

Baryons as a Probe for Hadronization

Stefan Kiebacher in collaboration with Stefan Gieseke and Simon Plätzer | September 4, 2023

Hadronization:

Hadronization:

Hadronization is the non-perturbative transition from partons to hadrons and relies on heavy modelling

Hadronization:

- Hadronization is the non-perturbative transition from partons to hadrons and relies on heavy modelling
- Two types of hadronization models: The Lund string model (used by Pythia) and the cluster model (used in Sherpa and Herwig)

Hadronization:

- Hadronization is the non-perturbative transition from partons to hadrons and relies on heavy modelling
- Two types of hadronization models: The Lund string model (used by Pythia) and the cluster model (used in Sherpa and Herwig)
- Baryons are not straightforward to produce in a hadronization model and are often badly modelled ⇒ testing ground for Hadronization models

Hadronization:

- Hadronization is the non-perturbative transition from partons to hadrons and relies on heavy modelling
- Two types of hadronization models: The Lund string model (used by Pythia) and the cluster model (used in Sherpa and Herwig)
- Baryons are not straightforward to produce in a hadronization model and are often badly modelled ⇒ testing ground for Hadronization models

Open questions:

Hadronization:

- Hadronization is the non-perturbative transition from partons to hadrons and relies on heavy modelling
- Two types of hadronization models: The Lund string model (used by Pythia) and the cluster model (used in Sherpa and Herwig)
- Baryons are not straightforward to produce in a hadronization model and are often badly modelled ⇒ testing ground for Hadronization models

Open questions:

How and with which kinematics are Baryons produced in high energy collisions?

Hadronization:

- Hadronization is the non-perturbative transition from partons to hadrons and relies on heavy modelling
- Two types of hadronization models: The Lund string model (used by Pythia) and the cluster model (used in Sherpa and Herwig)
- Baryons are not straightforward to produce in a hadronization model and are often badly modelled ⇒ testing ground for Hadronization models

Open questions:

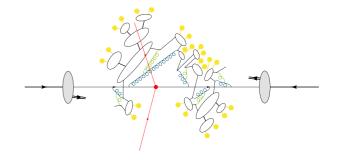
- How and with which kinematics are Baryons produced in high energy collisions?
- Which stages of the hadronization impact the kinematics and multiplicity of Baryons?

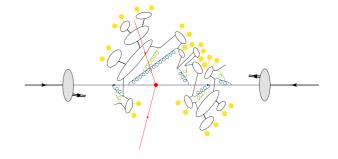
Hadronization:

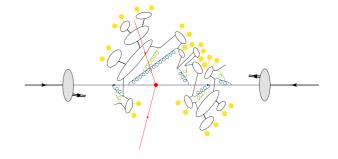
- Hadronization is the non-perturbative transition from partons to hadrons and relies on heavy modelling
- Two types of hadronization models: The Lund string model (used by Pythia) and the cluster model (used in Sherpa and Herwig)
- Baryons are not straightforward to produce in a hadronization model and are often badly modelled ⇒ testing ground for Hadronization models

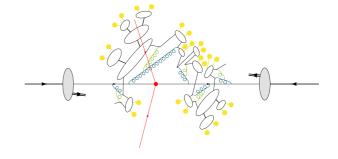
Open questions:

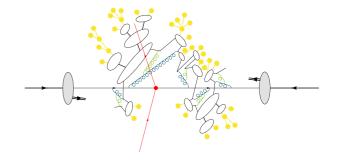
- How and with which kinematics are Baryons produced in high energy collisions?
- Which stages of the hadronization impact the kinematics and multiplicity of Baryons?
- What knowledge can we extract from Baryon observables e.g. their Angular Correlations?

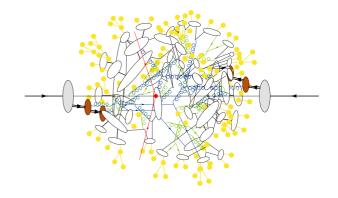



Primordial cluster formation


- Primordial cluster formation
- Colour Reconnection


- Primordial cluster formation
- Colour Reconnection
- Cluster Fission


- Primordial cluster formation
- Colour Reconnection
- Cluster Fission
- Cluster Decay

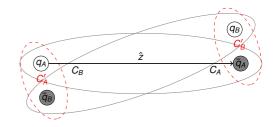

- Primordial cluster formation
- Colour Reconnection
- Cluster Fission
- Cluster Decay
- Hadron Decay

- Primordial cluster formation
- Colour Reconnection
- Cluster Fission
- Cluster Decay
- Hadron Decay
- Multiple Parton Interactions (MPIs)

1. Describe current Hadronization model in Herwig

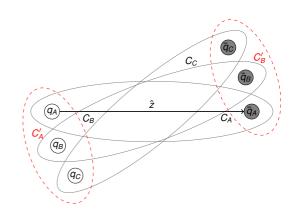
- 1. Describe current Hadronization model in Herwig
- 2. Show the resulting baryon angular correlations

- 1. Describe current Hadronization model in Herwig
- 2. Show the resulting baryon angular correlations
- 3. Present new model for Colour Reconnection and some changes to the Cluster Fission

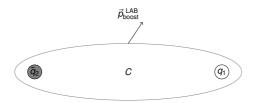


- 1. Describe current Hadronization model in Herwig
- 2. Show the resulting baryon angular correlations
- 3. Present new model for Colour Reconnection and some changes to the Cluster Fission
- 4. Work in Progress: New structure for systematic Kinematics for the Cluster Fission and Decay

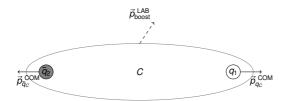
Colour Reconnection (CR)


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\overline{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max}}$ ⇒ Mesonic Colour Reconnection (MCR) accepted with probability P_M

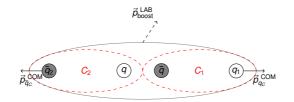
Colour Reconnection (CR)



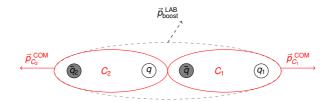
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum} cluster to make baryon-antibaryon pair
 - ⇒ Baryonic Colour Reconnection (BCR) accepted with probability P_B [Gieseke, Kirchgaeßer, and Plätzer 2018]
- Note: Clusters can be light for Baryon Production However a lot of multiplicity is needed!



