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Reissner-Nordstrom Black Hole
Charged or Reissner-Nordstrom (RN) black hole

ds2 = − BRN(r)dt2 + BRN(r)−1dr2 + r2(dθ2 + sin2 θdϕ2)

BRN(r) = 1 −
2 G M

r
+

G (Q2
E e2 + Q2

M h2)
4πr2

The outer horizon radius is

r+ =
(MBH + M2

BH − M2
eBH)

M2
pl

MeBH =
Q2

Ee2 + Q2
Mh2

4π
Mpl

Temperature is suppressed when close to the eBH state

T(MBH, MeBH) =
M2

pl

2π

M2
BH − M2

eBH

(MBH + M2
BH − M2

eBH)
2
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Evolution of a RN Black Hole
A PBH with a charge Q will evolve towards a near extremal 
one, which has suppressed T

dMBH

dt
≈ −

π2

120
g* 4πr2

+ [T(MBH, MeBH)]4

TeBH =
60 MeBH

π g* t
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Breakdown of Semi-classical

T =
60 MeBH

π g* t
MBH(t) = MeBH +

120π M4
eBH

g* M4
pl t

MBH = MeBH +
2π2 M3

eBH T2

M4
pl

E ≡ MBH − MeBH =
2π2 M3

eBH T2

M4
pl

This semi-classical description breaks down when

E ∼ T

Or when the T is below a “gap scale”

Λgap ≡
M4

pl

M3
eBH

Preskill, Schwarz, Shapere, Trivedi, Wilczek, ’1991
Maldacena, Michelson, Strominger, ’1998
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Near-extremal Black Hole

ds2 = −
ρ2

r2
e

dt2 +
r2

e

ρ2
dρ2 + r2

e (dθ2 + sin2 θ dϕ2)

AdS2 × S2

Schwarzian

ρ ≡ r − re

Zsch ∝ ∫
𝒟f(τ)

SL(2,R)
exp [ Nγ

4π2 ∫
β

0
dτ {tan(πT f(τ)), τ}]

{g, τ} ≡
g′￼′￼′￼

g′￼
−

3
2 ( g′￼′￼

g′￼)
2

Almheiri, Polchinski, 1402.6334
Maldacena, Stanford, Yang, 1606.01857

Stanford, Witten, 1703.04612
Iliesiu, Turiaci, 2003.02860
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Including Quantum Effect
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Figure 1: The charged black hole temperature as a function of energy for Me = 100Mpl, which
is equivalent to Me = 108 ⇤gap and ⇤gap = 10�6 Mpl from (6). The power-law behaviors are
labelled for the asymptotic regions. In the small energy region the quantum e↵ect turns to
reduce the black hole temperature for a fixed energy.

dilaton-gravity model [6]. The relevant degree of freedom is the “Goldstone boson” related to

the coset space of time reparametrization symmetry over SL(2,R) [7] or di↵(S1)/SL(2,R) [10]:
fixing Poincare coordinates on the hyperbolic disk spontaneously breaks the reparametrization

symmetry and the dilation-dependent terms explicitly break this symmetry (see [25] for a re-

view). The one-dimensional action for the time reparametrization field is the Schwarzian action,

whose path integral can be computed exactly to generate the canonical partition function [3]

Z(T ) =
�
M2

pl r
3
e T

�3/2
eS0 �Me/T +2⇡2 M2

pl r
3
e T , (8)

which is valid for Q � 1 and T ⌧ 1/re and is one-loop exact [10]. Here, S0 is the extremal

entropy with S0 = ⇡M2
plr

2
e . The entropy and energy as a function of T are derived as

S = S0 + 4⇡2 M2
pl r

3
e T +

3

2
ln
�
eM2

pl r
3
e T

�
, (9)

E = 2⇡2 M2
pl r

3
e T

2 +
3

2
T = 2⇡2 T 2

⇤gap
+

3

2
T . (10)

The first term of energy comes from the leading semiclassical correction for T ⌧ 1/re, while the

second term linear in T contains the quantum e↵ects and comes from the one-loop backreaction

of the dilation and gauge fields on the metric. Note that the second term becomes important

when T . ⇤gap. Also there is no real energy gap as T reaches zero.

In Fig. 1, we show the charged black hole temperature as a function of energy E for the

4

Universal AdS  geometry; matched to the Schwarzian 
action; obtain the one-loop exact partition function

2×S2

Z(T ) = (M2
pl r3

e T)
3/2

eS0 − Me/T + 2π2 M2
pl r3

e T
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Including Quantum Effect
Using AdS /CFT , we calculated the greybody factors2 1

⟨Nslp(ω)⟩ =
Γslp(ω, T, re)

2π
1

eω/T ∓ 1
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Including Quantum Effect

YB, Korwar, 2301.07739 
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What are the charges?
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Electrically-Charged BH in SM
The charged BH has a large electric field close to the 
event horizon

E =
M3

pl

4π MeBH

> m2
e

The Schwinger effects can generate electrons and 
positrons from vacuum and discharge the eBH

+Q
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Magnetically-Charged BH in SM
Since there is no finite-energy magnetic monopole in the 
SM, no worry about Schwinger discharge

If the GUT exists, one may worry its emission of GUT 
monopole, which is very heavy

QM B(ReBH) =
Q

2 e R2
eBH

≈
e M2

pl

2 π Q
≲ M2

GUT

Q ≳ 106
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EW Symmetry Restoration in B Field
In a large B field background, the electroweak symmetry is 
restored Salam and Strathdee, NPB90 (1975) 203

Ambjorn and Olesen, NPB330 (1990) 193

For a large , a negative determinant leads to W-
condensation and electroweak restoration. This happens 
when

|F12 |

e B ≳ m2
h

ℰ ⊃
1
2

|DiWj − DjWi |
2 +

1
4

F2
ij +

1
4

Z2
ij +

1
2

g2φ2WiW†
i + (g2φ2/4 cos2 θW)Z2

i

+ig(Fij sin θW + Zij cos θW)W†
i Wj +

1
2

g2 [(WiW†
i )2 − (W†

i )2(Wj)2]
2

+(∂iφ)2 + λ(φ2 − φ2
0)2

(W†
1 , W†

2 )
1
2 g2φ2

0 i e F12

−i e F12
1
2 g2φ2

0
(W1

W2)
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Electroweak Symmetry Restoration
e B(ReBH) ≳ m2

hB(ReBH) =
Q

2 e R2
eBH

≈
e M2

pl

2 π Q

Electroweak symmetry restoration happens for 

Q ≲ Qmax ≡
e2 M2

pl

2π m2
h

≈ 1.4 × 1032

Lee, Nair, Weinberg, PRD45(1992) 2751
Maldacena, arXiv:2004.06084

For Q=2, one can obtain the spherically symmetric 
configuration

For Q > 2, a non-spherically symmetric configuration is 
anticipated, and requires complicated numerical 
calculations Guth, Weinberg, PRD14(1976) 1660
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Q=2: spherical

10- 10-13 10-9 10-5 1 5

Figure 1: Profiles as a function of r for the SM hairy magnetic black holes. Left: the horizon
rH = cW

√
4π/(eMpl) for an extremal black hole. Right: a larger horizon with rH = 0.15/mW

with the Higgs vacuum expectation value (VEV) profile ρ(r) to be half-restored at the horizon.
Not shown here is the profile for P (r), which is approximately one because of P ′/P = O(Gv2)
and P (∞) = 1.

first integration term in (38), the hairy magnetic black hole with Q = 2 for rH # 1/mW has a
mass

MhMBH ≈
rH
2G

+
2π

g2
Y
rH

+ 0.75×
4π v

g
=

rH
2G

+
2π c2W
e2 rH

+ 0.75×
2π v2

mW
(42)

≥ cW

√
4πMpl

e
+ 0.75×

2π v2

mW
= (1.2× 1020 + 3.6× 103) GeV . (43)

Obviously, the hair part of the system contributes negligibly to the total mass. The upper mass
of a Q = 2 hairy magnetic black hole is

MhMBH ≤ Mmax
hMBH =

1

2GmW
+O(mW ) ≈ 9.3× 1035 GeV . (44)

Numerically solving the equations of motion with the BC’s, we show two representative
profiles in Fig. 1. In the left panel with rH = rmin

H corresponding to the extremal case, the
black hole sits well inside the hairy cloud. Around the event horizon, the Higgs VEV is very
close to zero and the electroweak symmetry is almost completely restored. 2 For potentially
phenomenological applications, we also provide numerically fitted functions for both f(r) and
ρ(r), that are good approximation for r > 0.1m−1

W ,

f(r) ≈
0.495mW r

sinh (1.1mW r)
+

1.265mW r

sinh (2.3mW r)
, (45)

ρ(r) ≈
(
coth

[
86 (mW r)1.2

]
−

1

86 (mW r)1.2

)(
1− 0.51 e−1.82mW r

)
. (46)

2This is subject to corrections from the QCD condensation induced electroweak symmetry breaking.

