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m Black holes which could have formed in the early Universe through a non-stellar way

Hawking [1971] : Gravitationally collapsed objects of very low mass
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- They could be the seeds of supermassive black holes in galactic nuclei T T S S B B
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_ They could generate cosmological structures P. Villanueva-Domingo, O. Mena, S. Palomares-Ruiz [2021]

A brief review on primordial black holes as dark matter

- They could extend the region of the inflationary potential we can probe

- They provide a place to look for quantum effects (such as quantum diffusion)
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, y
1 Vo
B Simplest realisation: | slow-roll inflation © T 162G\ V

scalar field @ (inflaton) slowly rolling towards the minimum of its potential : V¢¢)

i 1
S, = |d*xy=2 <5g”” 0,0, V(cb))

A
V .

‘@ ¢ CMB probed scales , _s5

small perturbations ¢ ~ 10
/ quasi-Gaussian
, almost scale invariant
small scales unconstrain
Constrained window ~ 7 e-folds
>
reheating m inflation ) Planck 2018 results. X. Constraints on inflation

B New observational windows at small scales

m Open view about possible deviations from “vanilla inflation” outside the constrained range

B |[nvestigation of possible phenomenological consequences that might be looked for
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B False vacuum state

B | ocal minima naturally appear in various contexts: - high energy constructions (supersymmetry, supergravity)
- breaking of flat-inflection point condition through radiative corrections
-specific inflationary models (critical Higgs)
- elc.

B How to escape? 1) Large classical velocity

2) “Stochastic tunnelling”: quantum fluctuations jiggle the inflaton and push it outwards

V(g) ¢ CMB probed scales

local maximum > é’c ~ ]

potential barrier

\/G/v local minimum

end of inflation
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Quantum diffusion during inflation: stochastic tunnelling

m How quantum diffusion proceeds in a false vacuum state?

m How does it affect cosmological perturbations?

®m What are the predictions for PBHs?

B Rare fluctuations exceeding a critical value { > {. ~ 1 collapse to form primordial black holes

P(Z)

B Abundance of PBHs pM) =1 P)dC
J Cc

“crude” Press-Schechter estimate
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Quantum diffusion during inflation: stochastic formalism

B Stochastic inflation  A. Starobinsky [1986] Stochastic de Sitter ( inflationary) stage in the early universe

Splitting fields into UV and IR part: coarse-graining scale k,, = ca H

X )[qbk(N)e_’?'?&]{ h.c.]

- dk
P = G " ( caH

| (271-)3/2

sub-cH
Quantum subhorizon fluctuations source the background v _>10ga

super-cH

Vig) 4 classical drift

Dynamics at leading order in slow roll:  ——dy, = i) |, Pet) vy
ynamics at lea Ing oraer in siow roli: AN Cg_k 3H2(¢Cg))l >
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B How to reconstruct the statistics of ¢ in presence of quantum diffusion?

flat
w =0

oN formalism

ON(X, 1)

e N

N(¥)

i
op =20

n

Lifshitz, Khalatnikov [1960]
Starobinsky [1983]

Wands, Malik, Lyth, Liddle [2000]

£(t,x) = N(t,x) — N(t) = 6N
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[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]
Vennin, Starobinsky [2015]

m Stochastic-o/N formalism

Number of e-folds is a stochastic variable /4
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Quantum diffusion during inflation: properties of perturbations

m Stochastic-oN formalism
Vennin, Starobinsky [2015]

Number of e-folds is a stochastic variable /4

Statistics of { from the statistics of A/

¢end
Ceo(X) = H(X) = (N)

Distribution function for the duration of inflation ( first passage time )

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]
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m  Full PDF of the first passage time Pattison, Vennin, Assadullahi, Wands [2017]
Characteristic function ( includes all moments ) Obeys differential equation Full PDF given by inverse Fourier transform
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B Full PDF of the first passage time Pattison, Vennin, Assadullahi, Wands [2017]
Characteristic function ( includes all moments ) Obeys differential equation Full PDF given by inverse Fourier transform
. ° 1 (™
1(t, ) = (™) = J e P(N, ) dN > LLx(t ) =—ity(t, ) > P9 =— j e x(t, ) dt
—00 T J_w
m Useful trick: pole expansion [Ezquiaga, Garcia-Bellido, Vennin (2020)]
an(¢) Yo
t, — | ta
2t $) ;An_” g(t, )
_ —A, N
P('/’/9¢)_Zan(¢)e " 0<Ag<A; <A, =

n

Tail of the PDF for ¢ has an exponential fall-off behaviour

This type of non-Gaussianities cannot be captured by perturbative parametrisations (such as the fNL expansion) '
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B |inear model

v(g) = <1 — aAi;b)