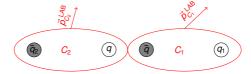
• Fission all clusters $M>M_{\max}(q_1,\bar{q}_2)$ above a threshold $M_{\max}(q_1,\bar{q}_2)$ recursively



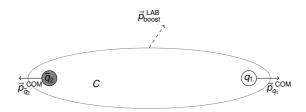
- Fission all clusters $M > M_{\max}(q_1, \bar{q}_2)$ above a threshold $M_{\max}(q_1, \bar{q}_2)$ recursively
- 1. Boost in cluster centre of mass frame



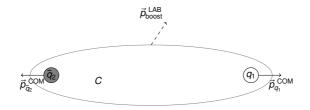
- Fission all clusters $M > M_{\text{max}}(q_1, \bar{q}_2)$ above a threshold $M_{\text{max}}(q_1, \bar{q}_2)$ recursively
- Boost in cluster centre of mass frame
- 2. Draw a light $q \bar{q}$ pair from the vacuum with probability P_q (no diquarks currently allowed!)



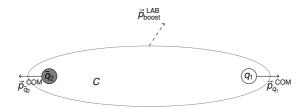
- Fission all clusters $M > M_{\text{max}}(q_1, \bar{q}_2)$ above a threshold $M_{\text{max}}(q_1, \bar{q}_2)$ recursively
- 1. Boost in cluster centre of mass frame
- 2. Draw a light $q-\bar{q}$ pair from the vacuum with probability P_q (no diquarks currently allowed!)
- 3. Draw new masses M_1 , M_2 for the fission products C_1 , C_2 , which fixes the magnitude of their momenta **Choose Direction** of decay \Rightarrow Currently aligned with the relative momentum



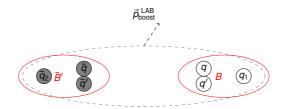
- Fission all clusters $M > M_{\text{max}}(q_1, \bar{q}_2)$ above a threshold $M_{\text{max}}(q_1, \bar{q}_2)$ recursively
- 1. Boost in cluster centre of mass frame
- 2. Draw a light $q-\bar{q}$ pair from the vacuum with probability P_q (no diquarks currently allowed!)
- 3. Draw new masses M_1 , M_2 for the fission products C_1 , C_2 , which fixes the magnitude of their momenta **Choose Direction** of decay \Rightarrow Currently aligned with the relative momentum
- 4. Boost C_1 , C_2 back into the lab frame



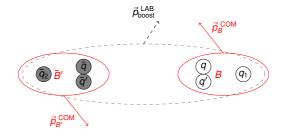
Clusters decay to two hadrons



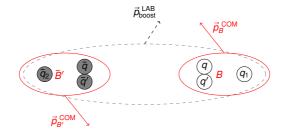
- Clusters decay to two hadrons
- Essentially the same as Cluster fission with a few differences:



- Clusters decay to two hadrons
- Essentially the same as Cluster fission with a few differences:
 - 1. The masses are fixed by the hadron masses \Rightarrow No more constituent momenta



- Clusters decay to two hadrons
- Essentially the same as Cluster fission with a few differences:
 - 1. The masses are fixed by the hadron masses \Rightarrow No more constituent momenta
 - 2. Mesonic clusters $C(q_1, \bar{q}_2)$ can decay to a baryon-antibaryon pair $B(q_1, (q, q')), \bar{B}'(\bar{q}_2, (\bar{q}, \bar{q}'))$ with weight $W_{(q,q')_s} = w_s W_{\text{diquark}} P_q P_{q'}$



- Clusters decay to two hadrons
- Essentially the same as Cluster fission with a few differences:
 - 1. The masses are fixed by the hadron masses \Rightarrow No more constituent momenta
 - 2. Mesonic clusters $C(q_1, \bar{q}_2)$ can decay to a baryon-antibaryon pair $B(q_1, (q, q')), \bar{B}'(\bar{q}_2, (\bar{q}, \bar{q}'))$ with weight $W_{(q,q')_s} = w_s W_{\text{diquark}} P_q P_{q'}$
 - 3. The direction of decay is chosen **isotropically** in the cluster rest frame

- Clusters decay to two hadrons
- Essentially the same as Cluster fission with a few differences:
 - 1. The masses are fixed by the hadron masses \Rightarrow No more constituent momenta
 - 2. Mesonic clusters $C(q_1, \bar{q}_2)$ can decay to a baryon-antibaryon pair $B(q_1, (q, q')), \bar{B}'(\bar{q}_2, (\bar{q}, \bar{q}'))$ with weight $W_{(q,q')_s} = w_s W_{\text{diquark}} P_q P_{q'}$
 - 3. The direction of decay is chosen **isotropically** in the cluster rest frame
- Note: Not much multiplicity, but high-mass clusters are needed to produce Baryons!

Baryon Angular Correlations

- Depletion of near-sided baryons only reproduced by Baryonic Colour Reconnection (BCR)
- Cluster Decay (CD)
 baryons are giving opposite features to data
- Cluster Decay baryons are solely responsible for unphysical far-side peak
- BCR alone cannot produce enough baryons especially for low multiplicity events (e.g. at LEP)

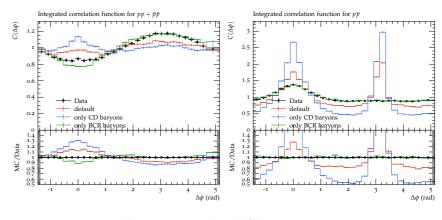


Figure: measured by ALICE [Adam et al. 2017]

Baryon Angular Correlations

Solutions:

 Disable CD baryon production

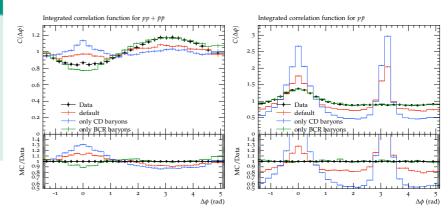
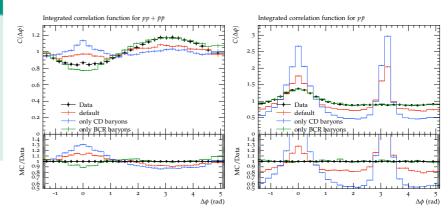


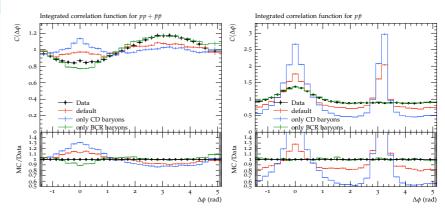
Figure: measured by ALICE [Adam et al. 2017]

Baryon Angular Correlations

Solutions:

 Disable CD baryon production How do we get Baryons at e.g. LEP?

