Lattice simulation of Stochastic inflation New Horizon in Primordial Black Hole PHYSICS June 19th 2023

Yurino MIZUGUCHI(Nagoya-University) Collaborator: Yuichiro TADA(Nagoya-University, IAR), Tomoaki MURATA(Rikkyo-University)

PBH and Stochastic Inflation

Stochastic Inflation

A. A. Starobinsky, 1986

$$\begin{cases} g_{\mu\nu} = g_{\mu\nu(IR)} + g_{\mu\nu(UV)} \\ \phi = \phi_{IR} + \hat{\phi}_{UV} (\hat{\phi}_{UV} \ll \phi_{IR}) \end{cases}$$

We focus on the super-horizon mode!

Our goal : How accurate assumptions are in PBH formation

Flow

We developed the original lattice simulation code of stochastic inflation

Inflaton Potential

Focused potential

• Chaotic inflation (Linde, A. D., 1983) $V(\phi) = \frac{1}{2}m^2\phi^2$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

18

Chaotic inflation

At the end of Inflation

Inflection

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547$$
, $\pi = -2.37409 \times 10^{-7}$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

Jackson, Joseph H. P. et al, 2022

Chaotic inflation

$$m = 10^{-2}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

$$\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$$

34

Chaotic inflation

At the end of Inflation

Inflection

Summary and Future work

Profile of δN at the end of Inflation with bias

Because collecting the statistics, repeating the simulation many times

Our goal : How accurate assumptions are in PBH formation

https://github.com/STOchasticLAtticeSimulation

Reference

[1] A. A. Starobinsky, STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE, *Lect.Notes Phys.* 246 (1986) 107

[2] Linde, A. D., Chaotic inflation, *Phys.Lett.B* 129 (1983) 177-181

[3] D. S. Salopek and J. R. Bond, Stochastic inflation and nonlinear gravity, Phys. Rev. D **43**, 1005(1991)

[4]Naoya Kitajima, Yuichiro Tada, Shuichiro Yokoyama, and Chul-Moon Yoo, Primordial black holes in peak theory with a non-Gaussian tail, JCAP10(2021)053

[5]Jackson, Joseph H. P.; Assadullahi, Hooshyar; Koyama, Kazuya; Vennin, Vincent; Wands, David, Numerical simulations of stochastic inflation using importance sampling, Journal of Cosmology and Astroparticle Physics, Volume 2022, Issue 10, id.067, 32 pp.

[6]Vennin, V., Starobinsky, A.A. Correlation functions in stochastic inflation. *Eur. Phys. J. C* **75**, 413 (2015).

[7]M. Biagetti, G. Franciolini, A. Kehagias and A. Riotto, Primordial black holes from inflation and quantum diffusion, JCAP07(2018)032

Appendix

Introduction ~Inflation~

What is cosmic Inflation?

- solving problems of Big Bang theory
- Exponentially spatial expanding duration in early universe
- Quantum fluctuation of scalar field (Inflaton)
 - Curvature perturbation ζ

Introduction ~Primordial Black Hole(PBH)~

Hypothesized object produced by large perturbation in RD

PBH: Dark matter??

Introduction ~Problems of PBH~

Unclear PBH formation process from initial perturbation

--- Conventional works: Press-Schechter theory, Peak theory, etc.

Many assumptions

- Press-Schechter theory
 - 1. Probability density function(PDF) of ζ
 - 2. Simple threshold value
 - 3. Simple mass
- Peak theory
 - 1. Gaussian probability density function(PDF) of ζ
 - 2. Already known \mathscr{P}_{ζ}

Motivation of our work

• PDF of ζ

Simply threshold value

Formation condition

How accurate are these assumptions?