B Quadratic model ( “two-parabola approximation”)

_ .-
I +a (A%—l)—l f 0<¢<AP
V() = v, i , , -
l—a (A—¢+1>—1 f  —Ap<Ph<O0
Quantum diffusion in highlighted regions, potential gradient elsewhere 4
,_ 2A$° Mg Ag?
M (V) R T
Slow roll preserved: e = — (—) <1, |nl=|M;—| <1 0PI
V V
a Mz AV
a=— >
(A7) smaller than ~ 50: Av = v(—A¢) — v(A¢) <K v, 0 V
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é )

e (V) features quadratic dependence on pu and exponential dependence on a

® ;1 constrained from below by slow-roll conditions

a not much larger than 1
. V,

B [inear model a <10

m Quadratic model  a <1 (NY(a,p)

101

107°

101

10=°

102 10~ 1 10V 10! a
r = h i A¢ A ’
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o kK]l o> ax— Mp, Mp,
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Ap < My, = |n|>e€

Y

® Two regimes: “shallow well” (a < 1)

“deep well” (@ 2 1) ® Onlya “shallow-well” regime
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B Typical abundance: Press-Schechter estimate

ﬂNJ P(¢) d¢ > ﬂNJ PV, =Ad)dyV .~ 1
Ce (W) +E,

p = Z a’”‘(AA@ e~ [EcH (M)A ]

n

a,(Q)
A

(W) =)

n n
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B Typical abundance: Press-Schechter estimate 5 - Z a,(AQ) A [+ (D)
Q) o0 n An
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False vacuum: implications for Primordial Black Holes

B Typical abundance: Press-Schechter estimate 5 - Z a,(Ap) A [+ (D)
Q) oo n An
ﬁNJ P(C) d¢ > ﬁNJ P(WV,p =Ap)dN Ce ~ 1 > o ()
Ce (M) +E, N — k
(N () Z x
2\ 2 _ (2 ¢ N
plinsshallow: ~ 2 1+ S a e_T_<T ~2a)% Similar abundances :
T w2 12 ) .
) 61i in 3
] ) B~ fa=0)e "% Alin — 2 Aquad —
4 32 4 572 2 (2-2a) |\ \ & )
quad,shallow ~— |1+ | 1 Val e @ 7% )2
g T ( 3w 48 ) \
i _ exponential enhancement

What the slow-roll assumption implies?

quadratic model: y > \/E > exponential factor negligible > flat-well [imit applies where slow roll satisfied
linear model: u > a, /v, » exponential factor large even at small a values
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False vacuum: implications for Primordial Black Holes

B Typical abundance: Press-Schechter estimate

p=Yy “"(AA@ o= [+ (N)AP)]

ﬂNJ P(C) d¢ > ﬁNJ PV, = A¢p)dN e~ 1 > o ()
Ce (M) +E, N — k
(N )(P) Z x
2 _ 2 (2 e 1
plinshallow ~ __ '] 4 S a e_T_<T ~2a)% Similar abundances :
T 72 12 )
N ai in 3
] ) ﬂNﬁ(Cl=O)€A 2 Al - Aquad:;
4 32 4 577 _n_2_<n_4 _ §a>i . \
quad,shallow ~— |1+ 1 Val e @ 7% )2
b T ( 73 48 ) \

| exponential enhancement

What the slow-roll assumption implies?

quadratic model: u > \/E

linear model: u > a, /v,

'Blin,deep ~ e

—(2 g e—%)2c
-1, (2ae )ﬂz

>

>

exponential factor negligible > flat-well limit applies where slow roll satisfied

exponential factor large even at small a values

PBHs are overproduced when a 2 8
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False vacuum: implications for Primordial Black Holes

Quadratic model

quadratic false vacuum

B(a, p)