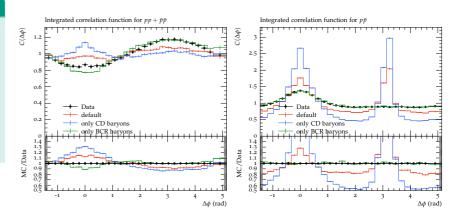



Figure: measured by ALICE [Adam et al. 2017]

Baryon Angular Correlations

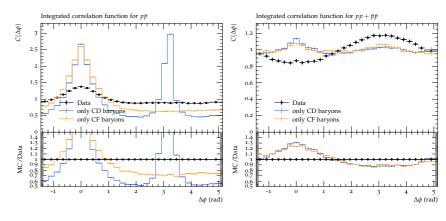
Solutions:

- Disable CD baryon production How do we get Baryons at e.g. LEP?
- 2. Allow baryon production during Cluster Fission

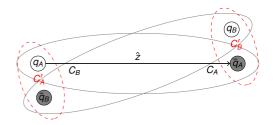


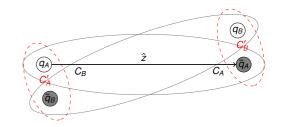
Baryon Angular Correlations

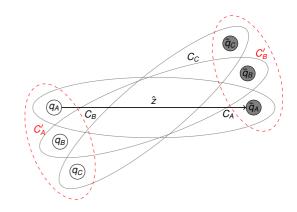
Solutions:


- Disable CD baryon production How do we get Baryons at e.g. LEP?
- 2. Allow baryon production during Cluster Fission
- 3. New Diquark Colour Reconnection algorithm

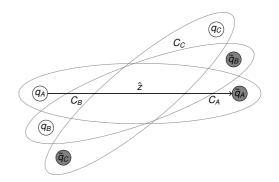
Cluster Fission (CF) vs Cluster Decay (CD) Baryons

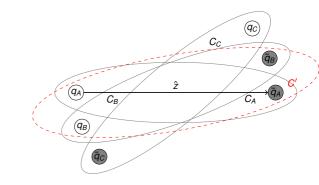

- Near-side depletion not reproduced
 - ⇒ CD and CF are oblivious to other baryons
- Far-side peak is completely gone!
- Near-side still overshoots the data \Rightarrow but this is only one mechanism


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max}}$

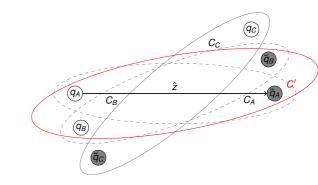


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max}}$ ⇒ Mesonic Colour Reconnection accepted with probability P_M

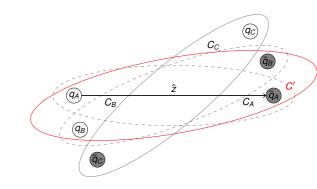

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If y_{qB} < 0 and y_{q̄B} > 0 for y_{sum}^{max,2}
 ⇒ Baryonic Colour Reconnection (BCR) accepted with probability P_B



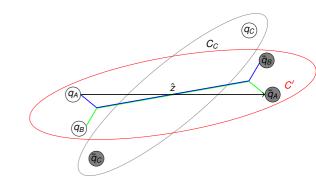
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max},2}$



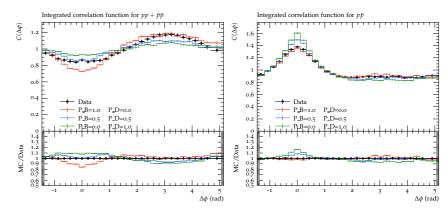
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If y_{q_B} > 0 and y_{q̄_B} < 0 for y_{sum}^{max,2}
 ⇒ Diquark Colour Reconnection (DCR) accepted with probability P_D



- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max},2}$ \Rightarrow Diquark Colour Reconnection (DCR) accepted with probability P_D if $M_{C'} > M_{\text{Baryon Pair}}^{\text{Lightest}}$



- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max,2}}$ \Rightarrow Diquark Colour Reconnection (DCR) accepted with probability P_D if $M_{C'} > M_{\text{Baryon Pair}}^{\text{Lightest}}$
- Note: Mixed need for multiplicity <u>and</u> existing mass for producing baryons


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum}^{max,2} cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max},2}$ \Rightarrow Diquark Colour Reconnection (DCR) accepted with probability P_D if $M_{C'} > M_{\text{Baryon Pair}}^{\text{Lightest}}$
- Note: Mixed need for multiplicity <u>and</u> existing mass for producing baryons
- Similar to Pythia's String Junction Colour Reconnections [Christiansen and Skands 2015]

Diquark Colour Reconnection

- Purely Diquark-type CR with P_D = 1 has not enough depletion for pp correlations
- Near-sided peak reproduced!
- No far-sided peak for pp
 DCR and good
 phenomenology

 For BCR (and the new DCR) the kinematics seem to be consistent (up to tuning) with the angular correlations

- For BCR (and the new DCR) the kinematics seem to be consistent (up to tuning) with the angular correlations
- For CF baryons the kinematics seem to be better than CD baryons regarding the ALICE analysis, but both need systematic revision

- For BCR (and the new DCR) the kinematics seem to be consistent (up to tuning) with the angular correlations
- For CF baryons the kinematics seem to be better than CD baryons regarding the ALICE analysis, but both need systematic revision
- For CD baryons the current kinematics are complete non-sense and need revision

Status of Baryon Modelling in Herwig

- For BCR (and the new DCR) the kinematics seem to be consistent (up to tuning) with the angular correlations
- For CF baryons the kinematics seem to be better than CD baryons regarding the ALICE analysis, but both need systematic revision
- For CD baryons the current kinematics are complete non-sense and need revision
- New kinematics for Cluster Fission and Cluster Decay (WIP with S. Gieseke and S. Plätzer)

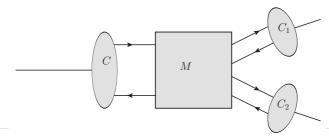
Status of Baryon Modelling in Herwig

- For BCR (and the new DCR) the kinematics seem to be consistent (up to tuning) with the angular correlations
- For CF baryons the kinematics seem to be better than CD baryons regarding the ALICE analysis, but both need systematic revision
- For CD baryons the current kinematics are complete non-sense and need revision
- New kinematics for Cluster Fission and Cluster Decay (WIP with S. Gieseke and S. Plätzer)
- At LHC most of baryons should originate from BCR (to reproduced the depletion) and only few from CF and CD since these mechanism are oblivious to other clusters

Status of Baryon Modelling in Herwig

- For BCR (and the new DCR) the kinematics seem to be consistent (up to tuning) with the angular correlations
- For CF baryons the kinematics seem to be better than CD baryons regarding the ALICE analysis, but both need systematic revision
- For CD baryons the current kinematics are complete non-sense and need revision
- New kinematics for Cluster Fission and Cluster Decay (WIP with S. Gieseke and S. Plätzer)
- At LHC most of baryons should originate from BCR (to reproduced the depletion) and only few from CF and CD since these mechanism are oblivious to other clusters
 - \Rightarrow Would like angular correlations of baryons from e^+e^- , where BCR is expected to be small!

