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A window of opportunity in PBH space

• Big Bang Nucleosynthesis (BBN) and
inflation provide constraints on PBHs,
but lots of space between!

• Evidence for evaporated PBHs would
be interesting in of itself.

• For BSM, they provide high scales at
late times, implications for
Baryogenesis and leptogenesis.

• Topics on the edge of understanding,
PBH assisted vacuum decay, Planck
relics, extra dimensions.
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Black Hole evaporation is a very efficient way to produce dark matter!

• If a stable particle exists, it will be
produced in the process of Hawking
evaporation.

• If these particles feebly interact with
SM they will form dark matter or dark
radiation.

• A very small number of BHs needed to
produce the correct relic abundance for
dark matter.

• β′ ≡ γ1/2
(
g⋆(Tin)

106.75

)−1/4 ρin
PBH
ρin

[AC, L. Heutier, Y. F. Perez-Gonzalez and J. Turner (2021)]
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What is FRISBHEE?

• Our code FRISBHEE, FRIedmann Solver for Black Hole Evaporation in the Early
universe, solves the system of coupled Friedmann and Boltzmann equations fully.

• Publicly available on GitHub � and ready to use!
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Why is FRISBHEE?

• First public code which tracks the evolution of dark sector and PBH distribution in
a evolving Universe.

• We encode the effects from particle properties and track with TBH .

• This allows for accurate exploration of
the physics.

• A staging area for more complicated
scenarios.
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Spin evolution

• Tracking the spin evolution, proved to be an
important use case for FRISBHEE.

dMBH

dt
= −ϵ(MBH, a⋆)

M4
p

M2
BH

,

da⋆
dt

= −a⋆[γ(MBH, a⋆)− 2ϵ(MBH, a⋆)]
M4

p

M3
BH

,

• It has been known for almost 50 years that Kerr
BHs shed angular momentum sooner than their
mass. See e.g. Page 1976.

• For maximally spinning BHs only around 40%
of mass has been lost when 90% of the spin has
gone.
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Entropy injection after a⋆ ∼ 0
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Results assuming PBH domination

• Previous studies
calculated the
contribution to ∆Neff .

• Paper A = Hooper et.al.
2020

• Paper B = Arbey et.al.
2021

• Paper C = Masina 2021
• The prospects for future

CMB probes are now less
optimistic.
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Scan results for graviton

• With FRISBHEE we can
perform full scans.

• Can determine the effects
even when there isn’t pbh
domination.

• CMB-HD will constrain
maximally spinning BHs
below βc for very high M in.
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Features in dark matter relic lines

• We calculate ΩDMh2 for different particle spins.

• Effects of spinning BHs (a⋆ ̸= 0).
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Warm dark matter constraints different spins

• How Lyman-α constraints depend on
particle spin and BH spin (a⋆) is
non-trivial.

• Define constraint parameter η by

β′ ≤ η
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Dark sectors, interacting dark matter etc.

• FRISBHEE also allows for exploration of more complicated dark sectors
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Distributions of PBHs

• All work above has been monochromatic in MPBH and a⋆.

• Many PBH production mechanisms lead to distributions.

• The updated FRISBHEE can now track mass and spin distributions.
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Mass and Spin distributions

• FRISBHEE can evaluate the effects of non-trivial spin and mass distributions.
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Distributed PBHs

• Evaporation can occur over many e-folds.

For power law we see the example of matter-radiation stasis
[K. Diernes et. al (2022) and Barrow et. al. 1991]
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Distribution effects on phenomenology
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Effect on high-frequency gravitational waves
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Conclusions

• FRISBHEE is available to all!

• Accurately tracking the system of equations has lead to insights already.

• CMB probes of ∆Neff are less constraining than previously thought.

• Dark matter will be produced in evaporation and the interplay can be complicated.

• FRISBHEE now can evolve broad distributions of PBHs, in MBH in a⋆.

• Download it today github.com/yfperezg/frisbhee
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Backup slides
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Any particles with mDM < Mp will be emitted

• Two separate regimes of particle production for stable particles

NDM ≈ 120ζ(3)
π3

gi
g⋆(TBH)

M2
BH

M2
pl

. NDM ≈ 15ζ(3)
8π5

gi
g⋆(TBH)

M2
pl

m2
DM
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Spinning black holes preferentially emit higher spin particles

• It has long been known that Kerr black holes (a⋆ ̸= 0) shed their angular
momentum by emitting higher spin particles.

• Closer to maximal a⋆ → 1, the more pronounced the enhancement is.
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Lyman-α constraints on dark matter

• Lyman-α forest traces inhomogeneities
in IGM.

• Provides measurements on the matter
power spectrum at high redshift
(2 ≤ z ≤ 5 ) and small scales
(0.5 h/Mpc ≤ k ≤ 20 h/Mpc).

• Measurements down to this scale are
consistent with cold dark matter

Pχ(k) = PCDM(k)T 2
χ(k)
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Freeze-In Dark Matter with PBHs

• The way PBHs reheat the thermal
plasma depends on a⋆.

• This can mean that T univ. ∼ mX for
longer.

• On this resonance is when more DM
particles are produced through
standard freeze-in.
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Interplay between interacting dark matter and pbh production
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