Studies on system-size dependence of particle production with ALICE

Chiara Oppedisano on behalf of the ALICE Collaboration

QCD @ LHC 2023 4-8 September, Durham, VK

ALICE in Run2

A-side

TIME PROJECTION CHAMBER (TPC) • tracking and p_T measurement $|\eta| < 0.8$

Particle production at midrapidity

The underlying event

Leading particle hard scattering

REGION TOWARDS the leading particle contains fragmentation from hard scattering

The TRANSVERSE REGION contains:

The AWAY region contains the fragmentation from the back-to-back jet

- (mostly) particles NOT originating from primary hard scattering
 - beam remnants, MPI
- C Residual of the hard fragmentation Initial and Final State Radiation (ISR/FSR)

The underlying event

Disentangle HARD from SOFT particle production mechanisms

TOWARDS and AWAY regions

QCD@LHC 2023, 4-8 September 2023, Durham UK

TRANSVERSE region

the TRANSVERSE region is the ideal place to study SOFT particle production mechanisms, "outside" the jet

QCD@LHC 2023, 4-8 September 2023, Durham UK

TOWARDS and **AWAY** regions

Charged-particle density scales with the hardness of the process

TRANSVERSE region

O Models implementing MPI with impact-parameter dependence: small impact parameter | larger N_{MPI} | larger matter overlap

 \Box Saturation for $p_{T}^{\text{leading}} > 5 \text{ GeV/}c$ multiplicity in the

TRANSVERSE region is largely independent on leading particle p_{T} when the trigger particle originates from a hard partonic scattering

Define a "KNO-like" variable for p_{T}^{\text{leading}} > 5 \text{ GeV/}c based on multiplicity in the transverse region, N_{ch}^{T} , used to classify events as function of event-by-event UE level

T. Martin et al., Eur. Phys. J. C76 5, (2016) 299

 $R_{\rm T} = N_{\rm ch}^{\rm T} / \langle N_{\rm ch}^{\rm T} \rangle$

C. Oppedisano

*р*_т (GeV/*c*)

QCD@LHC 2023, 4-8 September 2023, Durham UK

TOWARDS and AWAY regions

 \Box Depletion of low p_{T} particle with increasing R_{T}

□ Softening of the spectra with increasing R_T for $p_T \ge 2$ GeV/c

TRANSVERSE region

□ Hardening of the spectra with increasing UE activity

C. Oppedisano

QCD@LHC 2023, 4-8 September 2023, Durham UK

TOWARDS and AWAY regions

Depletion of low p_{T} particle with increasing R_{T}

OSoftening of the spectra with increasing R_T for $p_T \ge 2$ GeV/c

TRANSVERSE region

□ Hardening of the spectra with increasing UE activity

Proton spectra vs. Rt

C. Oppedisano

QCD@LHC 2023, 4-8 September 2023, Durham UK

Trańsverse 4 5

TOWARDS and AWAY regions

Depletion of low p_{T} particle with increasing R_{T}

reminiscent of radial flow (m ordering)

OSoftening of the spectra with increasing R_T for $p_T \ge 2$ GeV/c "dilution" of the jet with increasing UE activity

TRANSVERSE region

□ Hardening of the spectra with increasing UE activity

jet hardening

Model VS. data for small Rt

QCD@LHC 2023, 4-8 September 2023, Durham UK

ransvers

Transverse HERWIG7 - - EPOS LHC $0 \le R_{\scriptscriptstyle T} < 0.5$ 3 4 5

Models are able to qualitatively describe spectra for $p_T > 2$ GeV/c in TOWARDS and AWAY regions

 \blacklozenge expected since small R_{T} events are dominated by jet fragmentation products, and models are tuned to e+e-data

Models fail to reproduce soft particle production in the TRANSVERSE region for $p_T > 1$ GeV/c

Model-to-Data

QCD@LHC 2023, 4-8 September 2023, Durham UK

Models fail to describe data in all topological regions when UE activity is higher

ALICE measurements provide valuable input to models

Particle ratios vs. Rt

QCD@LHC 2023, 4-8 September 2023, Durham UK

TOWARDS and AWAY regions

 \Box K/p and π /p ratios: increase with increasing R_{T}

TRANSVERSE region

More similar to MB (small increase of π/p ratio with increasing UE activity)

Particle ratios: model vs. data

QCD@LHC 2023, 4-8 September 2023, Durham UK

PYTHIA8 Monash

no evolution with increasing UE activity in jet fragmentation regions

PYTHIA8 ropes evolution with increasing UE activity, but overestimates data for large R_{T}

Particle ratios: model vs. data

QCD@LHC 2023, 4-8 September 2023, Durham UK

HERWIG7

• evolution with increasing R_{T} , but misses the p_T trend of p/π ratio

EPOS LHC

• evolution with increasing R_{T} , but overshoots π/p ratio for large R_T

15

UE in larger system collisions

Iarger UE magnitude in p-Pb collisions saturation in the transverse region also in p-Pb collisions, occurring nearly at the same leading particle p_T scale (p_T ^{leading} ~ 5 GeV/c) as in pp collisions models are able to describe the UE in pp collisions are not reproducing p-Pb results.