Revisiting Cluster Fission Kinematics



Idea: Cluster Fission is a partonic 2 \rightarrow 4 process [Plätzer 2023].

■ Factorize the process $C(p_i, p_i) \to C_1(q_i, q)$, $C_2(q_i, \bar{q})$ (see Jan Priedigkeit's Bachelor thesis Graz):

$$d\Gamma(C \to C_1, C_2) = \int d^4 \Phi_{q_i} d^4 \Phi_{q} d^4 \Phi_{\bar{q}} d^4 \Phi_{q_j} (2\pi)^4 \delta^4(p_i + p_j - q_i - q - \bar{q} - q_j) |\mathcal{M}(p_i, p_j \to q_i, q, \bar{q}, q_j)|^2$$
(1)

$$d\Gamma(C \to C_1, C_2) = \int dM_1 dM_2 d\Phi_2(P|Q_1, Q_2) d\Phi_2(Q_1|q_i, q) d\Phi_2(Q_2|q_j, \bar{q}) |\mathcal{M}(p_i, p_j \to q_i, q, \bar{q}, q_j)|^2$$
(2)

Revisiting Cluster Fission Kinematics

• (Pre-)Sample Masses M_1 , M_2 from flat Phase Space weight (Jan Priedigkeit's Bachelor thesis Graz) $d\Phi_4 \propto dM_1 dM_2 \sqrt{\lambda(M,M_1,M_2)} \sqrt{\lambda(M_1,m_1,m)} \sqrt{\lambda(M_2,m_2,m)}/(M_1M_2)^2$

Revisiting Cluster Fission Kinematics

- (Pre-)Sample Masses M_1 , M_2 from flat Phase Space weight (Jan Priedigkeit's Bachelor thesis Graz) $d\Phi_4 \propto dM_1 dM_2 \sqrt{\lambda(M, M_1, M_2)} \sqrt{\lambda(M_1, m_1, m)} \sqrt{\lambda(M_2, m_2, m)}/(M_1 M_2)^2$
- Rejection sampling of soft $q\bar{q}$ emission diagram, which in the soft limit is given in [Catani and Grazzini 2000] [Plätzer 2022] (up to colour factors) by:

- (Pre-)Sample Masses M_1, M_2 from flat Phase Space weight (Jan Priedigkeit's Bachelor thesis Graz) $d\Phi_4 \propto dM_1 dM_2 \sqrt{\lambda(M, M_1, M_2)} \sqrt{\lambda(M_1, m_1, m)} \sqrt{\lambda(M_2, m_2, m)}/(M_1 M_2)^2$
- Rejection sampling of soft $q\bar{q}$ emission diagram, which in the soft limit is given in [Catani and Grazzini 2000] [Plätzer 2022] (up to colour factors) by:

$$|\mathcal{M}(p_i, p_j \to q_i, q, \bar{q}, q_j)|^2 \propto \frac{2(q_i \cdot q_j)(q\bar{q}) + [q_i \cdot (q - \bar{q})][q_j \cdot (q - \bar{q})]}{2(q \cdot \bar{q})^2[q_i \cdot (q + \bar{q})][q_j \cdot (q + \bar{q})]}$$
(3)

Used the angular correlations of baryons to examine the kinematics of the cluster model

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

Dynamic gluon constituent masses (WIP by Daniel Samitz, S. Plätzer)

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

- Dynamic gluon constituent masses (WIP by Daniel Samitz, S. Plätzer)
- Restructure the CF and CD to implement flexible kinematics (WIP with S. Plätzer, S. Gieseke)

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

- Dynamic gluon constituent masses (WIP by Daniel Samitz, S. Plätzer)
- Restructure the CF and CD to implement flexible kinematics (WIP with S. Plätzer, S. Gieseke)
- Make Colour Reconnection dynamic via soft gluon evolution [Gieseke, Kirchgaeßer, Plätzer, and Siodmok 2018; Plätzer 2023] (WIP with S. Plätzer, S. Gieseke) ⇒ reduce the free parameters by 2

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

- Dynamic gluon constituent masses (WIP by Daniel Samitz, S. Plätzer)
- Restructure the CF and CD to implement flexible kinematics (WIP with S. Plätzer, S. Gieseke)
- Make Colour Reconnection dynamic via soft gluon evolution [Gieseke, Kirchgaeßer, Plätzer, and Siodmok 2018; Plätzer 2023] (WIP with S. Plätzer, S. Gieseke) ⇒ reduce the free parameters by 2

Long term goals for hadronization in Herwig:

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

- Dynamic gluon constituent masses (WIP by Daniel Samitz, S. Plätzer)
- Restructure the CF and CD to implement flexible kinematics (WIP with S. Plätzer, S. Gieseke)
- Make Colour Reconnection dynamic via soft gluon evolution [Gieseke, Kirchgaeßer, Plätzer, and Siodmok 2018; Plätzer 2023] (WIP with S. Plätzer, S. Gieseke) ⇒ reduce the free parameters by 2

Long term goals for hadronization in Herwig:

Make hadronization model independent of the shower cutoff

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

- Dynamic gluon constituent masses (WIP by Daniel Samitz, S. Plätzer)
- Restructure the CF and CD to implement flexible kinematics (WIP with S. Plätzer, S. Gieseke)
- Make Colour Reconnection **dynamic** via soft gluon evolution [Gieseke, Kirchgaeßer, Plätzer, and Siodmok 2018; Plätzer 2023] (WIP with S. Plätzer, S. Gieseke) ⇒ reduce the free parameters by 2

Long term goals for hadronization in Herwig:

- Make hadronization model independent of the shower cutoff
- Dynamic hadronization model for generalisation to dark hadrons (by Simon Plätzer, Dominic Stafford et al.)