7

extremal hMBH

MehMBH ≈ cos θW
4π Mpl

e
+ 0.75 ×

2π v2

mW
= (1.2 × 1020 + 3.6 × 103) GeV

Hypercharged black hole in the core with EW hair
Electroweak symmetry is restored in the core region

YB, Korwar, 2012.15430

: metric N(r)

: Higgs ρ(r)

: gaugef(r)
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Q>2: non-spherical

QM

v ≈ 0

v = 246 GeV

To have the electroweak hair, rH < REW

cW = cos ✓W ⇡ 0.88, ✓W is the Weinberg angle of the SM, and MM ' 4⇡mW/e2 is the spher-
ically symmetric monopole mass (again, assuming such a monopole was admissible in the SM
symmetry group). The factor of cW appears because the EW symmetry is restored near the
event horizon, so the BH carries magnetic hypercharge 2⇡Q/gY = cW2⇡Q/e, with gY the hy-
percharge coupling constant. Its mass is bounded from above by requiring the mass not be
larger than that of a BH with radius REW. For a large Q, the corona boundary is anticipated to
be non-spherical, and the mass M⇤• must be above cWMRN

eBH
plus the non-spherical Q-charged

monopole mass MM(Q) [9]. The shape has not been worked out in detail, but may be expected
to contain spiky features where vortex strings end on monopoles [10], which we denoted using
subscript⇤•.

We now give a more precise estimate for the mass. Including the contributions from both
the hypercharged BH mass and the positive vacuum energy of the unbroken EW symmetry,
m2

h v
2/8, the EWS-corona BH mass is estimated to be

M tot

MeBH
(Q) ' cW

p
⇡Q

e
Mpl +

4⇡

3
R3

EW

m2

h v
2

8
= cW

p
⇡Q

e
Mpl +

⇡

12
p
2
Q3/2 v2

mh
(8)

⌘ M⇤•(Q) +
⇡

12
p
2
Q3/2 v2

mh
, (9)

defining M⇤•(Q) = cW MRN

eBH
. Here, we have ignored the energy contributions from the transition

boundary from symmetry-unbroken to broken regions as well as the non-sphericity of the corona
configuration. We anticipate that those corrections are small in the limit of 1 ⌧ Q ⌧ Qmax.
The second term, which comes from the energy density of the corona, is only important when
Q & 288c2W/(⇡e2)(Mplmh/v2)2 ⇡ 5⇥ 1035 � Qmax, so we will generally neglect it.

However, it is easy to see that M tot

MeBH
(2Q) > 2M tot

MeBH
(Q) due to the presence of the second

term, so energetically it is preferable for an MeBH with a large charge to split into smaller
MeBHs. Although the large-charged MeBH is metastable, its lifetime can be longer than the
age of the Universe for Q & Qmin ' 106 given the existence of a GUT monopole with mass
MGUT

M
⇠ 1017 GeV [10]. This is a stronger condition than in (5). This metastability is in

agreement with the weak gravity conjecture [30]: the non-gravitational interaction is stronger
than the gravitational one. The range of viable charges Qmin . Q . Qmax corresponds to a
mass range

6⇥ 1025 GeV . M⇤• . 9⇥ 1051 GeV . (10)

For reference, the mass of the Earth is M� = 6.0⇥ 1027 g = 3.4⇥ 1051 GeV.

2.2 Non-extremal magnetic black holes

Non-extremal BHs are also relevant for phenomenology. They appear, e.g., after mergers of
oppositely charged PMBH or absorption of baryons by PMBHs. For these cases, the BH mass

5

REW ≃
Q
2

1
mh

∼ M⊕ Rmax
EW ∼ 1 cmQ < Qmax ≃ 1032
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Primordial magnetic black holes 
for all dark matter? 
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Parker Limits
Requiring the domains of coherent magnetic field are not 
drained by magnetic monopoles

PMBH flux:

applies to GUT monopoles [34–38]. Another interesting possibility, left for future work, is that
the BNV process could facilitate baryogenesis.

For the case of PMBH absorption of baryons, the resulting BH mass is close to the extremal
mass. In the limit of MBH �M⇤• ⌧ M⇤•, the Hawking temperature is

TBH '
M2

pl
p
2 ⇡

p
MBH �M⇤•
M3/2

⇤•
. (17)

For the 2d evaporation process to occur, TBH & me or MBH �M⇤• & 2⇡2m2

eM
3

⇤•/M
4

pl
⇡ (2.5 ⇥

10�4)mpM3

26
. For example, when even a single proton is absorbed (MBH �M⇤• ' mp), the 2d

evaporation process occurs for M⇤• . 1027 GeV, resulting in a prompt BNV process. PMBHs
with larger masses must absorb many baryons before reemitting via 2d modes. This may occur,
e.g., in dense environments like stars. Using the 2d radiation in (12) with g⇤ = 2|Q|, the fast 2d
evaporation time scale is

⌧BH ⇡

24⇡3/2 cW M2

⇤•
eM3

pl

log

"
M4

pl
(MBH �M⇤•)
2⇡2 m2

e M
3

⇤•

#
. (18)

After this time scale, the BH follows the slow 4d evaporation process.

3 Parker limits from Milky Way and Andromeda galaxies

The Parker bound arises from the requirement that domains of coherent magnetic field are not
drained by magnetic monopoles [39]. If a monopole transits such a domain, it will be accelerated
by the magnetic field and drain its energy. Thus, the energy loss to monopoles must be slower
than the time it takes for the fields to be regenerated. To simplify our discussion, we will ignore
the subleading second term in (9) for Q ⌧ Qmax and take M⇤•/Q = cW

p
⇡Mpl/e ⇡ 5.1Mpl.

Compared to a GUT monopole with Q = 1, a PMBH has a much larger mass-to-charge ratio.
We now compare the PMBH flux to the various Parker-type bounds, updated to include charge
dependence where necessary.

Assuming that PMBHs account for a faction f⇤• of all dark matter energy density and has
an averaged speed v, the flux is

F⇤• ⇡ (9.5⇥ 10�21 cm�2sr�1s�1) f⇤•
✓
1026 GeV

M⇤•

◆⇣ ⇢DM

0.4 GeV cm�3

⌘⇣ v

10�3

⌘
. (19)

For the local dark matter density in our solar system, we use ⇢local ⇡ 0.4 GeV cm�3 [40] and
virial velocity v ⇡ 10�3 [41].

We follow the treatment of Ref. [42], but include the Q-dependence in hQ and M⇤•. First, a
monopole can be accelerated in a coherent magnetic field to reach a speed

vmag ' min

"
1,

s
2B hQ `c

M⇤•

#
' 4⇥ 10�5

p
`21B3 , (20)

8

Mean energy gained by PMBHs for the regeneration time 
is smaller than the energy stored in B

where `21 = `c/(1021 cm) is the coherence length of the magnetic field and B3 = B/(3 ⇥

10�6 gauss) is the magnetic field strength in our Milky Way galaxy [43]. This velocity is less
than the virial velocity of our galaxy, around 10�3. Thus, the PMBHs can remain bound in our
galaxy and explain DM. They could also have a larger velocity and not be bound, thus unable
to explain DM, but the flux bound presented below turns out to be the same.

