone coordinates:

P“:%gmz Pt = X£m17f:ﬁ2:o,n-ﬁ:2

nt _nt _
=t 4Pl P =T -l
. A
Power counting parameters: N o~ %CD and A~axy

Two possible scenarios based on the scaling of the invariant mass of hadronic state:

Hard scattering
PZ (¢+P)? Q11—
Fx (¢+ P) _ W ( ry) )\ or
S S S Ty
Q? n¥ Q* aH ,
o Vs 2 ap/s 2 +di ~ V(LA \F)\) or

(collineartoe™)
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~ A

~V/s(A A7)0
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EFT modes and power counting

Center of mass light cone coordinates:

n _
Pr=pt 4 7+pi7 p’=pp —pl
. + Aacp

Power counting parameters A 0 and A~axy

photon momentum in forward scattering: ¢ ~Vs(MAL) e %2 ~ A2

Collinear modes in the proton: pe o~ \/E(Aow .1, Afﬁ’) ~ \/E((/\X)Q, 1, AX)

Small-z, resummation requires collinear “ 5

modes with higher virtuality p2 ~ Q2 : ph~ V3(X% 1)

We do not enforce X\’ < 1 until later.
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EFT modes and power counting

Forward scattering P~ V(1220
+  p~  pL
P} /s ~ S
7" ~VE(A L AT B~ V32 A )
P ~VE( X1 o 1
The photon cannot interact directly with collinear mode without knocking it Pn~ Vs (\/\f_, \1/7 \A/)
offshell. The leading terms start at O(a?2) due to intermediate soft sector: pt p— P

ps = (P2, ps psi) ~ V(M AN

Need additional Glauber modes for soft-collinear interaction:
at = q" ~Vs(A N N).
Having only soft and collinear particles in the final state is consistent with P% /s ~ \:

P% ~ (pn+p:)? ~ prpl ~ s\,
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Outline

Small-z factorization from Glauber SCET
Factorization formula
Collinear function & BFKL evolution
IR divergences
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SCET with Glauber operators

SCET Lagrangian:

Lscer = Z['ni +Ls+ Lo

g

Glauber operators derived in Rothstein and Stewart [RS16] account for forward scattering phenomena.

ig-(z—2) .
S(n %) — 8ra, Z/d4 /d4 / d* q ¢ o (’)f{?(w) (’)g”"A(z)
1

° O:inA O:qu — ,l)[)SZTA% i on 9A 7Bglu( fABC) (P + PT)ng_C“ ’
o o ot =%, T B, O = IBLGO T (P PHESE,

Dotted propagator represents insertion of operators from the Glauber Lagrangian.
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Twist vs. rapidity factorization

Twist factorization

Rapidity factorization

No hard matching. The EFT at scale Q reproduces

Hard matching at scale ¢ QCD in the forward scattering limit.

IR divergences in QCD « UV No rapidity divergences in QCD (but large rapidity
divergences in the low energy theory at logs). Rapidity divergences in EFT <« an artifact of
p? ~ Adcp- separating soft and collinear modes.

IR divergences can be regulated in

dimensional regularization.
DESY. | Small-x Factorization from Effective Field Theory | Aditya Pathak | QCD@LHC, Durham, September 4, 2023 Page 25 &
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Small-x factorization formula

We include two insertions of the ns Glauber action:

d \(171/)q .
8770552 /dd’l /d{lI/ d _ O’LA( )OJS"A(y). q#l : Tqy

d
S 27) q’’
Factorization formula at NLL: . | . T
q|e | Ad
W8 (q, P di2q, "‘5( v ) (’PL) : :
(qv ) / S qan_> bP_ve O q1, 7P_7€ + P_l; \P_T;l
|
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Small-x factorization formula

We include two insertions of the ns Glauber action:

d \(171/) q .
8770452 /ddl /d’/l/ d’g — O ()0 (y). ¢\ : TQV

1,5,A"
Factorization formula at NLL: . | . T
q|e | Ad
W8 (q, P di2q, "‘5( L) (’PL) : :
(qv ) / S qan_) bP_ve O q1, 7P_7€ + P_l; \P_T;l
|