- Used the angular correlations of baryons to examine the kinematics of the cluster model
- Found and fixed the far-sided peak of baryon-antibaryon correlations
- Developed new baryon production mechanism via Diquark CR

Outlook for hadronization in Herwig:

- Dynamic gluon constituent masses (WIP by Daniel Samitz, S. Plätzer)
- Restructure the CF and CD to implement flexible kinematics (WIP with S. Plätzer, S. Gieseke)
- Make Colour Reconnection **dynamic** via soft gluon evolution [Gieseke, Kirchgaeßer, Plätzer, and Siodmok 2018; Plätzer 2023] (WIP with S. Plätzer, S. Gieseke) ⇒ reduce the free parameters by 2

Long term goals for hadronization in Herwig:

- Make hadronization model independent of the shower cutoff
- Dynamic hadronization model for generalisation to dark hadrons (by Simon Plätzer, Dominic Stafford et al.)
- Convince experimentalists to get more (identified) particle correlation data (also for LEP), since important modelling input

TLDL: Lots of construction sites in the Hadronization model in Herwig ...

References I

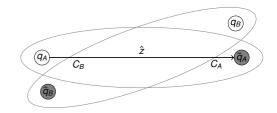
- Adam, Jaroslav et al. (2015). "Measurement of pion, kaon and proton production in proton—proton collisions at $\sqrt{s} = 7$ TeV". In: Eur. Phys. J. C 75.5, p. 226. DOI: 10.1140/epjc/s10052-015-3422-9. arXiv: 1504.00024 [nucl-ex].
- (2017). "Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at $\sqrt{s} = 7$ TeV". In: Eur. Phys. J. C 77.8. [Erratum: Eur.Phys.J.C 79, 998 (2019)], p. 569. DOI: 10.1140/epjc/s10052-017-5129-6. arXiv: 1612.08975 [nucl-ex].
- Bahr, M. et al. (2008). "Herwig++ Physics and Manual". In: <u>Eur. Phys. J. C</u> 58, pp. 639–707. DOI: 10.1140/epjc/s10052-008-0798-9. arXiv: 0803.0883 [hep-ph].
- Catani, Stefano and Massimiliano Grazzini (2000). "Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond". In: Nucl. Phys. B 570, pp. 287–325. DOI: 10.1016/S0550-3213(99)00778-6. arXiv: hep-ph/9908523.
- Christiansen, Jesper R. and Peter Z. Skands (2015). "String Formation Beyond Leading Colour". In: JHEP
 08, p. 003. DOI: 10.1007/JHEP08(2015)003. arXiv: 1505.01681 [hep-ph].

References II

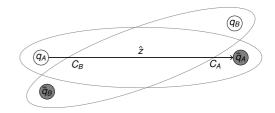
- Gieseke, Stefan, Patrick Kirchgaeßer, and Simon Plätzer (2018). "Baryon production from cluster hadronisation". In: Eur. Phys. J. C 78.2, p. 99. DOI: 10.1140/epjc/s10052-018-5585-7. arXiv: 1710.10906 [hep-ph].
- Gieseke, Stefan, Patrick Kirchgaeßer, Simon Plätzer, and Andrzej Siodmok (2018). "Colour Reconnection from Soft Gluon Evolution". In: <u>JHEP</u> 11, p. 149. DOI: 10.1007/JHEP11(2018)149. arXiv: 1808.06770 [hep-ph].
- Khachatryan, Vardan et al. (2011). "Strange Particle Production in pp Collisions at $\sqrt{s} = 0.9$ and 7 TeV". In: JHEP 05, p. 064. DOI: 10.1007/JHEP05(2011)064. arXiv: 1102.4282 [hep-ex].
- Plätzer, Simon (Apr. 2022). "Colour Evolution and Infrared Physics". In: arXiv: 2204.06956 [hep-ph].
- (2023). "Colour evolution and infrared physics". In: <u>JHEP</u> 07, p. 126. DOI: 10.1007/JHEP07(2023)126. arXiv: 2204.06956 [hep-ph].

Thank You For Your Attention!

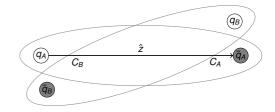
Questions? Remarks? Comments?



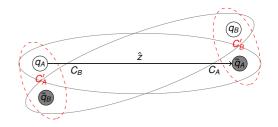
Boost in cluster rest frame



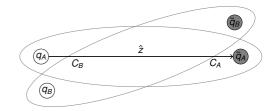
- Boost in cluster rest frame
- Select next cluster at random



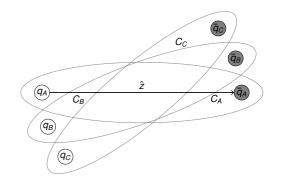
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}



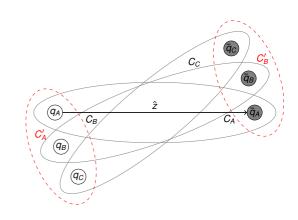
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\overline{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max}}$



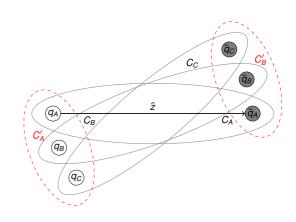
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max}}$ ⇒ Mesonic Colour Reconnection (MCR) accepted with probability P_M



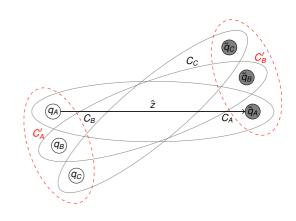
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\overline{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$



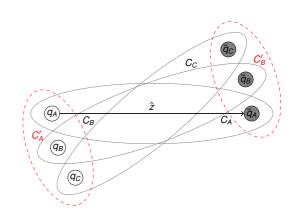
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum} cluster to make baryon-antibaryon pair



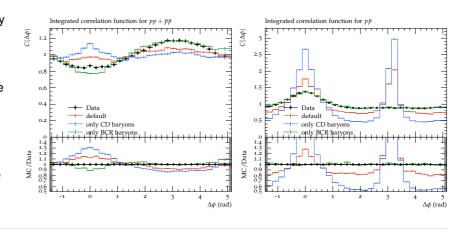
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum} cluster to make baryon-antibaryon pair
 - \Rightarrow Baryonic Colour Reconnection (BCR) accepted with probability P_B



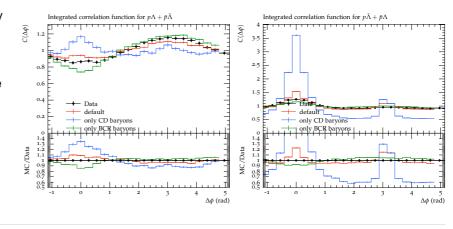
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum} cluster to make baryon-antibaryon pair
 - ⇒ Baryonic Colour Reconnection (BCR) accepted with probability *P_R*
- Note: Clusters can be light for Baryon Production



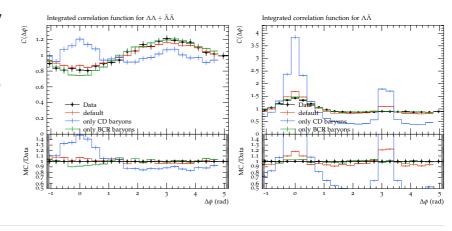
- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum} cluster to make baryon-antibaryon pair
 - \Rightarrow Baryonic Colour Reconnection (BCR) accepted with probability P_B
- Note: Clusters can be light for Baryon Production However a lot of multiplicity is needed!