The Parker bound is set by requiring the mean rate of energy gained by PMBHs times the
regeneration time treg of the field by dynamo action to be smaller than the energy stored in the
magnetic field, or

�E ⇥ F⇤• ⇥ (4⇡`2c)⇥ (⇡ sr)⇥ treg .
B2

8⇡

4⇡ `3c
3

, (21)

with �E ' M⇤•�v2/2 and �v ' B hQ `c/(M⇤•v). The magnetic-field-independent constraint
on the PMBH flux is

F⇤• . (3.6⇥ 10�20 cm�2sr�1s�1)
v2�3

`21 t15 M26

, (22)

where v�3 = v/(10�3) and t15 = treg/(1015 s). Combined with (19), the constraint on the PMBH
fraction from coherent fields in the Milky Way is independent of the PMBH mass and given by

f⇤• . 3.8⇥
v�3

⇢0.4 `21 t15
, (23)

where ⇢0.4 = ⇢DM/(0.4GeV cm�3).
Thus, at present there is no constraint from magnetic field domains in our galaxy, regardless

of PMBH mass and charge. To strengthen the bound in (23), one could look for systems with
larger coherent magnetic field domains `21 > 1, longer times to regenerate the magnetic fields
t15 > 1, smaller virial velocities v�3 < 1 (although note if v < vmag, then PMBHs would not be
bound to the galaxy so could not be DM, and a di↵erent constraint would apply [42]), or larger
enhancements to the local DM density ⇢0.4 > 1.

We identify the Andromeda galaxy as an example of a system with larger coherent magnetic
domains that take a correspondingly longer time to regenerate. Andromeda has an approxi-
mately azimuthal magnetic field around its whole circumference, measured between radii of 6
and 14 kpc [44]. This implies `c ⇠ 10 kpc ) `21 ⇠ 30 and treg ⇠ 10 Gyr ) t15 ⇠ 300 [45]. The
density of DM for Andromeda is very similar to the Milky Way [46, 47], so we keep ⇢0.4 ⇡ 1 and
v�3 ⇡ 1. Using these values in (23), we constrain the PMBH fraction in Andromeda to be

f⇤• . 4⇥ 10�4 (from M31) . (24)

Although there is a large uncertainty for `c and treg used in the Parker limit, the above limit
suggests PMBHs cannot account for all dark matter in our Universe.

While the above bounds come from galactic magnetic fields, intracluster magnetic fields
were considered in Ref. [48], although the bound is somewhat less secure as stated in their
paper. Because of the smaller intracluster dark matter density ⇡ 1.5 ⇥ 10�6 GeV cm�3 [49],
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t15 > 1, smaller virial velocities v�3 < 1 (although note if v < vmag, then PMBHs would not be
bound to the galaxy so could not be DM, and a di↵erent constraint would apply [42]), or larger
enhancements to the local DM density ⇢0.4 > 1.

We identify the Andromeda galaxy as an example of a system with larger coherent magnetic
domains that take a correspondingly longer time to regenerate. Andromeda has an approxi-
mately azimuthal magnetic field around its whole circumference, measured between radii of 6
and 14 kpc [44]. 2 This implies `c ⇠ 10 kpc ) `21 ⇠ 30 and treg ⇠ 10 Gyr ) t15 ⇠ 300 [45].
The density of DM for Andromeda is very similar to the Milky Way [46, 47], so we keep ⇢0.4 ⇡ 1
and v�3 ⇡ 1. Using these values in (23), we constrain the PMBH fraction in Andromeda to be

f⇤• . 6⇥ 10�3 (from M31) . (24)

Although there is a large uncertainty for `c and treg used in the Parker limit, the above limit
suggests PMBHs cannot account for all dark matter in our Universe.

1
The energy density of the magnetic field is B2/(2µ0) = B2/2 in natural units used here, di↵ering from the

units in [42].
2
The coherent magnetic field geometry for Andromeda is cylindrical, slightly di↵erent from the spherical

geometry of domains in the Milky Way. We neglect this O(1) factor.
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Parker Limit from M31
A.Fletcher et al.: The magnetic field in M31 3

Fig. 1. Polarized intensity (contours) of M31 with the orientation of the emission B-vector also shown (dashes, not
corrected for Faraday rotation) with their lengths proportional to the degree of polarization, observed at λ6 cm with
the Effelsberg radio telescope (Berkhuijsen et al. 2003). Note that the foreground RM of −90 radm−2 (Table 2)
corresponds to Faraday rotation of about 20◦ so that the intrinsic B-vectors are roughly azimuthal. The beam width
is 3′ and the rms noise is 0.2 mJy/beam. Contour levels are 1, 2, 3, 4, 6× (5 × 10−4) Jy/beam. A length of B-vectors
of 3′ corresponds to a degree of polarization of 36%. The northern major axis is to the left and the ellipses show the
radial range of the data analyzed in this paper, 6 ≤ r ≤ 14 kpc.

Q and U intensities in each sector were combined to give
the average polarization angle and the average polarized
emission intensity in each sector.

2.2.1. Polarization angles

The polarization angle in a individual sector was calcu-
lated as ψ = 1

2
arctan 〈U〉/〈Q〉, where 〈. . .〉 denotes the

average value of the parameter over the pixels within a
sector. The resolutions used were 3′, 5′ and 45′′ at the
wavelengths λλ6, 11, 20 cm respectively. The errors in po-
larization angle were computed as the standard deviations,
within one sector, between all pixels whose intensity is
stronger than three times the rms noise level. If the num-
ber of pixels in a sector was below five, the error was
calculated by averaging several adjacent sectors (this pro-
cedure was suggested by Berkhuijsen et al. 1997). For two
measurements (both at λ20 cm, in the ring 6–8 kpc at
θ = 120◦ and in the ring 8–10 kpc at θ = 60◦) the error
thus obtained was less than the noise in the maps and
here the noise error was taken. These average polarization
angles are analysed in Sect. 5.

The λ20 cm polarized emission from M31 is mixed
with a substantial amount of emission from the Milky
Way foreground. At 45′′ resolution the polarized emission
from the M31 ‘ring’ and nucleus is clearly visible and the
polarization angles are clustered in coherent cells, some-
times connected with the position of OB associations in

M31 (see Figs. 2 and 6 of Beck et al. 1998). Thus, the av-
erage λ20 cm polarization angles in sectors with a surface
area several tens of times larger than the 45′′ resolution,
are a reliable measure of the emission from M31 at this
wavelength. The foreground Milky Way emission merely
contributes to the dispersion of angles in a given sector
and hence to the standard deviation used as our error es-
timate.

A further check is applied, by repeating the modelling
described in Sect. 5 using only the λλ6, 11 cm data. The
character of the deduced regular magnetic field does not
substantially change if the λ20 cm is excluded, though nat-
urally the parameters are less well defined.

2.2.2. Polarized intensities

We define the average polarized emission of a sector as

PI =
(

〈Q〉2 + 〈U〉2 − 1.2σ2
Q,U

)1/2
, where σQ,U is the rms

noise in Q and U and provides an approximate correction
for positive bias in PI (Wardle & Kronberg 1974). The Q
and U intensities of all pixels in a sector were averaged to
compute PI. Errors in non-thermal and polarized intensi-
ties were estimated as the standard deviation between all
pixels in a sector as described in Sect. 2.2.1.

In Sect. 6 we compare the degree of polarization at
λ20 cm, where Faraday effects are strong, with that at
λ6 cm, where minimal Faraday rotation occurs. It is nec-
essary to smooth the λ20 cm map to the 3′ resolution of
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Fraction of PMBH over dark matter
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Figure 3: Bounds on PMBH abundance as a fraction of the dark matter abundance. In green is
the Parker bound using M31/Andromeda. Red and blue show constraints from the Sun and the
Earth, respectively, due to neutrino observations at IceCube (IC), Super-Kamiokande (SK), and
Earth heating. Orange dashed lines show constraints from neutron stars (NS) assuming a total
baryon number violation energy on emitted photon luminosity of either r = 1 or r = 104. See
details and caveats in the text. Purple regions are excluded by direct searches from MACRO
and ancient mica. Brown displays constrains from microlensing at Subaru/HSC (HSC), Kepler
(K), and MACHO/EROS/OGLE (M/E/O). The dotted black vertical lines show where Q = 2,
Qmin ' 106 (assuming the existence of a GUT monopole), and Qmax ' 1.4⇥ 1032 (above which
there is no EWS corona).

be modified if the BHs obtain a large enough charge to form a corona before Hawking radiating
to near-extremal. If, on the other hand, PMBHs are born extremal or near extremal, these
constraints are relaxed.