The collinear and soft functions are defined as

o= L Ly [U [0t ot @t P,
ez qL A
2\4—d 2 . I—
aBZL(2W[/“> (87”} (/“ )) dq / (17 iz-q/ d d
SR (o 2,:4 i ) dEe [ dundiun
R CTERTS, ) .
e o e I (2) O () YT{I (0) 02 () HO) -
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Small-x factorization formula

We include two insertions of the ns Glauber action:
dd(], (\(171/) q . "
d de. iA Gn A q I
8MSZ‘/dv/ s | G O @0 ). | |
(2%}

Factorization formula at NLL: . |

W’ (q, P) = /dd 24, SQIB(q,QL,%,E) C’(qi,P,#,e) +o Pﬂ;‘

Here small-z; logs are resummed via rapidity evolution for vg ~ 2, P~ and vg ~ P~

Vo
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Collinear function at NLO

We computed the collinear function at NLO

P~ e

CRd)) = — =5, cw =Cr,Ca (bad boundary condition!)
14 ﬂ'ql
ONO _ 5,00« (—27) I [q’Q] 1 +In (L) + 3 ,/
q q € n P- 4 )
Cy'° = a.C5° x (—2m) I[q]
1 11 0T 1 Y v v
L 2 Honitry H
x ( " +in(5) +5 4C (1 3(1-@))’ e N
® m 0
1 r> _ asC
@mL[ri] = —< +In (7;) +0(e),  a=2A

We see that the one-loop contribution is IR divergent and exhibits a rapidity divergence .
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Process independence and the BFKL equation

Rothstein and Stewart [RS16] showed that for pp — pp forward scattering

ny e
O.PP—U’P ~ Cn ® SI’I’ ® Cﬁ
N st
and S*? satisfies the BFKL equation: s
(3 < L]
. | .
v 35 Loa K @, PP 7} ' K
dl/ 7&/‘ \P’ nt
The collinear function is process independent and is expected to satisfy 2 : 2
the BFKL equation from RG consistency: Drell-Yan

I/iC: —C—-ag'K®, C.
dv

The predicted rapidity logarithm agrees with our NLO result:

Vo Ck

P rq? (1 — as(2m)le [q’f]ln(%) ) +0(a3).
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More IR divergences

1 _ d—2 / S v r Vo wl o4 _
;bFa(q7P)_/0 d (q QL7$bP77F>C<qL,P77€>7 I:Sl ]_4 d7 [C] =-2.

The convolution itself generates IR divergences as nothing prevents ¢’, from entering the IR region. To
see this explicitly, let us note that the SCET), collinear function has the all-orders expansion:

;v 2 1 (Z)( v ) qi\*
C , ——, Qs e = C Qs ,— €| —=
(¢ e ant).e) qZ 1), =) (%)
Alternative form of the factorization formula:

The ~-transform of the soft function:
~ d2—2eq/ q/2 ~ ,
bu(’\/)N/\TL(ﬁ) Sfl(ql,qL7E)‘
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More IR divergences

Leading order soft function calculated from

IR T q‘?%; %w

I
TR oa e {‘;' | N
A VT AR B P
° ° ° °

is IR finite for v # 0:

GLO(~) — o2 v W2( -3y +3y+ 2) csc? (mv)
S (’Y)—asnfTF(g;bP—)< 8M(Z — (2 +17) + O(e),

55°(7) = any Tp (xblzlj ) <W‘~4(I zi +A”1>)1‘c$ci(:r;) ) Lo,
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More IR divergences

In the convolution the collinear function forces us to set v = —/e,

1 2 /q? N\ —(t+2)e _
;bFa:E(%) CY xS, (v=—te ).