101:! | = 0.1 *
] — (N) =10

— (V) =60

100:_

101_

101

107 1073
a

Quadratic false vacuum

§? MglAqbz/ V

TN

| Flat-well approxn“

Slow-roll violated

1079

10—15
10—24
10—33
10—42
10—51

10—60

a MglAV/ V?

r

If u < 1, tiny amount of PBHs produced
If 4 < 1, PBHs produced with sizable abundance

If u 2 1, PBHs overproduced

2

PBH abundance well captured by a flat-well limit (a = 0)

\_ J
quadratic false vacuum
10° : .
exact
107° F |
....... APPIOX.
10~ F .
10~ F .
D 10720 f -

1025 | — a=20.5 |
— a=0.3

10730 | — a=0.1 -

L1035 | — a = 0.01 |
-==flat

10—40 s s : ) . . . . . .

101 2 x 1071 3x 1071 4x107! 6 x 1071 10°

v



False vacuum: implications for Primordial Black Holes

|l inear model

linear false vacuum

10", —

1005_

101
3.
102

1073

—4
10791

Linear false vacuum

U M§1A¢2/V

——

~~—

1 A¢/My,

Flat-well approximation

PBHs overproduced

Slow-roll violated

SHALLOW WELL

DEEP WELL

Ce
2a—,,

B~ e

> <

p~e

2 —2abe
—461 (4 '“—2

a x Mg AV/V?

( o _ o . w
Additional regimes:
If u? < a <1 (usmall):
large deviations from flat-well, still shallow-well domain;
non-trivial imprint of the false-vacuum profile
If a ~ O(1) : large PBH production

. .

10°

1075
10— 10
10— 15

Q 10—20
1072
10~
107%°

10—40

linear false vacuum

exact /

approx.

/

102
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B PBHs may be produced by these large fluctuations:
false vacua may be shallow ( flat-well limit applies ), mild (PBHs abundance retains specific features of false vacuum profile)
deep (PBHs abundantly (over-) produced)

B More realistic realisation ( quadratic potential ) : only shallow vacuum possible,
otherwise slow-roll violation or PBHs overproduction

B Generalisation beyond slow roll

B Refine PBHs formation criteria and PBH abundance computation
( PDF of density contrast, compaction function, introduce coarse graining scale)

B Numerical simulations
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Cosmic Inflation

®m High energy phase of accelerated expansion of spacetime  ds* = g, dx*dx” = — dt* + a*(t)d X a,da > 0

(10 MeV)* < p < (10'° Gev)*



Cosmic Inflation

m High energy phase of accelerated expansion of spacetime  ds? = g, dx*dx* = — dt* + a*(1)d X a,d > 0
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Cosmic Inflation

m High energy phase of accelerated expansion of spacetime ds? = g, dx'dx" = — dt* + a*(Hdx a,d >0

| (10 MeV)* < p < (10'° Gev)*
comoving scales

comoving Hubble horizon
(aH)™

horizon exit horizon re-entry

super-horizon

v freezed fluctuations ! post-inflationary evolution

comoving scale k™1

sub-horizon
quantum fluctuations

radiation era matter era

Inflation end
reheating

Inflationary epoch Hot Big Bang time



Primordial Black Holes

LIGO SCIENTIFIC, VIRGO collaboration [2016]:
Observation of gravitational waves from a binary black hole

merger




Primordial Black Holes

m Black holes which could have formed in the early Universe through a non-stellar way

Hawking [1971] : Gravitationally collapsed objects of very low mass

Carr & Hawking [1974]: Black holes in the early Universe

LIGO SCIENTIFIC, VIRGO collaboration [2016]:
Observation of gravitational waves from a binary black hole
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Primordial Black Holes

m Black holes which could have formed in the early Universe through a non-stellar way

Relative number of papers for topic vs. time

0.14 1 —— primordial black holes
|
Hawking [1971] : Gravitationally collapsed objects of very low mass = '
Carr & Hawking [1974]: Black holes in the early Universe % 0.10
T 0.08 -
s
> 0.06 -
LIGO SCIENTIFIC, VIRGO collaboration [2016]: " oos
Observation of gravitational waves from a binary black hole
merger —

2000 2004 2008 2012
Date [in steps of 365 day

[Plot realised via www.benty-fields.com/trending]
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Primordial Black Holes

m Black holes which could have formed in the early Universe through a non-stellar way