If PMBHs are indeed primordial, then they can form binaries in the early Universe that
merge today, giving high energy neutrinos and gamma rays throughout the sky. An estimate of
this signal is given in [21], but more detailed numerical work is needed, particularly on binary
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Other searches: Ghosh, Thalapillil, Ullah, 2009.03363

                             Diamond and Kaplan, 2103.01850

YB, Berger, Korwar, Orlofsky 2007.03703
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Magnetic Monopoles Inside Earth?
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Monopole Moment of Earth 
Magnetic Field

2 Measuring the monopole moment

2.1 Measuring magnetic charges via Gauss’s law

For a single object or a group of objects with a total magnetic charge of Q at the center of
the Earth, the Earth’s magnetic field has a monopole moment of Bm(r) = Qh

4⇡ r2 r̂ = Q
2 e r2 r̂,

where e =
p
4⇡↵ with ↵ ⇡ 1/137 as the fine-structure constant and h = 2⇡/e ⇡ 68.5 e ⇡ 21

is the magnetic coupling. Q = 1 is the minimal magnetic charge, corresponding to the Dirac

quantization condition with e h = 2⇡ [1]. Numerically, Bm ⇡ 0.082 nT ⇥

⇣
R�
r

⌘2 �
Q

1019

�
, where

R� ⇡ 6371.2 km is the average radius of the Earth. For comparison, the measured Earth surface
intensity has a magnitude of up to ⇡ 65000 nT.

To measure the magnetic charge, one could adopt Gauss’s law
¸

B(r) · dA = Qh. This
requires a full-sky measurement of the magnetic vector field. For convenience, one could choose
the manifold to be a sphere of radius R centered on Earth. Then, dA = R2 n̂ d⌦ with n̂ as a
unit surface vector pointing outward and d⌦ = sin ✓d✓d� in spherical coordinates. For magnetic
monopole objects, Bm ⌘

1
4⇡

¸
Bm(r, ✓,�) · n̂ d⌦ = Qh 1

4⇡R2 . Here, we have defined a solid-
angle averaged magnetic field B, which is simply the amplitude of the monopole magnetic field
at radius R. Its sign matches the sign of the magnetic charge. All higher multiple moments
beyond Bm do not contribute to B.

In practice, the measurement of magnetic field is not performed at a uniform radius—the
Swarm satellite orbits have a variation of O(1%) during one orbit and decay over time. Thus,
it is not possible to integrate the magnetic flux along a perfectly spherical closed manifold, and
the surface’s normal vector n̂ will not match the radial coordinate unit vector r̂. So, a numerical
integration of

´
B(r, ✓,�) · r̂ d⌦ will not be zero, even in the absence of a monopole term (for

Swarm’s orbital parameters, B ' �70 nT; see the Supplemental Material). To suppress this
measurement-induced dipole contribution, we use the following modified Gauss law to measure
the magnetic field from the monopole charge

B =
1

4⇡

ˆ 
r(✓,�)

Rref

�3
B(r, ✓,�) · r̂ d⌦ . (1)

Here, r(✓,�) is the radius of the magnetic measurement at di↵erent angular directions and Rref

is a fixed reference radius. For the dipole component, this is formally equivalent to integrating
on a perfectly spherical surface at r = Rref, so n̂ = r̂ and the dipole component contributes
zero to the above quantity. Note that the Earth’s higher-moment magnetic fields have non-zero
contributions to the quantity B because the the higher moments scale with higher powers of r.
For instance, the quadrupole moment has a magnitude of O(10%) of the dipole moment, and
contributes around 0.5 nT for B using Swarm’s orbit. Therefore, the r3 scaling in Eq. (1) is
practically useful to improve the sensitivity of searching for the monopole moment because it
reduces contributions to B from the dipole and higher moments while preserving the monopole
signal.
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is a fixed reference radius. For the dipole component, this is formally equivalent to integrating
on a perfectly spherical surface at r = Rref, so n̂ = r̂ and the dipole component contributes
zero to the above quantity. Note that the Earth’s higher-moment magnetic fields have non-zero
contributions to the quantity B because the the higher moments scale with higher powers of r.
For instance, the quadrupole moment has a magnitude of O(10%) of the dipole moment, and
contributes around 0.5 nT for B using Swarm’s orbit. Therefore, the r3 scaling in Eq. (1) is
practically useful to improve the sensitivity of searching for the monopole moment because it
reduces contributions to B from the dipole and higher moments while preserving the monopole
signal.
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Figure 1: Average value and error of B in 180-day bins using 2� angular patch size covering the
time period from 1 Feb 2014 to 29 June 2020. Data from Swarm A and B were incorporated,
with the selection criteria Kp 6 3. In the top panel, the blue and yellow lines indicate the
contribution from the core’s dipole and higher moments, respectively, to the model prediction,
with the shaded bands giving their errors. The hatched regions show the total model predictions
with errors. Data are shown by black points. In the lower panel, the di↵erences between the
data and model are shown, and the dashed line indicates the mean. All error bars are 1� and
include only statistical error.

and e the electric coupling constant. A magnetic black hole has q 6 1 (saturated to equality in
the extremal limit) and M > Mpl. Because magnetic black holes can e�ciently Hawking radiate
into electrons if their temperature is su�ciently large, they satisfy q ⇠ 1 whenever M . 1017 g
[7, 12, 15], but can take on any q 6 1 at larger masses. Conversely, a monopole particle has
q > 1 according to the weak gravity conjecture [26]. While a GUT monopole with Q = 2 and
mass M ' 1017 GeV/c2 has q ' 1300, a gravitating composite monopole object with a large
magnetic charge could have much larger mass with both small and large q [27]. Therefore, we
treat q and M as free model parameters to set limits.

The capture rate of magnetic monopoles is estimated to be Ccap ⇡ ⇡R2
� 4⇡ F . Here, F ⇡

(1.7 ⇥ 10�33 cm�2sr�1s�1) f (1015 g/M) is the magnetic monopole flux with v ⇡ 10�3 c the
averaged speed for a heavy monopole bounded in our galaxy and f = ⇢/(0.4GeV cm�3) the

7

|Bm(r = R⊕) | < 0.13 nT or |Qnet | < 1.6 × 1019

YB, Lu, Orlofsky, 2103.06286 
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Primordial dark-charged black 
holes for all dark matter! 
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Dark QED Model
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YB, Orlofsky, 1906.04858

To have a very heavy dark electron mass to suppress 
Schwinger discharge

r ≡ M init
BH /MeBH

Pacheco, Kiritsis, Lucca, Silk, 2301.13215
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Formation
There are various ways to form primordial black holes

Large primordial fluctuations

Phase transitions, boson stars, ……

Produce large number of monopoles and anti-monopoles 
(maybe Nambu’s dumbbell configurations)

The formation of black holes eat totally  objects with a 
mean total zero charge but  variance non-zero charge

N
N

Anticipate the net black hole charge: ∼ N

To be studied more

YB, Orlofsky, 1906.04858 Stojkovic, Freese, hep-ph/0403248
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Signature

+Q1 −Q2

Q1 − Q2

Q1 − Q2

γ, e, p, ν
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Conclusions

31

Magnetic black hole exists in SM+GR. It is an interesting 
magnetic monopole object.

Primordial extremal black holes with a mass in ( ) 
could still account for all dark matter, if they are charged 
under some hidden or dark charge.

Mpl,108 g

Magnetic black holes have an electroweak-symmetric hair 
for . They could compose of a subcomponent of 
dark matter. 