=0 M
which implies
LGlog o 2(\3/1‘/‘7% 1 l g 0
E|E}T‘(I)S2 ( 56)— 3 ((+l)(/'+2)(€2+6+0(6) )
. =0 - 2(1%/1‘/‘]’; 1 1 0
fim S27(—te) =10 ((:+l)( o))

The S, soft function will also contribute to the PDF despite being a vacuum matrix element.
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More IR divergences

In the convolution the collinear function forces us to set v = —/e,

1 oo qi —(0+2)e © ~
—F. =Y (7) CO x G, y=—te ).
Ty —o u? x ( 7 ‘ )

We find that for v # 0, S, and S, are proportional to the off-shell cross section that appear in [CH94]:

Sarne=0) = (- )a 2 ()
SL(’y,e = 0) = (mb;’*)as thiv) .

This is not the right limit for us and the full e dependence is needed to perform small-z;, resummation.

In [CH94] these IR divergences were separately captured in the gluon and quark Green’s functions.
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Leading log small-z; resummation

Setting v = v trivializes rapidity logs in the soft function:

xibFJ(xb,QZ) - / 4424, S, (1,01, q1¢)Co (w, L, €)

H —~ S ~ — SC
Mellin space : C’K(n,ql,e) = ,2 + E K®L C’K(n,qi,e) , ¢=Cp,Ca, as= QsTA
nnq'f s
Solve for C,; as a power series as before:
_ , s e’YE qlf)7€ £ 1(_1)4( 2
K ) Ll = /1 N\ o ) = o\ 1 O )
CrL(n, ¢ e g q’f ; y cey(e ( e (M2 ce(e) al= + O(e%)

Now include the soft contribution to arrive at small-z; resummed structure functions:

K K 2= eE 2\ <\ ¢ =
Fou(n, Q%) = *(*J') Zda e ( ( R TI=¢ (%) ) s daeri(e) = cor1(€)Sa(l, —le, as,€)
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Outline

BFKL & DGLAP resummation
Consistency with twist factorization
BFKL resummation of F; and Fp,
Comparison with previous work
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Small-x vs. twist expansion

Here we are dealing with two different power expansions simultaneously:

)\/ ~ AQCD

Q

A~ T and

Key subtleties:
Small-z;, and twist expansions do not commute.
Both expansions have terms that are leading power in one but subleading in the other.

Consider the fixed order series: Leading twist-2 contributions at O(a2) and O(«;) are actually power
suppressed in x,-expansion. For example,

1 _ 1
n+2 n+3

HO @)~ asa(l—2) +002) &  HP@~ af ) +oel)

Thus in connecting with the twist expansion we will have to include power suppressed pieces.
(See an illustration in the backup.)
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BFKL Resummation of Fy,

We set u? = Q? and start with formula involving (HP = higher power)

_ _ _ Q? _
F{p +F8 (n)= A (n, o= 1,as)rgg (s, )

Parameterize the the terms we want to determine for LL results as

oo oo oo
Y =23 4% ( ) 3
L T T 9
k=0 =1 k=0
o0 —
— Qs ¢
Y99 = ;71 o)
a o0
7 k
FI === g €
L,HP =

k=—-1

We have truncated the higher power pieces to O(«,) which is sufficient for LL resummation in small-z5.
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BFKL Resummation of Fy,

We set u? = Q? and start with formula involving (HP = higher power)

2
Ffup +Ff (n)= HY (n, % = 1,as)rgg (as,n)

By sequentially comparing the coefficients of (as/€)*, as(as /€)%, . .. terms we find

Qs as\4
Yoy = 2 ()
2

=2 (1 () (5 (- 35 )
F'Lg,HP:%(1+36+(673@)62+(127%275C3)63+...).

Series agree with LL results in Catan[and Hautmann [CH94]. Interestingly, we simultaneously
determine the LL results for ~,, and %,
We determined the unknown power suppressed pieces self-consistently!

F{ p has no IR poles — All the poles in F, channel generated through BFKL evolution.
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Resummation of F,

For I3, we write

F2g,HP "‘Fzg,u_(”):?”f Tgq + Eég) Cyq

Following the same steps as before, we find
_ aTr S5as  l4d/a\2 (82 &\ 3
Tas = T3 (Hs o () + (G re) () +)

]%(g) = aanTr (1 + (ﬁ — 2(2)% + (% - L;@ + %@) (%)3 +. ) )

3 9 81
_ asn T 2 1 14
F;HP:%< -= +1+(1+<2)e+(1—§§2+EC3)62+...).