Estimation of more accurate potential in PBH formation

Stochastic inflation

Curvature perturbation in Inflation ---- Large perturbation makes PBH

• Perturbation theory

$$\begin{cases} g_{\mu\nu} \equiv \bar{g}_{\mu\nu} + \delta g_{\mu\nu} (\bar{g}_{\mu\nu} \gg \delta g_{\mu\nu}) \\ \phi = \bar{\phi} + \delta \phi \end{cases}$$

Not good for $\bar{g}_{\mu\nu} \simeq \delta g_{\mu\nu}$

* Komatsu-san's group (Lattice simulation of Inflation, etc.) $\begin{cases} g_{\mu\nu}(t, \mathbf{x}) \simeq \bar{g}_{\mu\nu}(t) \\ \phi(t, \mathbf{x}) = \bar{\phi}(t, \mathbf{x}) + \delta\phi(t, \mathbf{x}) \end{cases}$

Stochastic formalism

$$\begin{cases} g_{\mu\nu} = g_{\mu\nu(IR)} + g_{\mu\nu(UV)} \\ \phi = \phi_{IR} + \hat{\phi}_{UV} (\hat{\phi}_{UV} \ll \phi_{IR}) \end{cases}$$

Good for
$$\bar{g}_{\mu\nu} \simeq \delta g_{\mu\nu}$$

Property of swinging term

Equation of motion in inflaton field $\dot{\phi} + 3H\dot{\phi} - a^{-2}\nabla^2\phi + V'(\phi) = 0$ Stochastic formula, Hamilton formula

$$\begin{cases} \dot{\phi}_{IR} = \pi_{IR} + \xi_{\phi} \\ \dot{\pi}_{IR} = -3H\pi_{IR} - V'(\phi_{IR}) + \xi_{\pi} \end{cases}$$

In Bunchi-Davies vacuum

$$\begin{split} \langle \phi_{\mathbf{k}} \rangle &= \langle \pi_{\mathbf{k}} \rangle = 0 \longrightarrow \langle \xi_{\phi} \rangle = \langle \xi_{\pi} \rangle = 0 \\ \langle \xi_{\phi}(t, \mathbf{x}) \xi_{\phi}(t', \mathbf{x}') \rangle &\simeq \frac{H^3}{(2\pi)^2} \frac{\sin(k_c r)}{k_c r} \frac{\delta(t - t')}{White noise} \\ &\simeq \theta(1 - k_c r) \end{split}$$

Per t = t', $k_c = aH$ mode comes in IR field AND ϕ_k is Gaussian → Per $k_c = aH$, ξ_{ϕ} is *independent Gaussian noise*

Lattice simulation and Stochastic formalism

Good match!

coarse-grained

- Lattice simulation
- Stochastic formalism
- Equation of inflaton
 - Langevin equation(dN = Hdt)

$$\begin{cases} d\phi_{\mathbf{x}} = \frac{\pi_{\mathbf{x}}}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN + \frac{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})}{2\pi} dW_{\mathbf{x}} \\ d\pi_{\mathbf{x}} = -3\pi_{\mathbf{x}} dN - \frac{V'(\phi_{\mathbf{x}})}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN \end{cases} \xi_{\phi} \end{cases}$$

Gaussian noise with correlation

At each lattice, solving equation \longrightarrow Getting information of $\zeta_{\mathbf{x}}$

Gaussian noise with correlation

Correlation function of swinging term at same time

$$\langle \xi_{\phi}(\mathbf{x})\xi_{\phi}(\mathbf{x}')\rangle \simeq \frac{H^{3}}{(2\pi)^{2}} \frac{\sin(k_{c}r)}{k_{c}r} \quad r = |\mathbf{x} - \mathbf{y}|$$

• Theoretical covariance matrix

$$C_{\mathbf{xy}} = \frac{\sin k_{\sigma} |\mathbf{x} - \mathbf{y}|}{k_{\sigma} |\mathbf{x} - \mathbf{y}|}$$

• Covariance matrix simulated

$$C_{\mathbf{xy}} \simeq dW_{\mathbf{x}}dW_{\mathbf{y}} = \left[\sum_{i} \frac{\sqrt{\Delta\Omega_{i}}}{2\sqrt{\pi}} [\cos(\mathbf{k}_{\sigma} \cdot \mathbf{x}) - \sin(\mathbf{k}_{\sigma} \cdot \mathbf{x})]dW_{i}\right]^{2}$$