Relative number of papers for topic vs. time

0.14 1 —— primordial black holes
|

Hawking [1971] : Gravitationally collapsed objects of very low mass 0127

Carr & Hawking [1974]: Black holes in the early Universe

©
—
o

0.08 -

0.06 A

Relative number of papers [%]

LIGO SCIENTIFIC, VIRGO collaboration [2016]:
Observation of gravitational waves from a binary black hole

0.04 -

merger
g 0.02

2000 2004 2008 2012
Date [in steps of 365 day

[Plot realised via www.benty-fields.com/trending]

S. Bird, 1. Cholis, J.B. Munoz, Y. Ali-Haimoud,
M. Kamionkowski, E. D. Kovetz, A. Raccanelli, A. G. Riess [2016]:
Did LIGO detect dark matter?
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Primordial Black Holes : How?

®m PBHs may be originated from peaks of the density perturbations generated in the early universe

comoving scales

A
s
S 0 i op
A — < : 0~ — ~{>(. .~ 1
0% E P kant
k PBH P =a
! PBH
radiation era ! matter era
- >
Inflationary epoch Inflation end  Hot Big Bang time

(reheating)



Primordial black holes: observational constraints

Depends on the mass at which PBHs form

10°g < Mpg, < 10'°g . fromf < 10724 t0 f < 107V PBH Hawking evaporation on Big Bang Nucleosynthesis
and on the extragalactic photon background
10 < My < 10°g » frompf < 107 to f < 107 Gravitational and astrophysical effects
MIM,,

107> 107Y 107* 1070 107> 10719 10> 1 10° 10 108> 10%

Mpp < 107g Not yet evaporated: | [T T T T T T
no direct observational constraints : . Entropy
1075 | | -
10710 - -
: “Lsp
! -15 | R |
pr10 - Planck:
10—20 B { i
10725 § -
B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama [2021] _ c:‘::
Constraints on Primordial Black Holes 10-30 P T T T T I B B B |

1025 1030 1035 1040 1045 1050 1055

M [g]

10> 1 100 100 1015 1020



Primordial black holes: observational constraints

10%g < Mpp; < 1010g > from < 107**to f < 10717 PB awking evaporation on Big Bang Nucleosynthesis
and on the extragalactic photon background
log1o(M/M,)
-24 -23 -22
10716 g RERLR UL RN RN AR [FrrrrrT B LR R, IR URE
10720 E _______________
10-22 F
' - DH BBN
g 24 L b Ve ;
107" ¢ D/H GC radig Galactic CRs 3
10726 |
h_ GGB -=.
10—28 2_ EGB _;
B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama [2021] :
Constraints on Primordial Black Holes 3 3
10—30 I TR TN | o000 0 aaas oo e sssse oo e sssoa Lo v I Ly
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False vacuum: preserving slow roll

Slow roll requires: || < 3H| ], | Vyl [ What happens if |V ,| =07 ]
[ A
G3HG DIV, =0 By =— Vi) + L ¢
’ ? RASEEYYF 2
Linearised Klein-Gordon equation
@ ¢>
é ) .
p+3Hyp+m*p=0  H= % e (¢=2’f=°)
i 3M3, V() = Vo + m>p?/2
b=Aec S PP CRLL PR Sl I PR PP
=Aexp | —— — exp [——[|—-1- —
P12 OHZ | P12 oHZ |

m > 3H,/2 : damped oscillations, friction term 3H¢ subdominant: far from slow-roll regime

s 1 m? m?t h
m <K 3H,/2 ¢ ~ Aexp (—3H0t) + Bexp| ———=Hyt | @ Bexp| ———
3 H; 3H,
. »
: 4 2 )
. . m m slow-roll regime: acceleration term subdominant
3Hp ~ —m?¢p=—-V ~ = V, <V




oNN formalism

FLRW metric:  ds* = — dt* + a*() 8, dx’ dx’/

. : : cod2 — 12 L 204 oY), » .
deviations from homogeneity and isotropy: ds dt“+a“(t) e Vi ¢—slices of uniform energy density

x—worldlines comoving

local scale factor: (s, ) = a(f) ")

expansion from flat slice at time t,, to a slice of uniform energy density:

g

l

ﬂ [a’(t, 7)] . . [ a(?) ]
N(t, x7) = log C(t, x') = N(t, x') — Ny(t) = ON Ny(?) = log )
a



Separate universe approach

On super-Hub
(and follows !