Q < 1032
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Thanks!
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Q=2: spherical solution

the convention of (+1,−1,−1,−1) for a flat-space metric. For the matter Lagrangian, we only
include the known SM Lagrangian with focus on the electroweak SU(2)W ×U(1)Y gauge sector

LSM ⊃ LEW = −
1

4
W a

µνW
aµν −

1

4
YµνY

µν + |DµH|2 −
λ

2

(
H†H −

v2

2

)2

, (2)

with v = 246 GeV and λ ≈ 0.26 to have the Higgs boson mass of mh =
√
λ v ≈ 125 GeV [23].

Here, W a
µ with a = 1, 2, 3 are SU(2)W gauge bosons and Yµ is the hypercharge gauge boson.

The gauge field tensors are W a
µν = ∂µW a

ν − ∂νW a
µ − g εabcW b

µW
c
ν and Yµν = ∂µYν − ∂νYµ. The

covariant derivative of the Higgs doublet is

DµH =
(
∂µ − i

g

2
σaW a

µ − i
g
Y

2
Yµ

)
H , (3)

with σa as the Pauli matrices and the two gauge couplings g = e/ sin θW and g
Y
= e/ cos θW

with e =
√
4π α and α ≈ 1/128 at the electroweak scale. Here, θW is the weak mixing angle

with sin θW ≈
√
0.23. The constant term for the Higgs potential is chosen to have a zero value

when the Higgs field sits at the potential minimum 〈H〉 = (0, v/
√
2)T .

For both magnetic and dyonic black holes, we will consider only the Q = 2 magnetic charge in
this paper (we will use Q to label the magnetic charge and q for the electric charge). At a long
distance, the magnetic field is B(r) = QeM r̂/(4πr2) with the magnetic coupling eM = 2π/e
following the Dirac quantization for the minimum charge Q = 1. For Q = 2, we anticipate
a spherically symmetric solution for both magnetic and dyonic black holes. Therefore, we
parametrize the metric as

ds2 = P 2(r)N(r) dt2 −N(r)−1 dr2 − r2 dθ2 − r2 sin2 θ dφ2 , (4)

in the spherical coordinate. For the Einstein-Hilbert action and using integrating by parts that
does not change the later equations of motion, one has (see [24] for a different metric convention)

SE = −
1

16πG

ˆ

d4x
√
−g R = −

1

2G

ˆ

dt dr r P ′(1−N) , (5)

with the prime denoting differentiation with respect to r.
For the matter part and following Ref. [18], we use the following ansatz for a spherical

monopole (or dyon) configuration in the hedgehog gauge 1

H =
v√
2
ρ(r) ξ , ξ = i

(
sin ( θ2) e

−iφ

− cos ( θ2)

)
, (6)

W a
i = εaij

rj

r2

(
1− f(r)

g

)
, W a

0 = −
v

g
w(r)

ra

r
, (7)

Yi = −
1

g
Y

(1− cos θ) ∂iφ , Y0 = −
v

g
Y

y(r) . (8)

1The topological argument for the existence of this configure is provided in Ref. [18]: π2(CP
1) = π2(S2) = Z.

For the Higgs doublet H = (H1, H2)T with H1H∗

1 +H2H∗

2 = v2/2, the vacuum manifold in the pure scalar sector
is S3 with π2(S3) = 0. However, given the U(1)Y gauge freedom, one could make a gauge rotation to make one
of the two complex fields H1,2 real. As a result, the manifold has a lower dimension and is isomorphic to S2.
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is S3 with π2(S3) = 0. However, given the U(1)Y gauge freedom, one could make a gauge rotation to make one
of the two complex fields H1,2 real. As a result, the manifold has a lower dimension and is isomorphic to S2.

2

Variating the summed action SE + Smatter with respect to P (r) and N(r), the two Einstein
equations are given by

N ′ =
1−N

r
− 8πGr

(
U +N K +

K0

P 2
+

U0

P 2N

)
, (14)

P ′ = 8πGr

(
P K +

U0

P N2

)
. (15)

Variating the action with respect to the matter fields f(r), ρ(r), w(r) and y(r), one has the
following four matter equations of motion

(P N f ′)′ = P

[
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2

]
−

v2 f w2

P N
, (16)

(
r2 P N ρ′

)′
=

1

2
P ρ f 2 +

λ v2

2
r2 P ρ(ρ2 − 1)−

v2

4P N
r2 ρ (w − y)2 , (17)

(
r2 P−1w′)′ =

2

P N
f 2w +

g2 v2

4P N
r2 ρ2 (w − y) , (18)

(
r2 P−1 y′

)′
=

g2
Y
v2

4P N
r2 ρ2 (y − w) . (19)

3 Hairy magnetic black holes

3.1 Masses and profiles

For the magnetic black holes, existing papers have mainly studied the SU(2)-gauge theory
case [6, 7, 9–12]. Here, we focus on the SM electroweak SU(2)W × U(1)Y Lagrangian with our
knowledge of the SM Higgs boson mass or the quartic coupling λ [15, 16]. The equations of
motion can be obtained from Eqs. (14)(15)(16)(17) by setting w(r) = y(r) = 0. We are looking
for solutions with the existence of a horizon rH . Defining

N(r) = 1 −
2GF (r)

r
+

4 πG

g2
Y
r2

, (20)

we have the asymptotic mass of the system to be M = F (∞). Substituting Eq. (15) with
P ′/P = 8πGrK into Eqs. (16)(17), we have three equations for three fields F (r) [or N(r) via
(20)], f(r), ρ(r)

F ′ = 4π r2 (U1 +N K) , (21)

(N f ′)′ + 8πGrN f ′ K =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , (22)

(
r2N ρ′

)′
+ 8πGr3N ρ′ K =

1

2
ρ f 2 +

λ v2

2
r2 ρ(ρ2 − 1) . (23)

Noting that the 1/r2 term introduced in (20) is to have the equation of motion for F (r) contain
U1 without the last 1/r4 term in U [see (13)].

4

The asymptotic mass of the system has 

M = F(∞)

Noting that ξ† "σξ = −"r/r, so H†"σH has been treated as a triplet under SU(2)W as the simple
SU(2) monopole case [20, 21]. Here, the index “i” for W a

i and Yi is the Cartesian coordinate
index. There are totally four dimensionless functions ρ(r), f(r), w(r) and y(r) to describe
the Higgs and gauge field profiles. For the purely magnetic black hole case, one simply sets
w(r) = y(r) = 0. One can perform an SU(2)W gauge transformation to change from the
hedgehog gauge to the unitary gauge

ξ −→ Uξ =

(
0

1

)

with U = −i

(
cos ( θ2) sin ( θ2) e

−iφ

sin ( θ2) e
iφ − cos ( θ2)

)

. (9)

In the unitary gauge and after rotating the neutral gauge fields from the basis (Yµ,W 3
µ) to the

photon and Z boson basis (Aµ, Zµ), one has

Aµ = −e v

[
1

g2
w(r) +

1

g2
Y

y(r)

]
∂µt−

1

e
(1− cos θ) ∂µ φ , (10)

Zµ =
e

g g
Y

v [y(r)− w(r)] ∂µt . (11)

Note that ∂0t = 1 and ∂it = 0. Again, for the purely magnetic black hole case with w(r) =
y(r) = 0, there is no Z boson profile.

Substituting the ansatz profiles into the matter action, one has

Smatter ⊃
ˆ

d4x
√
−gLEW

= −4π

ˆ

dt dr r2
[
P (r)N(r)K+ P (r)U − P (r)−1K0 − P (r)−1N(r)−1 U0

]
, (12)

with

K =
v2 ρ′2

2
+

f ′2

g2 r2
,

U =
v2 f 2 ρ2

4 r2
+

(1− f 2)2

2 g2 r4
+

λ

8
v4 (ρ2 − 1)2 +

1

2 g2
Y
r4

≡ U1 +
1

2 g2
Y
r4

,

K0 =
v2w′2

2 g2
+

v2 y′2

2 g2
Y

,

U0 =
v2w2 f 2

g2 r2
+

v4 (w − y)2 ρ2

8
. (13)

The above formulas agree with Ref. [25] for the magnetic case with w = y = 0. Note that the
term 1/(2 g2

Y
r4) in U has infinite energy for the magnetic monopole without a black hole in the

core [18, 19, 25]. This is another manifestation that the SM electroweak sector by itself does
not admit a finite-energy magnetic monopole. Existence of a black hole event horizon can make
the energy of the total system finite [10, 12].