Gaussian nois

We use $dW_{\mathbf{x}}$ for stochastic perturbation

D. S. Salopek and J. R. Bond, 1991

e

Relationship between δN and ζ (δN formula)

Vennin, V., Starobinsky, A.A., 2015

Lattice simulation

Equation of motion with no noise

$$\begin{cases} d\phi_{\mathbf{x}} = \frac{\pi_{\mathbf{x}}}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN \\ d\pi_{\mathbf{x}} = -3\pi_{\mathbf{x}} dN - \frac{V'(\phi_{\mathbf{x}})}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN \end{cases}$$

$$\zeta_i = \mathcal{N}_i - \langle \mathcal{N} \rangle = \delta N_i$$

Solving until $\epsilon = 1$

 $\delta \lambda$

EoM of IR fields

EoM of scalar field $\ddot{\phi} + 3H\dot{\phi} - a^{-2}\nabla^2\phi + V'(\phi) = 0$ fHamiltonian formula $[\dot{\pi} + 3H\pi - a^{-2}\nabla^2\phi + V'(\phi) = 0]$ $\pi = \dot{\phi}$

Focus on the picture in **IR fields** $\phi = \phi_{IR} + \hat{\phi}_{UV} \ (\phi_{UV} \ll \phi_{IR})$ Inflaton in k-space $\phi_{IR}(t, \mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{x}} \phi_k(t)(1 - \theta(k - \epsilon a(t)H(t)))$ $\hat{\phi}_{UR}(t, \mathbf{x}) = \int \frac{d^3k}{(2\phi)^3} e^{i\mathbf{k}\cdot\mathbf{x}} \hat{\phi}_k(t)\theta(k - \epsilon a(t)H(t))$ $\theta(t) : \text{ Heviside step function}$

$$\begin{cases} \pi_{IR} + \pi_{UR} = \dot{\phi}_{IR} + \dot{\phi}_{UR} \\ \dot{\pi}_{IR} + 3H\pi_{IR} - a^{-2}\nabla^{2}\phi_{IR} + \dot{\pi}_{UR} + 3H\pi_{UR} - a^{-2}\nabla^{2}\phi_{UR} + V'(\phi_{IR}) = 0 \\ \dot{\phi}_{IR} = \pi_{IR} + \epsilon aH^{2} \int \frac{d^{3}k}{(e\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}}\phi_{\mathbf{k}}\delta(k - \epsilon aH) \\ \dot{\pi}_{IR} = -3H\pi_{IR} - V'(\phi_{IR}) + \epsilon aH^{2} \int \frac{d^{3}k}{(e\pi)^{2}}\pi_{\mathbf{k}}\delta(k - \epsilon aH) \end{cases}$$

