Primordial black holes and gravitational waves induced by exponential-tailed perturbations

Ryoto Inui

JCAP05(2023)044

Collaboration with Katsuya. T. Abe(Chiba U.), Yuichiro Tada(IAR, KEK, Nagoya U.), and Shuichiro Yokoyama(KMI, Nagoya U.)

1

NEHOP 2023 Contribution ID:13

Primordial black hole(PBH)

B.J. Carr and S.W. Hawking '1974, Norbert Duchting' 20, Jakub Scholtz and James Unwin' 20, R.Saito et al. '11

Constraints of PBH abundance

M.Green and J.Kavanagh '20, B.J Carr et.al' 20

Test of PBH DM scenario by induced GWs

N.Bartolo et al. '19, R.Saito et al. '11

Assumption : density perturbation follows Gaussian distribution

Non-Gaussianity of primordial perturbation

Cai, Chen, Namjoo, Sasaki, Wang and Wang '18, Atal, Cid, Escriv`a and Garriga '19,

G.Figuroa, Raatikainen, Rasanen, Tomberg '21

The aim of this work

Test the detectability of GWs Induced by Expotail in LISA

Formulation of scalar induced GWs

<u>Equation of motion for GWs</u> $\Box h_{\lambda}(\tau, \mathbf{k}) + 2\mathcal{H}h_{\lambda}'(\tau, \mathbf{k}) = 4S_{\lambda}(\tau, \mathbf{k}) \propto \zeta(q_1)\zeta(|\mathbf{k} - \mathbf{q}_1|)$ Solution: $h_{\lambda}(\tau, \mathbf{k}) \propto \zeta(q_1)\zeta(|\mathbf{k} - \mathbf{q}_1|)$ Source $(\lambda = +, \times)$ Power spectrum of GWs $(2\pi)^{3}P_{\lambda\lambda}(\tau,k)\delta^{(3)}(\mathbf{k}+\mathbf{k}') = \left\langle h_{\lambda}(\tau,\mathbf{k})h_{\lambda}(\tau,\mathbf{k}')\right\rangle \propto \left\langle \zeta(\boldsymbol{q}_{1})\zeta(\boldsymbol{k}-\boldsymbol{q}_{1})\zeta(\boldsymbol{q}_{2})\zeta(\boldsymbol{k}-\boldsymbol{q}_{2})\right\rangle$ Ex): $\zeta = \zeta_g$ (Gaussian perturbation) $\left\langle \zeta(q_1)\zeta(k-q_1)\zeta(q_2)\zeta(k-q_2)\right\rangle = \left\langle \zeta_g(q_1)\zeta_g(k-q_1)\zeta_g(q_2)\zeta_g(k-q_2)\right\rangle \sim O(A_g^2)$ $\sim O(A_{o})$

Formulation of scalar induced GWs

Non-Gaussian perturbation

$$\zeta = -\frac{1}{3}\ln\left(1 - 3\zeta_g\right) = \zeta_g + \frac{F_{\rm NL}\zeta_g^2 + G_{\rm NL}\zeta_g^3 + H_{\rm NL}\zeta_g^4 + I_{\rm NL}\zeta_g^5}{\text{Corrections of non-Gaussianities}}$$

Exponential tail

$$F_{\rm NL} = 3/2, \ G_{\rm NL} = 3, \ H_{\rm NL} = 27/4, \ I_{\rm NL} = 81/5$$

Ex):
Effects of Exponential tail

$$\langle \zeta\zeta\zeta\zeta\rangle \propto \langle \zeta_g\zeta_g\zeta_g\zeta_g\rangle + F_{NL}^2 \langle \zeta_g\zeta_g\zeta_g^2\zeta_g^2 \rangle + G_{NL} \langle \zeta_g\zeta_g\zeta_g\zeta_g^3 \rangle + \cdots$$

 $O(A_g^2)$
 $+ F_{NL}^4 \langle \zeta_g^2\zeta_g^2\zeta_g^2 \rangle + F_{NL}^2 G_{NL} \langle \zeta_g\zeta_g^2\zeta_g^2 \zeta_g^3 \rangle + \cdots + O(A_g^3) + \cdots$
 $O(A_g^4)$

Result

- GWs can be detectable in LISA
- DECIGO might detect the footprint of Exponential tail

Summary

- Can GWs test the scenario where PBH = 100% DM?
- We investigated the detectability of GWs induced by Exponential tail

Exponential tail-type

GWs are detectable in LISA

DECIGO might detect the footprint of Exponential tail

Appendix

Feynman diagram

Diagram of $\langle h_{\lambda}(\tau, \mathbf{k}) h_{\lambda'}(\tau, \mathbf{k'}) \rangle$

Contribution of Gaussian perturbation

Contributions of Exponential tail

Contributions of Exponential tail

Contributions of Exponential tail

USR (Ultra slow-roll models)

PBH can be realized in USR

PBH abundance

PBH abundance

Peak theory

Compaction function

Mean compaction function

Threshold value of the compaction function

 $\frac{1}{5} \le C_{\rm th} \le \frac{1}{3}$

Changed by the peak profile

Mean compaction function

Almost universal

$$\bar{C} = \frac{1}{V(R)} \int_0^R C(R) \times 4\pi R^2 dR$$

$$\bar{C}_{\rm m} > \bar{C}_{\rm th} \simeq \frac{2}{5}$$

Atal, Cid, Escrivà, Garriga '19 Escriv`a, Germani, Sheth '19

Diagrammatic approach Diagrammatic rules

- 4. Integrate over each undetermined momentum
 - $\int \frac{d^3q}{(2\pi)^3}$
- 5. Divide by the symmetric factor

JCAP05(2023)044

3.

Diagrammatic approach Loop structures

Symmetric factor *n*!

Symmetric factor $2^m m!$

JCAP05(2023)044

Diagrammatic approach

JCAP05(2023)044

Diagrammatic approach Prohibited structure

$$\int \frac{d^3 q}{(2\pi)^3} Q_{\lambda}(\mathbf{k}, \mathbf{q}) I(|\mathbf{k} - \mathbf{q}|, \mathbf{q}, \tau) P_g(q)$$
$$= \int_0^{2\pi} d\phi \begin{cases} \cos 2\phi & (\lambda = +) \\ \sin 2\phi & (\lambda = \times) \end{cases} \times \mathcal{F}(k, q, \theta, \tau)$$
$$= 0$$

Diagrammatic approach Vanilla term