3
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Q=2: spherical solutionthe convention of (+1,−1,−1,−1) for a flat-space metric. For the matter Lagrangian, we only
include the known SM Lagrangian with focus on the electroweak SU(2)W ×U(1)Y gauge sector
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√
λ v ≈ 125 GeV [23].

Here, W a
µ with a = 1, 2, 3 are SU(2)W gauge bosons and Yµ is the hypercharge gauge boson.

The gauge field tensors are W a
µν = ∂µW a

ν − ∂νW a
µ − g εabcW b

µW
c
ν and Yµν = ∂µYν − ∂νYµ. The

covariant derivative of the Higgs doublet is

DµH =
(
∂µ − i

g

2
σaW a

µ − i
g
Y

2
Yµ

)
H , (3)

with σa as the Pauli matrices and the two gauge couplings g = e/ sin θW and g
Y
= e/ cos θW

with e =
√
4π α and α ≈ 1/128 at the electroweak scale. Here, θW is the weak mixing angle

with sin θW ≈
√
0.23. The constant term for the Higgs potential is chosen to have a zero value

when the Higgs field sits at the potential minimum 〈H〉 = (0, v/
√
2)T .
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this paper (we will use Q to label the magnetic charge and q for the electric charge). At a long
distance, the magnetic field is B(r) = QeM r̂/(4πr2) with the magnetic coupling eM = 2π/e
following the Dirac quantization for the minimum charge Q = 1. For Q = 2, we anticipate
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in the spherical coordinate. For the Einstein-Hilbert action and using integrating by parts that
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2

Change from the hedgehog gauge to the unitary gauge

Noting that ξ† "σξ = −"r/r, so H†"σH has been treated as a triplet under SU(2)W as the simple
SU(2) monopole case [20, 21]. Here, the index “i” for W a

i and Yi is the Cartesian coordinate
index. There are totally four dimensionless functions ρ(r), f(r), w(r) and y(r) to describe
the Higgs and gauge field profiles. For the purely magnetic black hole case, one simply sets
w(r) = y(r) = 0. One can perform an SU(2)W gauge transformation to change from the
hedgehog gauge to the unitary gauge

ξ −→ Uξ =

(
0

1

)

with U = −i

(
cos ( θ2) sin ( θ2) e

−iφ

sin ( θ2) e
iφ − cos ( θ2)

)

. (9)

In the unitary gauge and after rotating the neutral gauge fields from the basis (Yµ,W 3
µ) to the

photon and Z boson basis (Aµ, Zµ), one has

Aµ = −e v

[
1

g2
w(r) +

1

g2
Y

y(r)

]
∂µt−

1

e
(1− cos θ) ∂µ φ , (10)

Zµ =
e

g g
Y

v [y(r)− w(r)] ∂µt . (11)

Note that ∂0t = 1 and ∂it = 0. Again, for the purely magnetic black hole case with w(r) =
y(r) = 0, there is no Z boson profile.

Substituting the ansatz profiles into the matter action, one has

Smatter ⊃
ˆ

d4x
√
−gLEW

= −4π

ˆ

dt dr r2
[
P (r)N(r)K+ P (r)U − P (r)−1K0 − P (r)−1N(r)−1 U0

]
, (12)

with

K =
v2 ρ′2

2
+

f ′2

g2 r2
,

U =
v2 f 2 ρ2

4 r2
+

(1− f 2)2

2 g2 r4
+

λ

8
v4 (ρ2 − 1)2 +

1

2 g2
Y
r4

≡ U1 +
1

2 g2
Y
r4

,

K0 =
v2w′2

2 g2
+

v2 y′2

2 g2
Y

,

U0 =
v2w2 f 2

g2 r2
+

v4 (w − y)2 ρ2

8
. (13)

The above formulas agree with Ref. [25] for the magnetic case with w = y = 0. Note that the
term 1/(2 g2

Y
r4) in U has infinite energy for the magnetic monopole without a black hole in the

core [18, 19, 25]. This is another manifestation that the SM electroweak sector by itself does
not admit a finite-energy magnetic monopole. Existence of a black hole event horizon can make
the energy of the total system finite [10, 12].

3

Aμ = −
1
e

(1 − cos θW)∂μϕ

Zμ = 0
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+
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2 g2
Y
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2 g2
Y
r4
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+
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2 g2
Y
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The above formulas agree with Ref. [25] for the magnetic case with w = y = 0. Note that the
term 1/(2 g2

Y
r4) in U has infinite energy for the magnetic monopole without a black hole in the

core [18, 19, 25]. This is another manifestation that the SM electroweak sector by itself does
not admit a finite-energy magnetic monopole. Existence of a black hole event horizon can make
the energy of the total system finite [10, 12].
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Y
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1
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Variating the summed action SE + Smatter with respect to P (r) and N(r), the two Einstein
equations are given by

N ′ =
1−N

r
− 8πGr

(
U +N K +

K0

P 2
+

U0

P 2N

)
, (14)

P ′ = 8πGr

(
P K +

U0

P N2

)
. (15)

Variating the action with respect to the matter fields f(r), ρ(r), w(r) and y(r), one has the
following four matter equations of motion

(P N f ′)′ = P

[
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2

]
−

v2 f w2

P N
, (16)

(
r2 P N ρ′

)′
=

1

2
P ρ f 2 +

λ v2

2
r2 P ρ(ρ2 − 1)−

v2

4P N
r2 ρ (w − y)2 , (17)

(
r2 P−1w′)′ =

2

P N
f 2w +

g2 v2

4P N
r2 ρ2 (w − y) , (18)

(
r2 P−1 y′

)′
=

g2
Y
v2

4P N
r2 ρ2 (y − w) . (19)

3 Hairy magnetic black holes

3.1 Masses and profiles

For the magnetic black holes, existing papers have mainly studied the SU(2)-gauge theory
case [6, 7, 9–12]. Here, we focus on the SM electroweak SU(2)W × U(1)Y Lagrangian with our
knowledge of the SM Higgs boson mass or the quartic coupling λ [15, 16]. The equations of
motion can be obtained from Eqs. (14)(15)(16)(17) by setting w(r) = y(r) = 0. We are looking
for solutions with the existence of a horizon rH . Defining

N(r) = 1 −
2GF (r)

r
+

4 πG

g2
Y
r2

, (20)

we have the asymptotic mass of the system to be M = F (∞). Substituting Eq. (15) with
P ′/P = 8πGrK into Eqs. (16)(17), we have three equations for three fields F (r) [or N(r) via
(20)], f(r), ρ(r)

F ′ = 4π r2 (U1 +N K) , (21)

(N f ′)′ + 8πGrN f ′ K =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , (22)

(
r2N ρ′

)′
+ 8πGr3N ρ′ K =

1

2
ρ f 2 +

λ v2

2
r2 ρ(ρ2 − 1) . (23)

Noting that the 1/r2 term introduced in (20) is to have the equation of motion for F (r) contain
U1 without the last 1/r4 term in U [see (13)].

4

At the event horizon with N(rH) = 0, one has

F (rH) =
rH
2G

+
2π

g2
Y
rH

≥
√
4π√
Gg

Y

= cW

√
4π√
Ge

≡ cW MRN
eBH , (24)

with cW ≡ cos θW and the extremal RN black hole mass MRN
eBH ≡

√
4πMpl/e. Using (20)(21),

we obtain a boundary condition

N ′ =
1

r
− 8πGrU , at r = rH . (25)

From (22)(23), one has two more mixed BC’s that are

N ′ f ′ =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , at r = rH , (26)

N ′ ρ′ =
1

2

f 2 ρ

r2
+

λ v2

2
ρ(ρ2 − 1) , at r = rH . (27)

Together with the two BC’s at infinity, f(∞) = 0 and ρ(∞) = 1, there are totally five BC’s that
are required for the equations in (21)(22)(23).