The IR polein F;HP does not result from BFKL evolution. This required [CH94] to introduce a new

auxiliary object, the quark Green'’s function (see backup). For us it results straightforwardly from our soft
function Sa.
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Comparison with previous work

Objects in factorization:

[CH94] Made use of off-shell cross sections which can only be guaranteed to be gauge invariant at leading
order.
here Employed individually gauge invariant (to all orders) collinear and soft functions.

Resummation of Fy, vs. F:

[CH94] Needed to define a separate quark Green’s function for F5
here Resummation of both F> and F, follow from the same soft function.

Manifest power counting

[CH94] Included O(cv) higher power pieces from the beginning.
here The resummed structure function I\, is manifestly leading power. We could self-consistently
determine the power suppressed pieces by demanding consistency with twist factorization.

NLO computation

[CC99] Calculated impact factor analogous to our collinear function, but required a careful subtraction of
Green’s function pieces, inducing factorization scheme dependencies.
here Computation of factorized functions in our formalism follow straightforwardly from operator
definitions. No process or factorization scheme dependence.
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Conclusion

We have shown how to construct from the SCET framework with Glauber interactions
- small-z; factorization to NLL,
- and resummation done explicitly to LL.
Factorization involves a universal collinear function. Such universality is not obvious in the
traditional approach.
Advantages of the EFT approach:
Factorization functions gauge invariant to all orders.
No separate Green'’s functions needed to be calculated.
- Off-shell cross sections replaced by one soft function $*# for all DIS channels.
Manifest power counting.
No factorization or scheme dependencies.
Universal, process independent, collinear-function.
This work provides a new framework for extending resummed calculations for coefficient
functions and anomalous dimensions to higher logarithmic orders.
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Thank you!
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Outline

Backup slides
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Backup



Resummation of ~,, by Catani and Hautmann [CH94]

For F; structure function, they showed
Yog (N, as)flég) (n7Q2/u2 =1,as) + 2ns749 (s, n) = ha(y)R(n, as)

where

*dki (ki\Y O ., (k1
hz(’Y)—’Y o ki (@) 8|n6220'2 @,O&s,é—o .
Notice that they needed to take In Q? derivative as & is not collinear safe. The structure of IR divergences
in v44 gets polluted by 1/¢ divergence in 63, so deflne a new quark Green function:

k2
Gflg)(n,ocs,6) = /dd ’k, qu(QZ’as’M’ >]-‘!§0)(n,ku_,as,u,e).

K4, includes the 1/¢ pole associated with 5§ (same as what we saw in Fng above). Consistency with

DGLAP resummation then enables determination of ~,, anomalous dimension using qu , although not in
a closed form as in v4g.

DESY. | Small-x Factorization from Effective Field Theory | Aditya Pathak | QCD@LHC, Durham, September 4, 2023 Page 42


http://creativecommons.org/licenses/by/4.0/

How do IR poles exponentiate?

After resumming the leading (as/n)* terms:
e a 2 e€VE q2 —c £
Frutm @)= 22(%) ™ S (S g (%))

In twist expansion the bare structure function (in dim-reg) factorizes as

0 L) - o).

In the fixed coupling approximation the partonic PDF is

B 1 as(u?) da |
FH’H(QS(Mz)an) = PeXp ( -~ / - (OZ,TL))
€ Jo a

For parton x — &’ it captures the infra-red divergences of the perturbative calculation.

’

KK
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How do IR poles exponentiate?

After resumming the leading (as/n)* terms:

2 VE 2\ —e £
Sk 2y Ck 1 € q
w0 = (%) S0 (S (5))
Let us illustrate how the leading (s /€)¢ IR poles exponentiate. The d, . coefficients for a = L behave as

1 @\ a0y TR 1 1 a0+ e
E(;) dr.e+1(€) = 3m {(Z +1)! ( Cen ) +O(e )}

Thus,

20snTr 2005 Tr
3m N 3m

FE,LL(n) +

Necessary to add by hand the O(«.) term to factorize IR divergences.
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