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{sum} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum} cluster to make baryon-antibaryon pair
 - \Rightarrow Baryonic Colour Reconnection (BCR) accepted with probability P_B
- Note: Clusters can be light for Baryon Production However a lot of multiplicity is needed!
- In fact BCR regulated the over-abundance of high multiplicity events [Gieseke, Kirchgaeßer, and Plätzer 2018]

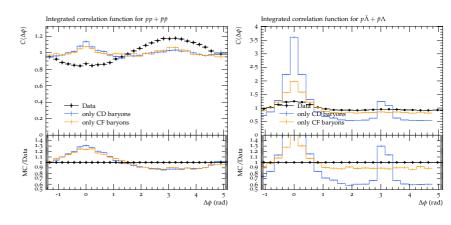
Backup: Baryon Angular Correlations

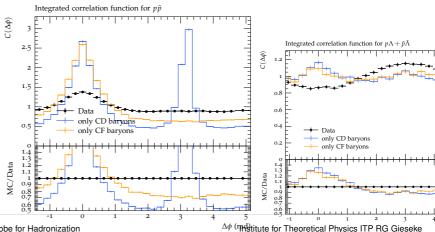

- Depletion of near-sided baryons only reproduced by Baryonic Colour Reconnection (BCR)
- Cluster Decay (CD)
 baryons are giving opposite features to data
- Cluster Decay baryons are solely responsible for unphysical far-side peak
- BCR alone cannot produce enough baryons especially for low multiplicity events (e.g. at LEP)

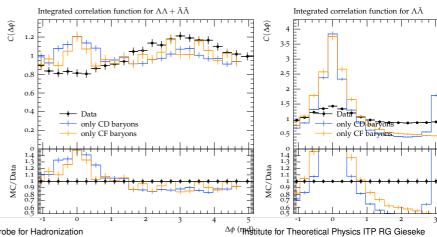
Backup: Baryon Angular Correlations


- Depletion of near-sided baryons only reproduced by Baryonic Colour Reconnection (BCR)
- Cluster Decay (CD)
 baryons are giving opposite features to data
- Cluster Decay baryons are solely responsible for unphysical far-side peak
- BCR alone cannot produce enough baryons especially for low multiplicity events (e.g. at LEP)

Backup: Baryon Angular Correlations

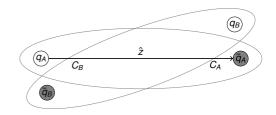

- Depletion of near-sided baryons only reproduced by Baryonic Colour Reconnection (BCR)
- Cluster Decay (CD)
 baryons are giving opposite features to data
- Cluster Decay baryons are solely responsible for unphysical far-side peak
- BCR alone cannot produce enough baryons especially for low multiplicity events (e.g. at LEP)


- CD baryon mechanism vs new Cluster Fission (CF) mechanism
- Near-side depletion not reproduced
 - \Rightarrow CD and CF are oblivious to other baryons


- CD baryon mechanism vs new Cluster Fission (CF) mechanism
- Near-side depletion not reproduced
 - ⇒ CD and CF are oblivious to other baryons

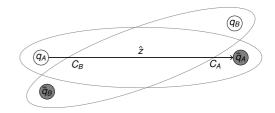
- CD baryon mechanism vs new Cluster Fission (CF) mechanism
- Near-side depletion not reproduced
 - ⇒ CD and CF are oblivious to other baryons

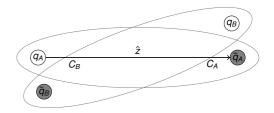
Boost in cluster rest frame

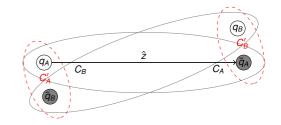


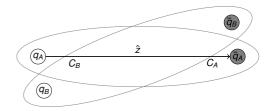
arlsruhe Institute of Technolog

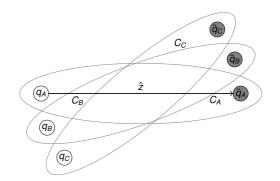
Backup: Diquark Colour Reconnection Algorithm

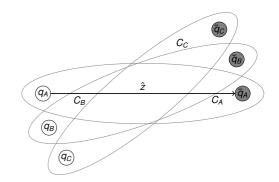

- Boost in cluster rest frame
- Select next cluster at random

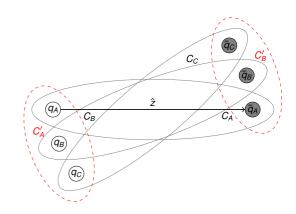

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{sum} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}

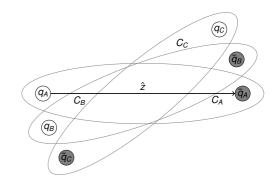

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max}}$

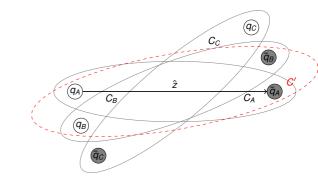

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max}}$ ⇒ Mesonic Colour Reconnection accepted with probability P_M

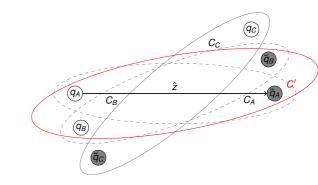

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$

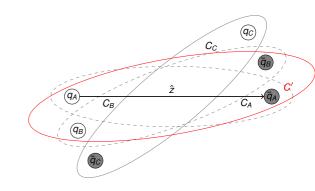

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster

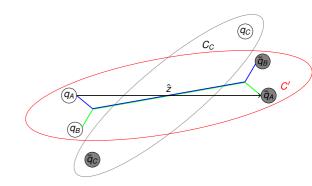

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If $y_{q_R} < 0$ and $y_{\bar{q}_R} > 0$ for $y_{\text{sum}}^{\text{max},2}$