 $\Delta \mathcal{I}$

$$\begin{aligned} Swinging term \xi_{\phi} \\ \left\langle \epsilon a H^{2} \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}} \phi_{\mathbf{k}} \delta(k - \epsilon a H) \epsilon a' H^{2} \int \frac{d^{3}k'}{(2\pi)^{3}} e^{i\mathbf{k}\cdot\mathbf{x}'} \phi_{\mathbf{k}} \delta(k' - \epsilon a' H) \right\rangle \qquad k_{c}(t) = \epsilon a(t) H \\ \left\langle d_{\mathbf{k}}(t) d_{\mathbf{k}}(t') \right\rangle = \frac{2\pi^{2}}{k^{2}} \mathscr{P}_{\phi}(t, k) (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}') \\ = k_{c}(t) k_{c}(t') H^{2} \int \frac{d^{3}k d^{3}k'}{(2\pi)^{6}} e^{i(\mathbf{k}\cdot\mathbf{x}+\mathbf{k}'\cdot\mathbf{x})} \frac{2\pi^{2}}{k^{3}} \mathscr{P}_{\phi}(t, k) (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}') \delta(k - k_{c}(t)) \delta(k' - k_{c}(t')) \\ = k_{c}(t) k_{c}(t') H^{2} \int \frac{d^{3}k d^{3}k'}{(2\pi)^{6}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x})} e^{i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{x}} \frac{2\pi^{2}}{k^{3}} \mathscr{P}_{\phi}(t, k) (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}') \delta(k - k_{c}(t)) \delta(k' - k_{c}(t')) \\ = k_{c}(t) H^{2} \int \frac{d^{3}k d^{3}k'}{(2\pi)^{5}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x})} e^{i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{x}} \frac{2\pi^{2}}{k^{3}} \mathscr{P}_{\phi}(t, k) (2\pi)^{3} \delta(\mathbf{k} + \mathbf{k}') \delta(\mathbf{k} - k_{c}(t)) \delta(k' - k_{c}(t')) \\ = k_{c}(t) H^{2} \int \frac{d^{3}k d^{3}k'}{(2\pi)^{3}} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x})} \delta(k - k_{c}(t)) \frac{\delta(t-t')}{k_{c}(t)t'}} \frac{2\pi^{2} \mathscr{P}_{\phi}(t, k)}{k^{3}} \int e^{i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{x}'} \delta(\mathbf{k} + \mathbf{k}') d^{3}k' \\ = k_{c}(t) H^{2} \int \frac{d^{3}k e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x})} \delta(k - k_{c}(t)) \frac{\delta(t-t')}{k_{c}(t)t'}} \frac{2\pi^{2} \mathscr{P}_{\phi}(t, k)}{k^{3}} \int e^{i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{x}'} \delta(\mathbf{k} + \mathbf{k}') d^{3}k' \\ = H\delta(t-t) \frac{1}{(2\pi)^{3}} \int d^{3}k e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x})} \delta(k - k_{c}(t)) \frac{2\pi^{2} \mathscr{P}_{\phi}(t, k)}{k^{3}}} \sum \begin{pmatrix} r = |\mathbf{x} - \mathbf{x}'|, c \ll 1 \\ d^{3}k \to k^{2} dk d\cos \theta d\phi \\ e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x})} \to e^{i\mathbf{k}\cdot\mathbf{x}\cos\theta} \\ k_{c}(t) = k \\ \ell(t) = k \\$$

Importance sampling

Discussing PBH formation

PBH : rare object
 We want to get data effectively

Ex: $P(\zeta)$ (PDF of ζ)

Direct sampling

$$\begin{cases} d\phi_{\mathbf{x}} = \frac{\pi_{\mathbf{x}}}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN + \frac{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})}{2\pi} dW_{\mathbf{x}} \\ d\pi_{\mathbf{x}} = -3\pi_{\mathbf{x}} dN - \frac{V'(\phi_{\mathbf{x}})}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN \end{cases}$$

Number of attempts: Increasing

Importance sampling
→ Introduction of bias function

$$\begin{aligned} \phi_{\mathbf{x}} &= \left(\frac{\pi_{\mathbf{x}}}{H_{\mathbf{x}}} + \mathscr{B}_{\mathbf{x}}\right) dN + \frac{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})}{2\pi} dW_{\mathbf{x}} \\ d\pi_{\mathbf{x}} &= -3\pi_{\mathbf{x}} dN - \frac{V'(\phi_{\mathbf{x}})}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN \end{aligned}$$

Raising probability at tail Adding weight instead

Necessary of importance sampling

■ PBH formation from large perturbation
■ PBH: rare object

For getting data **effectively** through large sampling

Direct sampling

Importance sampling

$$d\phi_{x} = \frac{\pi_{x}}{H(\phi_{x},\pi_{x})}dN + \frac{H(\phi_{x},\pi_{x})}{2\pi}dW_{x}$$

$$d\pi_{x} = -3\pi_{x}dN - \frac{V'(\phi_{x})}{H(\phi_{x},\pi_{x})}dN$$

$$\downarrow$$
Raising Probability at tail Good!