Oppedisano

QCD@LHC 2023, 4-8 September 2023, Durham UK

ALICE Coll., JHEP 06 (2023) 023

6

Particle production vs. very forward energy

C. Oppedisano

ALICE measures very forward energy using two sets of Zero Degree Calorimeters (ZDC) placed at 112.5 m from the IP on each side (A and C) • one for neutrons ZN covering $|\eta| < 8.7$ • one for protons ZP covering $7.8 < |\eta| < 12.9$

QCD@LHC 2023, 4-8 September 2023, Durham UK

EPJ Web of Conferences 49, 11001 (2013)

- QCD physics
- I elastic cross-section, diffractive events, central exclusive processes
- Iow Bjorken-x range, low-x parton structure and dynamics
- photon-induced reactions
- validate hadronic models for ultra-high energy cosmic rays

Midrapidity and very forward rapidity observables are causally disconnected after the collision any correlation in the final state must have been built during the initial stages of the collision

models implementing MPI with impact parameter dependence (PYTHIA) predict a decrease of very forward energy with increasing number of MPIs

QCD@LHC 2023, 4-8 September 2023, Durham UK

20

Average signal on one side (A) as a function of the signal on the other side (C)

C. Oppedisano

QCD@LHC 2023, 4-8 September 2023, Durham UK

ALICE Coll., JHEP08 (2022) 086

quantitatively the measured ZN dependence over the whole range [1] <u>M. Basile et al., Nuovo Cim. 353 A 73 (1983) 329</u>

Forward energy vs. midrapidity multiplicity

C. Oppedisano

Forward energy vs. midrapidity multiplicity

Measured in $|\eta| < 1$

the models used for comparison do not reproduce very forward vs. midrapidity measurements

Forward energy vs. leading particle pr

C. Oppedisano

QCD@LHC 2023, 4-8 September 2023, Durham UK

Very forward energy shows saturation with increasing *p*_T^{leading} in a complementary way to UE

UE multiplicity in the transverse region at midrapidity is constant in events characterized by a larger than average number of MPIs

saturation occurs at the same scale: p_{T} leading > 5 GeV/c

saturation observed in transverse region at midrapidity and in very forward energy must be built in the initial stages of the collision

Midrapidity

Many measurements (many not included in this presentation!) done by ALICE in Run2 to characterize particle production mechanisms in pp and p-Pb collisions at LHC energies

Results provide inputs and challenges for existing models

More precise results expected with Run3 data, where ALICE is running in continuous mode with an upgraded apparatus

QCD@LHC 2023, 4-8 September 2023, Durham UK

C. Oppedisano

27

Additional material

C. Oppedisano

- requesting a high p_{T} particle at midrapidity biases the event towards a larger activity than in MB collisions
- in models including MPIs with an impact parameter dependence, this is explained as a bias towards events with smaller b and larger number of MPI than in MB

UE phase-space region exhibiting high-multiplicity MB-like features larger number of MPI, higher multiplicity

QCD@LHC 2023, 4-8 September 2023, Durham UK

ALICE Coll., JHEP 04 (2020) 192

Small *R*_T • e⁺e⁻-like

T. Martin et al., Eur. Phys. J. C76 5, (2016) 299

spectra in towards region

TOWARDS REGION

soft "jet pedestal" from UE whose relevance varies with R_{T}

UE does not affect the hard part of the jet

High UE UE dominate the yields ("polluted" jets)

Small UE UE not contributing ("clean" jets)

ALI-PREL-322959

10

10⁶

10⁵

10

10³

10²

10-

10⁻⁵

(GeV/c)⁻¹

 $d^2 N_{ch}/d\eta dp_T$

 $1/N_{ev}$

0

 \wedge

Ratio to

31

Spectra in transverse region

TRANSVERSE REGION

 $> < p_T >$ increases with UE (as in MB)

High UE softer spectra

QCD@LHC 2023, 4-8 September 2023, Durham UK

32

Quartz fibre spaghetti calorimeters Cerenkov light produced of shower particles

Two identical systems on both sides relative to IP, each made by: a neutron ZDC (ZN) at 0° w.r.t LHC axis, 7x7x100 cm³ that detects neutral forward energy in $|\eta| > 8.7$

♦ a proton ZDC (ZP) external to the beam pipe, 22.4x11.2x150 cm³ detecting positively charged particles (mainly protons) in a pseudo rapidity range defined by the LHC magnetic beam settings

C. Oppedisano

Strangeness enhancement vs. forward energy

What is the origin of strangeness enhancement observed in small systems?

Effective energy = energy in the initial phase available for particle production. Reduced relative to centre-of-mass energy due to leading baryon production.

 $E_{\text{eff}} = \sqrt{S - E_{\text{leading baryons}}} \sim \sqrt{S - E_{\text{ZDC}}}$

study of strange baryon production vs. multiplicity and effective energy

Ratio of strange to non-strange hadron yields increases with charged-particle multiplicity.

The multiplicity distribution of charged particles is:

- characteristic of the final state of the collision
- strongly correlated to the initial effective energy

strange baryon over charged particle production increases with forward event activity (VOM) at fixed midrapidity multiplicity but also with increasing effective energy

initial stages play a role in strangeness enhancement

C. Oppedisano