N(t, x) : amount of expansion in unperturbed universe

he same evolution as the background)

ole scale, the evolution of the universe at each position is independent

¢: known from the evolution of a family of unperturbed universes

}/]A

no future contact

asymptotic
future

+—>

comoving Hubblé radius

causal contact in the past

[Salopek and Bond; Sasaki and Stewart; Wands; Lyth and Liddle]



Stochastic-o0/N formalism

Phase space field vector: ® = (¢, 7y, -+ @,, 7,)

1
g (27)32 ok

(0}

d3 kq)k p —ikx

do

cg

N F(®,) + G(@p) - ¢ (E(X,N) E(X;,N)) = 6,;8(N; — N)) (G?),;; = d 1;%7 al P oo, kN, N|
1 " Kend — z’_>

ON (X)) = N(X) = (W) = (. (X) = =l dk (e

Curvature perturbation coarse grained between:
the scale that crosses the Hubble radius at initial time (k;,) and the scale that crosses the Hubble radius at final time &, ;



Fokker-Planck equation

. . . . - N+3N
Evolution given by the Langevin equation: O(N + SN) = D(N) + F(DP)SN + G(P) - AN EN)
JN
Where to evaluate F and G? At ®(N) or at (N + oN)?
(Da(N) — (1 _ Ot)CI)(N) 4+ aCD(N+ 5N) 0<a<l 1tO prescription: a=1(

1

Stratonovitch prescription: a =

» N+ON
O(N + 6N) = ®(N) + F[®_(N)]|6N + G[® (N)] - dN E(N)
IN

0 . .
Fokker-Planck equation: WP(CI),Nl O, N,,) = Lpp(®)P(D,N| D", N,,)

0G(D)| 1 &
F(®) + aG(®)

0, | 20D,

L pp(D) =

G(D)G (D)

0D,




First passage time distribution

inflationary domain

; o 0G(®) o0 1 0°
L (@) = F(D) el aG, (D) F—Gy(P)Gi(P) s

oD, 0D, 2 D,

l

0
WP(/V, D) = Z! (P) - P(N, D)

end of inflation

4D [i(®)[Z @) - [(®)] = | dD | L],(®) - £,(@)| (@)

first passage time problem

Boundary conditions g = 0Q U 02,

0€2_: all moments of the FPT vanish on 0€2_ (absorbing boundary)

Sometimes additional conditions required on 0€2, : absorbing or reflective boundar
9 + 2 Y
(gradients of moments projected onto the orthogonal direction to the tangent surface of d€2, vanish)

hierarchy of coupled differential equations: ~Zjp(®™) - (NN D@™) = — n(N"~1)(D™)




Characteristic function

2t @) = (™)

- ",

Taylor expansion around 7 = 0: Xyt @) = 2 —(N(®))
~ n!

Act with the Fokker-Planck operator: ~ Z}, - x4 (1, ®) = — ity (¢, ®) set of uncoupled differential equations

»+00 |

X v is the Fourier transform of the first passage time distribution: vz, ®) = eV P(N, ®YdN
L™ i, + @)

Using: £, = 0N, =N —(N): P, ®) = . e L x (1, @) dt

.0y (1, D)




False vacuum: preserving slow roll

Slow roll requires: |¢| < 3H| @], 1V,

¢+3H(p,P)d+ Vy=0

H*(¢, ) =

Linearised Klein-Gordon equation

r

\.

¢ +3Hyp + m*p =0

Hy

Vo
3M3

3

¢ =Aexp |——

2

(3

4 m?

2
0

]Hot

+ Bexp | ——

1
W (V(¢) +5

( What happens if |V ;[ =072 J

o ¢>

minimum (¢ = 0, ¢ = 0)
V(g) =V, + m2¢?/2

m > 3H,/2 : damped oscillations, friction term 3Hg subdominant: far from slow-roll regime

(

.

1 m? )
m < 3H,/2 ¢ ~ Aexp (—3Hyt) + Bexp | — —ﬁHot ~ Bexp| ———
- 0 )
4 N ,
M ~ 2 _ .o ~ _
3Hp ~ —m*¢ V4(@) ¢ =~ 9 H? = 2 V<V 4(@)

slow-roll regime: acceleration term subdominant
2 1172
(m*/Hy - suppressed)