General Importance sampling

Langevin equation

 $\frac{dx}{dt} = [D(t,x) + \mathscr{B}(t,x)] + S(t,x)\xi$

 $\Rightarrow x_{m+1} - x_m = [\underline{D}(t_m, x_m) + \underline{\mathscr{B}}(t_m, x_m)]\Delta t_m + \underline{S}(t_m, x_m)\xi_m\sqrt{\Delta t_m}$

the deterministic drift Bias term amplitude of stochastic diffusion ξ : random white Gaussian noise w/ $\langle \xi(t)\xi(t')\rangle = \delta(t-t')$ Statistical weight

The PDF of stochastic inflation

The target PDF using importance sampling

$$w_{i}^{(j)}(X) = \frac{p_{T,i}^{(j)}(X \mid x_{0})}{p_{S,i}^{(j)}(X \mid x_{0})} \longrightarrow \hat{P}\left(t_{FPT}^{(j)}\right) = \frac{\sum_{i=0}^{n_{j}} w_{j}^{(i)}}{(t_{FPT}^{j+1} - t_{FPT}^{j})n_{total}}$$

Hypothesis: PDF of weight P(w) is a *lognormal distribution*

$$\langle w_j \rangle = \exp\left(\langle \ln w_j \rangle + \frac{\sigma_{\ln w_j}^2}{2}\right) \longrightarrow \hat{P}(\mathcal{N}_j) = \frac{n_j \langle \hat{w}_j \rangle}{n_{total}(\mathcal{N}_{j+1} - \mathcal{N}_j)}$$

How does the EoM of the inflaton be described with Importance sampling?

[5]Jackson, Joseph H. P. et al, 2022

How does the EoM of the inflaton be described?

Langevin equation $x_{m+1} - x_m = [D(t_m, x_m) + \mathcal{B}(t_m, x_m)]\Delta t_m + \underline{S}(t_m, x_m)\xi_m\sqrt{\Delta t_m}$

EoM of the Inflaton $\begin{cases} d\phi_{\mathbf{x}} = \frac{\pi_{\mathbf{x}}}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN + \frac{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})}{2\pi} dW_{\mathbf{x}} \\ d\pi_{\mathbf{x}} = -3\pi_{\mathbf{x}} dN - \frac{V'(\phi_{\mathbf{x}})}{H(\phi_{\mathbf{x}}, \pi_{\mathbf{x}})} dN \end{cases}$ $V(\phi)$ $C_{\mathbf{x}\mathbf{y}} \simeq dW_{\mathbf{x}}dW_{\mathbf{y}} = \left[\sum_{i} \frac{\sqrt{\Delta\Omega_{i}}}{2\sqrt{\pi}} \left[\cos(\mathbf{k}_{\sigma} \cdot \mathbf{x}) - \sin(\mathbf{k}_{\sigma} \cdot \mathbf{x})\right]^{2} \phi_{end} \phi_{ini}\right]$ Independent random Gaussian with bias function $\begin{cases} \frac{dW_i}{dW_i} \longrightarrow \frac{dW_i + \mathscr{B}?}{\pi_{\mathbf{X}}} \\ \frac{\pi_{\mathbf{X}}}{H(\phi_{\mathbf{X}}, \pi_{\mathbf{X}})} \longrightarrow \frac{\pi_{\mathbf{X}}}{H(\phi_{\mathbf{X}}, \pi_{\mathbf{X}})} + \mathscr{B}? \end{cases}$ It is important to **c** the bias function It is important to **choose properly**

We want to focus on *the symmetric* of the region where curvature perturbations are large

Powerspectrum

Chaotic inflation

$$m = 10^{-5}$$
 , $\phi = 15.0$, $\pi = -10^{-11}$

Powerspectrum

Inflection

 $\phi = 3.60547, \pi = -2.37409 \times 10^{-7}$

Chaotic inflation

Inflection

