Stochastic constant-roll inflation and primordial black holes

NEHOP, June 2023 Eemeli Tomberg, NICPB Tallinn

Based on 2012.06551, 2111.07437, 2210.17441, 2304.10903 in collaboration with D. Figueroa, S. Raatikainen, S. Räsänen

Stochastic inflation

Patched together at the coarse-graining scale $k = k_{\sigma} \equiv \sigma a H$

Stochastic inflation

$$\begin{split} \phi' &= \pi + \xi_{\phi} \,, \quad \pi' = -\left(3 - \frac{1}{2}\pi^2\right)\pi - \frac{V'(\phi)}{H^2} + \xi_{\pi} \,, \quad H^2 = \frac{V(\phi)}{3 - \frac{1}{2}\pi^2} \\ \delta\phi_k'' &= -(3 - \frac{1}{2}\pi^2)\delta\phi_k' - \left[\frac{k^2}{a^2H^2} + \pi^2(3 - \frac{1}{2}\pi^2) + 2\pi\frac{V'(\phi)}{H^2} + \frac{V''(\phi)}{H^2}\right]\delta\phi_k \end{split}$$

$$\langle \xi_{\phi}(N)\xi_{\phi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi_{k_{\sigma}}(N)|^2 \delta(N-N')$$

$$\langle \xi_{\pi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi'_{k_{\sigma}}(N)|^2 \delta(N-N')$$

$$\langle \xi_{\phi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} \delta\phi_{k_{\sigma}}(N)\delta\phi'^*_{k_{\sigma}}(N)\delta(N-N')$$

 $\mathcal{R} = \Delta N \equiv N - \bar{N}$

Numerical method [Figueroa et al, 2012.06551] [Figueroa et al, 2111.07437]

Noise: beyond de Sitter approximation, $|\delta \phi_{k_{\sigma}}|^2 \neq \frac{H^2}{2k_{\sigma}^3}$

Turn stochastic kicks off at fixed *N*, giving the PBH scale (slightly different from FPT)

Collect statistics: a million CPU hours

[Tomberg, 2304.10903]

[Tomberg, 2304.10903]

Stochastic constant-roll inflation [Tomberg, 2304.10903]

Power spectrum peak modes: Hubble exit (k = aH) during USR ($\epsilon_2 < -6$, const.) Coarse-graining ($k = \sigma aH$) later, in CR ($\epsilon_2 > 0$, const.)

Allows simplifications

Motion constrained to one dimension

Curvature perturbations squeezed:

$$\xi_{\pi} = \xi_{\phi} \frac{\delta \phi'_k}{\delta \phi_k}$$

Motion constrained to one dimension

Curvature perturbations squeezed:

$$\xi_{\pi} = \xi_{\phi} \frac{\delta \phi'_k}{\delta \phi_k}$$

Curvature perturbations frozen:

$$\mathcal{R}_k = \frac{\delta \phi_k}{\sqrt{2\epsilon_1}} = \text{const.} \quad \Rightarrow \quad \frac{\delta \phi'_k}{\delta \phi_k} = \frac{\pi'}{\phi'} = \frac{1}{2}\epsilon_2$$

Motion constrained to one dimension

Curvature perturbations squeezed:

$$\xi_{\pi} = \xi_{\phi} \frac{\delta \phi'_k}{\delta \phi_k}$$

Curvature perturbations frozen:

$$\mathcal{R}_k = \frac{\delta \phi_k}{\sqrt{2\epsilon_1}} = \text{const.} \quad \Rightarrow \quad \frac{\delta \phi'_k}{\delta \phi_k} = \frac{\pi'}{\phi'} = \frac{1}{2}\epsilon_2$$

System moves on classical background trajectory (like in SR):

 $\frac{\xi_{\phi}}{\xi_{\pi}} = \frac{\phi'}{\pi'}$

Simple perturbation evolution

Perturbation evolution independent of stochasticity:

$$\delta\phi'_k = \frac{\epsilon_2}{2}\delta\phi_k$$

Pre-compute perturbations:

$$\frac{k^3}{2\pi^3} |\delta\phi_k(N)|^2 = \epsilon_1(N) \mathcal{P}_{\mathcal{R}}(k)$$

Simple classical evolution

$$\phi = \frac{2}{\epsilon_2}\pi + \phi_0 = (1 - e^{\frac{\epsilon_2}{2}N})\phi_0, \qquad \epsilon_1 = \frac{\epsilon_2^2}{4}\phi_0^2 e^{\epsilon_2 N}$$

Field linear in drift

Simplified stochastic equation:

$\mathrm{d}\phi = \pi \mathrm{d}N + \xi_\phi \mathrm{d}N$

Simplified stochastic equation: $d\phi = \frac{\epsilon_2}{2}(\phi - \phi_0)dN + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}\sqrt{\mathcal{P}_{\mathcal{R}}(k_\sigma)dN}\,\hat{\xi}_N$ $\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$

Simplified stochastic equation:

$$d\phi = \frac{\epsilon_2}{2}(\phi - \phi_0)dN + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}\sqrt{\mathcal{P}_{\mathcal{R}}(k_\sigma)dN}\,\hat{\xi}_N$$

$$\phi(N) = \phi_0\left(1 - e^{\frac{\epsilon_2}{2}N}\right) + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}X(N)$$

$$\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$$

$$X(N) \equiv \sum_{k=k_{\rm ini}}^{k=k_{\sigma}(N)} \sqrt{\mathcal{P}_{\mathcal{R}}(k) \,\mathrm{d} \ln k} \,\hat{\xi}_k$$

ΔN distribution

$$X = \frac{2}{\epsilon_2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N} \right)$$

 ΔN distribution

$$p(X) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{X^2}{2\sigma^2}}, \quad \sigma^2 \equiv \int_{k_{\text{ini}}}^{k_{\text{end}}} \mathcal{P}_{\mathcal{R}}(k) \, \mathrm{d} \ln k$$

$$X = \frac{2}{\epsilon_2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N} \right)$$

$$p(\Delta N) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{2}{\sigma^2 \epsilon_2^2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N}\right)^2 - \frac{\epsilon_2}{2}\Delta N\right]$$
$$\Delta N = \mathcal{R}$$

Unreliable tail

In the tail, the field approaches end of classical trajectory $\phi=\frac{2}{\epsilon_2}\pi+\phi_0=(1-e^{\frac{\epsilon_2}{2}N})\phi_0$

Analysis breaks down (field out of CR), when

$$\epsilon_2 \Delta N \gtrsim 2 \ln \frac{2}{\sigma \epsilon_2}$$

[Tomberg, 2304.10903]

Black hole statistics

Beyond collapse threshold in \mathcal{R} : compaction function

Stochastic trajectories give detailed knowledge of perturbation profile

Correlations between different scales? Clustering?

Comparison to non-stochastic ΔN

[Cai et al, 1712.09998] [Biagetti et al, 2105.07810] [Pi et al, 2211.13932]

Same result without stochasticity:

- Compute "total field perturbation" $\Delta \phi$
- Convert to ΔN using classical background eom

"One initial kick"

Works in constant-roll due to linearity of background eom

Conclusions

Stochastic inflation introduces non-Gaussian corrections to PBH statistics

Constant-roll inflation is at the heart of PBH inflation models

$$p(\mathcal{R}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{2}{\sigma^2 \epsilon_2^2} \left(1 - e^{-\frac{\epsilon_2}{2}\mathcal{R}}\right)^2 - \frac{\epsilon_2}{2}\mathcal{R}\right]$$

[Karam et al, 2205.13540]