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If y_{qB} < 0 and y_{qB} > 0 for y_{sum}^{max,2}
 ⇒ Baryonic Colour Reconnection (BCR) accepted with probability P_B


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max},2}$


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} \Rightarrow find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If y_{q_B} > 0 and y_{q̄_B} < 0 for y_{sum}^{max,2}
 ⇒ Diquark Colour Reconnection (DCR) accepted with probability P_D


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max},2}$ \Rightarrow Diquark Colour Reconnection (DCR) accepted with probability P_D if $M_{C'} > M_{\text{Baryon Pair}}^{\text{Lightest}}$


- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal $y_{\text{sum}}^{\text{max,2}}$ cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max,2}}$ \Rightarrow Diquark Colour Reconnection (DCR) accepted with probability P_D if $M_{C'} > M_{\text{Baryon Pair}}^{\text{Lightest}}$
- Note: Mixed need for multiplicity <u>and</u> existing mass for producing baryons

Backup: Diquark Colour Reconnection Algorithm

- Boost in cluster rest frame
- Select next cluster at random
- Compute $y_{\text{sum}} = |y_{q_B}| + |y_{\bar{q}_B}|$ with respect to \hat{z} ⇒ find maximal y_{sum}
- If $y_{q_B} < 0$ and $y_{\bar{q}_B} > 0$ for $y_{\text{sum}}^{\text{max}}$
- Find next to maximal y_{sum}^{max,2} cluster
- If $y_{q_B} > 0$ and $y_{\bar{q}_B} < 0$ for $y_{\text{sum}}^{\text{max,2}}$ \Rightarrow Diquark Colour Reconnection (DCR) accepted with probability P_D if $M_{C'} > M_{\text{Baryon Pair}}^{\text{Lightest}}$
- Note: Mixed need for multiplicity <u>and</u> existing mass for producing baryons
- Similar to Pythia's String Junction Colour Reconnections [Christiansen and Skands 2015]

Backup: Spectra of Protons

■ Proton p_T-spectra are badly modelled

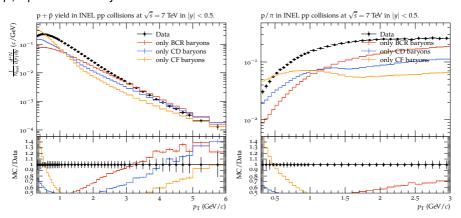


Figure: Compare p_T – spectra of p for only BCR, only CD or only CF baryon mechanisms [Adam et al. 2015]

Backup: Spectra of Protons

■ Proton p_T-spectra are badly modelled

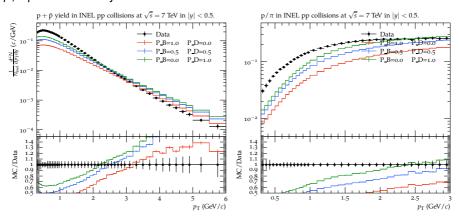


Figure: Compare p_T – spectra of p for only new DCR baryon mechanism with different probabilities [Adam et al. 2015]

Backup: Tuning

Backup: Tuning

Strategy:

1. Perform a dedicated tune to LEP multiplicities, event shapes and momentum spectra for CF, CR parameters

Strategy:

- Perform a dedicated tune to LEP multiplicities, event shapes and momentum spectra for CF, CR parameters
- 2. Keep CF and flavour parameters fixed and tune CR and MPI parameters to LHC multiplicities, p_T —spectra and angular correlations

Strategy:

- Perform a dedicated tune to LEP multiplicities, event shapes and momentum spectra for CF, CR parameters
- 2. Keep CF and flavour parameters fixed and tune CR and MPI parameters to LHC multiplicities, p_T —spectra and angular correlations
- 3. Cross-check if LEP observables are still good otherwise narrow down parameter space and go back to 1.

Strategy:

- Perform a dedicated tune to LEP multiplicities, event shapes and momentum spectra for CF, CR parameters
- 2. Keep CF and flavour parameters fixed and tune CR and MPI parameters to LHC multiplicities, p_T —spectra and angular correlations
- 3. Cross-check if LEP observables are still good otherwise narrow down parameter space and go back to 1. Problems:

Strategy:

- Perform a dedicated tune to LEP multiplicities, event shapes and momentum spectra for CF, CR parameters
- 2. Keep CF and flavour parameters fixed and tune CR and MPI parameters to LHC multiplicities, p_T —spectra and angular correlations
- 3. Cross-check if LEP observables are still good otherwise narrow down parameter space and go back to 1.

Problems:

■ Huge sensitivity to some CF parameters, which damage the p_T —spectra

Strategy:

- Perform a dedicated tune to LEP multiplicities, event shapes and momentum spectra for CF, CR parameters
- 2. Keep CF and flavour parameters fixed and tune CR and MPI parameters to LHC multiplicities, p_T —spectra and angular correlations
- 3. Cross-check if LEP observables are still good otherwise narrow down parameter space and go back to 1.

Problems:

- Huge sensitivity to some CF parameters, which damage the p_T —spectra
- For a large set of observables χ^2 as a measure to minimize is not neccesarily the most suitable one (large deviations in some bins may drive the system to odd regions of parameter space)

Strategy:

- 1. Perform a dedicated tune to LEP multiplicities, event shapes and momentum spectra for CF, CR parameters
- 2. Keep CF and flavour parameters fixed and tune CR and MPI parameters to LHC multiplicities, p_T —spectra and angular correlations
- 3. Cross-check if LEP observables are still good otherwise narrow down parameter space and go back to 1.