Before we solve these equations, we first discuss the ordinary RN black hole solution, for
which f(r) = 0 and ρ(r) = 1. Solving (21), one has a simple solution for F (r) as

F (r) = M −
2π

g2 r
. (28)

With the solution of P (r) = 1 to have an asymptotically flat metric, this matches the RN metric

P 2(r)N(r) = N(r) = 1−
2GM

r
+

4πG

g2 r2
+

4πG

g2
Y
r2

= 1−
2GM

r
+

4πG

e2 r2
. (29)

The outer horizon is at

rH ≡ r+ = M G +
√
M2 G2 − 4πG/e2 , (30)

provided that M ≥ MRN
eBH =

√
4πMpl/e. Inverting the above relation, one has

MRN
BH =

rH
2G

+
2π

e2 rH
. (31)

For the extremal case, one has rmin
H = rmin

+ =
√
4π/(eMpl).

Coming back to the hairy magnetic black holes, there exist constraints on the horizon rH if
one makes a few plausible assumptions: N ′(rH) ≥ 0, f(r) is a monotonically decreasing function
outside the horizon, while ρ(r) is a monotonically increasing function. The requirement of
N ′(rH) ≥ 0 means 1/rH > 8πGrH U(rH) from (25). For small rH , one has U(rH) ≈ 1/(2g2

Y
r4H),

so the lower bound on rH is

rH ≥ rmin
H ≡

√
4πG

g
Y

= cW

√
4π

eMpl
, (32)

5

At the event horizon with N(rH) = 0, one has

F (rH) =
rH
2G

+
2π

g2
Y
rH

≥
√
4π√
Gg

Y

= cW

√
4π√
Ge

≡ cW MRN
eBH , (24)

with cW ≡ cos θW and the extremal RN black hole mass MRN
eBH ≡

√
4πMpl/e. Using (20)(21),

we obtain a boundary condition

N ′ =
1

r
− 8πGrU , at r = rH . (25)

From (22)(23), one has two more mixed BC’s that are

N ′ f ′ =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , at r = rH , (26)

N ′ ρ′ =
1

2

f 2 ρ

r2
+

λ v2

2
ρ(ρ2 − 1) , at r = rH . (27)

Together with the two BC’s at infinity, f(∞) = 0 and ρ(∞) = 1, there are totally five BC’s that
are required for the equations in (21)(22)(23).

Before we solve these equations, we first discuss the ordinary RN black hole solution, for
which f(r) = 0 and ρ(r) = 1. Solving (21), one has a simple solution for F (r) as

F (r) = M −
2π

g2 r
. (28)

With the solution of P (r) = 1 to have an asymptotically flat metric, this matches the RN metric

P 2(r)N(r) = N(r) = 1−
2GM

r
+

4πG

g2 r2
+

4πG

g2
Y
r2

= 1−
2GM

r
+

4πG

e2 r2
. (29)

The outer horizon is at

rH ≡ r+ = M G +
√
M2 G2 − 4πG/e2 , (30)

provided that M ≥ MRN
eBH =

√
4πMpl/e. Inverting the above relation, one has

MRN
BH =

rH
2G

+
2π

e2 rH
. (31)

For the extremal case, one has rmin
H = rmin

+ =
√
4π/(eMpl).

Coming back to the hairy magnetic black holes, there exist constraints on the horizon rH if
one makes a few plausible assumptions: N ′(rH) ≥ 0, f(r) is a monotonically decreasing function
outside the horizon, while ρ(r) is a monotonically increasing function. The requirement of
N ′(rH) ≥ 0 means 1/rH > 8πGrH U(rH) from (25). For small rH , one has U(rH) ≈ 1/(2g2

Y
r4H),

so the lower bound on rH is

rH ≥ rmin
H ≡

√
4πG

g
Y

= cW

√
4π

eMpl
, (32)

5

At the event horizon with N(rH) = 0, one has

F (rH) =
rH
2G

+
2π

g2
Y
rH

≥
√
4π√
Gg

Y

= cW

√
4π√
Ge

≡ cW MRN
eBH , (24)

with cW ≡ cos θW and the extremal RN black hole mass MRN
eBH ≡

√
4πMpl/e. Using (20)(21),

we obtain a boundary condition

N ′ =
1

r
− 8πGrU , at r = rH . (25)

From (22)(23), one has two more mixed BC’s that are

N ′ f ′ =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , at r = rH , (26)

N ′ ρ′ =
1

2

f 2 ρ

r2
+

λ v2

2
ρ(ρ2 − 1) , at r = rH . (27)

Together with the two BC’s at infinity, f(∞) = 0 and ρ(∞) = 1, there are totally five BC’s that
are required for the equations in (21)(22)(23).

Before we solve these equations, we first discuss the ordinary RN black hole solution, for
which f(r) = 0 and ρ(r) = 1. Solving (21), one has a simple solution for F (r) as

F (r) = M −
2π

g2 r
. (28)

With the solution of P (r) = 1 to have an asymptotically flat metric, this matches the RN metric

P 2(r)N(r) = N(r) = 1−
2GM

r
+

4πG

g2 r2
+

4πG

g2
Y
r2

= 1−
2GM

r
+

4πG

e2 r2
. (29)

The outer horizon is at

rH ≡ r+ = M G +
√
M2 G2 − 4πG/e2 , (30)

provided that M ≥ MRN
eBH =

√
4πMpl/e. Inverting the above relation, one has

MRN
BH =

rH
2G

+
2π

e2 rH
. (31)

For the extremal case, one has rmin
H = rmin

+ =
√
4π/(eMpl).

Coming back to the hairy magnetic black holes, there exist constraints on the horizon rH if
one makes a few plausible assumptions: N ′(rH) ≥ 0, f(r) is a monotonically decreasing function
outside the horizon, while ρ(r) is a monotonically increasing function. The requirement of
N ′(rH) ≥ 0 means 1/rH > 8πGrH U(rH) from (25). For small rH , one has U(rH) ≈ 1/(2g2

Y
r4H),

so the lower bound on rH is

rH ≥ rmin
H ≡

√
4πG

g
Y

= cW

√
4π

eMpl
, (32)

5

At the event horizon with N(rH) = 0, one has

F (rH) =
rH
2G

+
2π

g2
Y
rH

≥
√
4π√
Gg

Y

= cW

√
4π√
Ge

≡ cW MRN
eBH , (24)

with cW ≡ cos θW and the extremal RN black hole mass MRN
eBH ≡

√
4πMpl/e. Using (20)(21),

we obtain a boundary condition

N ′ =
1

r
− 8πGrU , at r = rH . (25)

From (22)(23), one has two more mixed BC’s that are

N ′ f ′ =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , at r = rH , (26)

N ′ ρ′ =
1

2

f 2 ρ

r2
+

λ v2

2
ρ(ρ2 − 1) , at r = rH . (27)

Together with the two BC’s at infinity, f(∞) = 0 and ρ(∞) = 1, there are totally five BC’s that
are required for the equations in (21)(22)(23).

Before we solve these equations, we first discuss the ordinary RN black hole solution, for
which f(r) = 0 and ρ(r) = 1. Solving (21), one has a simple solution for F (r) as

F (r) = M −
2π

g2 r
. (28)

With the solution of P (r) = 1 to have an asymptotically flat metric, this matches the RN metric

P 2(r)N(r) = N(r) = 1−
2GM

r
+

4πG

g2 r2
+

4πG

g2
Y
r2

= 1−
2GM

r
+

4πG

e2 r2
. (29)

The outer horizon is at

rH ≡ r+ = M G +
√
M2 G2 − 4πG/e2 , (30)

provided that M ≥ MRN
eBH =

√
4πMpl/e. Inverting the above relation, one has

MRN
BH =

rH
2G

+
2π

e2 rH
. (31)

For the extremal case, one has rmin
H = rmin

+ =
√
4π/(eMpl).