Problems:

- Huge sensitivity to some CF parameters, which damage the p_T —spectra
- For a large set of observables χ^2 as a measure to minimize is not neccesarily the most suitable one (large deviations in some bins may drive the system to odd regions of parameter space)

Possible solutions: Use of a different "Loss function" than regular χ^2 e.g. $\chi^2 \to \frac{\chi^2}{1+\chi^2}$ or $\tanh(\chi^2)$

Backup: Cluster Fission Details

- A cluster of mass M is fissioned if $M^{\text{Cl}_{pow}} \geq \text{Cl}_{max}^{\text{Cl}_{pow}} + (m_1 + m_2)^{\text{Cl}_{pow}}$, where m_1, m_2 are the masses of the constituents of the cluster
- Currently masses are sampled as follows, where $r_1, r_2 \in [0, 1]$ are uniform random numbers [Bahr et al. 2008]:

$$M_1 = m_1 + (M - m_1 - m_q)r_1^{\frac{1}{P_{\text{split}}}}$$
 (4)

$$M_2 = m_2 + (M - m_2 - m_q) r_2^{\frac{1}{P_{\text{split}}}}$$
 (5)

- Reject samples if $M_1 + M_2 > M$
- Problems: huge dependence on parameters Cl_{max} and especially P_{split}
- Work in progress: Sample masses according to phase space

Backup: Angular Correlations

- The shown plots are showing correlations integrated in $\Delta \eta$ up to $\Delta \eta_{\text{max}} = 1.3$
- The angular correlations are measured via the event mixing [Adam et al. 2017]:

$$C_i(\Delta\phi, \Delta\eta) = \frac{S(\Delta\phi, \Delta\eta)}{B(\Delta\phi, \Delta\eta)} \tag{6}$$

$$C_{i}(\Delta\phi, \Delta\eta) = \frac{S(\Delta\phi, \Delta\eta)}{B(\Delta\phi, \Delta\eta)}$$
(6)
$$S_{i}(\Delta\phi, \Delta\eta) = \frac{1}{N_{\text{pairs}}^{\text{same}}} \frac{d^{2}N_{\text{pairs}}^{\text{same}}}{d\Delta\eta d\Delta\phi}$$
(7)

$$B_i(\Delta\phi, \Delta\eta) = \frac{1}{N_{\text{pairs}}^{\text{mixed}}} \frac{d^2 N_{\text{pairs}}^{\text{mixed}}}{d\Delta\eta d\Delta\phi}$$
(8)

$$C_i(\Delta\phi) = \int_0^{\Delta\eta_{\text{max}}} C_i(\Delta\phi, \Delta\eta) d\Delta\eta$$
 (9)

Spectra of Protons

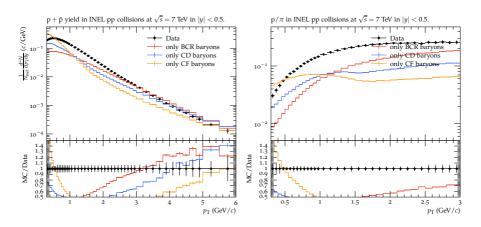


Figure: Compare p_T — spectra of p for only BCR, only CD or only CF baryon mechanisms [Adam et al. 2015]

Spectra of Protons

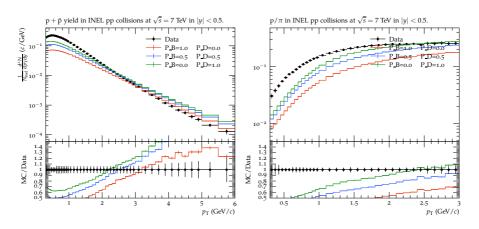


Figure: Compare p_T – spectra of p for only new DCR baryon mechanism with different probabilities [Adam et al. 2015]

Spectra of Strange Baryons

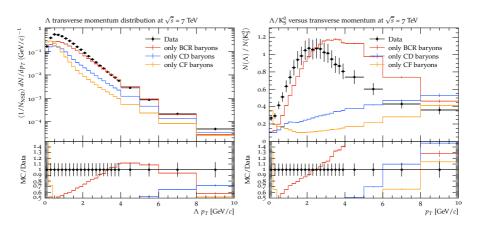


Figure: Compare p_T – spectra of Λ , Ξ for only BCR, only CD or only CF baryon mechanisms [Khachatryan et al. 2011]

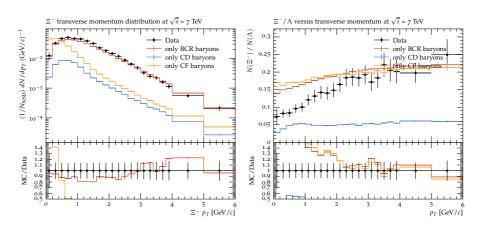


Figure: Compare p_T – spectra of Λ , Ξ for only BCR, only CD or only CF baryon mechanisms [Khachatryan et al. 2011]

Spectra of Strange Baryons

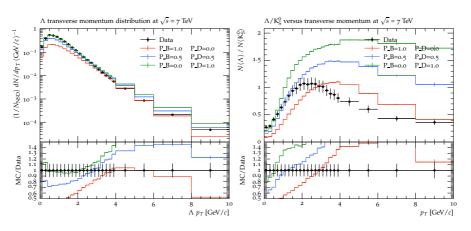


Figure: Compare p_T – spectra of Λ, Ξ baryons for only new DCR baryon mechanism with different probabilities [Khachatryan et al. 2011]

Spectra of Strange Baryons

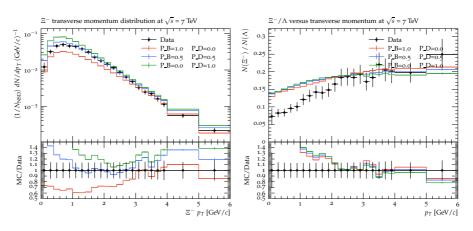


Figure: Compare p_T – spectra of Λ , Ξ baryons for only new DCR baryon mechanism with different probabilities [Khachatryan et al. 2011]

Consistent Two Particle Boost

- If we boost a two particle system $P = (p_i + p_j)$ into its rest frame $\hat{P} = (\hat{p}_i + \hat{p}_j)$ one needs to be careful to tranform the relative momentum correctly $\hat{P}_{rel} = (\hat{p}_i \hat{p}_i)$
- The naive transformation would be to just use $\Lambda_{(-P)}$, but this would give in general $\hat{P}_{rel} = (\hat{p}_i \hat{p}_j + 2k)$, because $\Lambda \hat{p}_i = p_i + k$ and $\Lambda \hat{p}_j = p_j k$.
- Intuitively the momentum P is completely oblivious to its components and therefore Λ must depend on both the consituents p_i, p_i
- Want a Lorentz Tranformation (matrix or tensor) $\Lambda(p_i, p_j | \hat{p}_i, \hat{p}_j)$ such that $\Lambda \hat{p}_i = p_i$ and $\Lambda \hat{p}_j = p_j$
- Found solution for $\Lambda(p_i, p_j | \hat{p}_i, \hat{p}_j)$, but numerically not very easy
- lacktriangle Work in Progress: Tensor for this trafo $\Lambda^{
 u}_{\ \mu}$