Coming back to the hairy magnetic black holes, there exist constraints on the horizon rH if
one makes a few plausible assumptions: N ′(rH) ≥ 0, f(r) is a monotonically decreasing function
outside the horizon, while ρ(r) is a monotonically increasing function. The requirement of
N ′(rH) ≥ 0 means 1/rH > 8πGrH U(rH) from (25). For small rH , one has U(rH) ≈ 1/(2g2

Y
r4H),

so the lower bound on rH is

rH ≥ rmin
H ≡

√
4πG

g
Y

= cW

√
4π

eMpl
, (32)

5

EOM’s

BC’s



36

Q=2: solutions
Setting  and , one has the ordinary RN 
magnetic black hole solution 

f(r) = 0 ρ(r) = 1
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+
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The outer horizon is at

rH ≡ r+ = M G +
√
M2 G2 − 4πG/e2 , (30)

provided that M ≥ MRN
eBH =

√
4πMpl/e. Inverting the above relation, one has

MRN
BH =

rH
2G

+
2π

e2 rH
. (31)

For the extremal case, one has rmin
H = rmin

+ =
√
4π/(eMpl).

Coming back to the hairy magnetic black holes, there exist constraints on the horizon rH if
one makes a few plausible assumptions: N ′(rH) ≥ 0, f(r) is a monotonically decreasing function
outside the horizon, while ρ(r) is a monotonically increasing function. The requirement of
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Y
r4H),

so the lower bound on rH is

rH ≥ rmin
H ≡

√
4πG

g
Y

= cW

√
4π

eMpl
, (32)
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which is smaller than the extremal RN black hole horizon radius by a factor of cW . Applying
those assumptions to the BC’s in (26)(27), one has

λ v2 r2H
[
1− ρ2(rH)

]
< f 2(rH) < 1−

g2 v2 r2H
4

ρ2(rH) , (33)

1−
f 2(rH)

λ v2 r2H
< ρ2(rH) <

4

g2 v2 r2H

[
1− f 2(rH)

]
. (34)

For the SM with g = e/sW ≈ 0.65 and λ = 0.26 such that g2 < 4λ and using the fact that both
f(rH) and g(rH) are within zero and one, the upper bound on rH is

rH ≤
2

g v
=

1

mW
≈ 2.5× 10−3 fm , (35)

which is the characteristic radius of the monopole.
To calculate the mass of the hairy black holes, we integrate (21) to obtain

F (r) =

ˆ r

rH

dr′ e−K(r′,r) 4π r′2
[
K(r′) + U1(r

′) +
4πG

g2
Y
r′2

K(r′)

]
+ e−K(rH ,r) F (rH) , (36)

where the new function is defined as

K(r′, r) ≡ 8πG

ˆ r

r′
dr′′K(r′′) r′′ . (37)

Given that Gv2 & 1, the exponential, e−K(r′,r) = 1 + O(Gv2). Ignoring the terms equal to or
higher than O(Gv2), the mass of a hairy magnetic black hole has a simple formula

MhMBH = F (∞) =

ˆ ∞

rH

dr′4π r′2 [K(r′) + U1(r
′)] + F (rH) (38)

=

ˆ ∞

rH

dr′4π r′2 [K(r′) + U1(r
′)] +

rH
2G

+
2π

g2
Y
rH

. (39)

The first integration term can be thought as the outside hair contribution to the total system
mass. In the limit of rH & 1/mW , the integration is dominated by the region with r′ ∼ 1/mW .
One can then obtain the leading contribution by using a flat metric with N(r) = 1. Ignoring
terms proportional to G, the equations of motion for f(r) and ρ(r) are simply

f ′′ =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , (40)

(
r2 ρ′

)′
=

1

2
ρ f 2 +

λ v2

2
r2 ρ(ρ2 − 1) , (41)

which are similar to the t ’hooft-Polyakov SU(2)/U(1) magnetic monopole case with a different
W mass in terms of v. Numerically solving the differential equations and then calculating the
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For the hairy magnetic black hole solution:
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those assumptions to the BC’s in (26)(27), one has

λ v2 r2H
[
1− ρ2(rH)

]
< f 2(rH) < 1−

g2 v2 r2H
4

ρ2(rH) , (33)

1−
f 2(rH)

λ v2 r2H
< ρ2(rH) <

4

g2 v2 r2H

[
1− f 2(rH)

]
. (34)

For the SM with g = e/sW ≈ 0.65 and λ = 0.26 such that g2 < 4λ and using the fact that both
f(rH) and g(rH) are within zero and one, the upper bound on rH is

rH ≤
2

g v
=

1

mW
≈ 2.5× 10−3 fm , (35)

which is the characteristic radius of the monopole.
To calculate the mass of the hairy black holes, we integrate (21) to obtain

F (r) =

ˆ r

rH

dr′ e−K(r′,r) 4π r′2
[
K(r′) + U1(r

′) +
4πG

g2
Y
r′2

K(r′)

]
+ e−K(rH ,r) F (rH) , (36)

where the new function is defined as

K(r′, r) ≡ 8πG

ˆ r

r′
dr′′K(r′′) r′′ . (37)

Given that Gv2 & 1, the exponential, e−K(r′,r) = 1 + O(Gv2). Ignoring the terms equal to or
higher than O(Gv2), the mass of a hairy magnetic black hole has a simple formula

MhMBH = F (∞) =

ˆ ∞

rH

dr′4π r′2 [K(r′) + U1(r
′)] + F (rH) (38)

=

ˆ ∞

rH

dr′4π r′2 [K(r′) + U1(r
′)] +

rH
2G

+
2π

g2
Y
rH

. (39)

The first integration term can be thought as the outside hair contribution to the total system
mass. In the limit of rH & 1/mW , the integration is dominated by the region with r′ ∼ 1/mW .
One can then obtain the leading contribution by using a flat metric with N(r) = 1. Ignoring
terms proportional to G, the equations of motion for f(r) and ρ(r) are simply

f ′′ =
f(f 2 − 1)

r2
+

g2

4
v2 f ρ2 , (40)

(
r2 ρ′

)′
=

1

2
ρ f 2 +

λ v2

2
r2 ρ(ρ2 − 1) , (41)

which are similar to the t ’hooft-Polyakov SU(2)/U(1) magnetic monopole case with a different
W mass in terms of v. Numerically solving the differential equations and then calculating the

6

Hair mass Black hole mass≪
e = gY cos θWIgnoring the hair mass, one has 

MhMBH ≈
rH

2 G
+

2π
g2

Y
rH

≥ MehMBH = cos θW
4π Mpl

e

Hyper-magnetic black hole!

≥ MRN
eBH =

4π Mpl

e
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Figure 2: Bounds on the local energy density of magnetic monopoles as a fraction of the local
dark matter density. Black shaded is the bound from the Earth’s magnetic monopole moment,
bounding Earth’s net magnetic charge by Qmax = 1.6 ⇥ 1019. Green is the M31 Parker bound
[12]. Solid is q = 1, while dashed is q = 0.1. To the left of the gray dashed line, magnetic black
holes must be close to the stable extremal state (q ⇠ 1), though other magnetically charged
objects with di↵erent q could exist.

local monopole energy density ⇢ as a fraction of the local dark matter density [12]. 3 Using
the Earth’s lifetime ⌧� ⇡ 1.4 ⇥ 1017 s, the number of captured monopoles is N = Ccap ⌧� ⇡

3800 f (1015 g/M). When N � 1, the net charge of captured monopoles is Qnet '
p
NQ.

Thus, the constraint Qnet < Qmax can be expressed as a limit on the local density of monopoles:
f . 8.8⇥10�4 q�2 [Qmax/(1.6⇥1019)]2 [1015 g/M ], valid in the regime f & 2.6⇥10�4 [M/(1015 g)].
This is depicted in Fig. 2. Also shown is the Parker bound [28, 29] derived from M31 in [12],
f . 6⇥ 10�3 q�2, which disappears when q < 0.08. The limit presented here is complimentary
to other limits—for example from gas heating and white dwarf destruction [15]—in that it is a
direct measurement as opposed to an inference from di�cult-to-model astrophysical systems.

3
All magnetic black holes incident on Earth with the large charges and masses considered here will be cap-

tured [12].
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