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Black holes which could have formed in the early Universe through a non-stellar way

Hawking [1971] : Gravitationally collapsed objects of very low mass  

Carr & Hawking [1974]: Black holes in the early Universe  



Primordial Black Holes 

- They may explain the existence of progenitors for the 


  merging events observed by LIGO/VIRGO 


- They could generate cosmological structures

- They could be the seeds of supermassive black holes in galactic nuclei

They could solve several conundrums in astrophysics and cosmology

- They could be the totality, or a fraction, of the Dark Matter

P. Villanueva-Domingo, O. Mena, S. Palomares-Ruiz [2021]

A brief review on primordial black holes as dark matter 
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- They could extend the region of the inflationary potential we can probe


- They provide a place to look for quantum effects  (such as quantum diffusion)
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Probing the missing scales of inflation



Sϕ = ∫ d4x −g ( 1
2

gμν ∂μϕ∂νϕ − V(ϕ))

Simplest realisation:   slow-roll inflation

scalar field  (inflaton) slowly rolling towards the minimum of its potentialϕ
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Investigation of possible phenomenological consequences that might be looked for
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stochastic tunnellingQuantum diffusion during inflation: 


How quantum diffusion proceeds in a false vacuum state?

How does it affect cosmological perturbations?

What are the predictions for PBHs?
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∞
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“crude” Press-Schechter estimate 

Rare fluctuations  exceeding a critical value  collapse to form primordial black holesζ > ζc ∼ 1
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Quantum diffusion during inflation: stochastic formalism
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Stochastic inflation A. Starobinsky [1986]  Stochastic de Sitter ( inflationary) stage in the early universe

Splitting fields into UV and IR part: coarse-graining scale  kcg = σ a H

ϕ(x) = ϕcg + ∫
dk

(2π)3/2
W ( k

σaH ) [ϕk(N) e−i ⃗k ⋅ ⃗x ̂a ⃗k + h . c . ]
(σaH)−1

super-σH

sub-σH

k−1

N = log aQuantum subhorizon fluctuations source the background

Quantum diffusion during inflation: stochastic formalism



d
dN

ϕcg = −
V,ϕ(ϕcg)
3H2(ϕcg)

+
H(ϕcg)

2π
ξ(N)Dynamics at leading order in slow roll:

ϕ

V(ϕ) classical drift

quantum diffusion
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Quantum diffusion during inflation: properties of perturbations
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tinψ = 0

 formalismδN

tfin
δρ = 0

flat 

flat 

ψ = 0

N̄(t)

δN(x, t)

N(x, t) ζ(t, x) = N(t, x) − N̄(t) ≡ δN

Lifshitz, Khalatnikov [1960]

Starobinsky [1983]

Wands, Malik, Lyth, Liddle [2000]

Quantum diffusion during inflation: properties of perturbations
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Stochastic-  formalismδN

Number of -folds is a stochastic variable e 𝒩

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]

Vennin, Starobinsky [2015]

Statistics of  from the statistics of ζ 𝒩

ζcg(x) = 𝒩(x) − ⟨𝒩⟩

ϕ

N𝒩1 𝒩2

ϕend

Quantum diffusion during inflation: properties of perturbations
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Distribution function for the duration of inflation ( first passage time )

∂
∂𝒩

P(𝒩, ϕ) = ℒ†
FP(ϕ) ⋅ P(𝒩, ϕ)

1
M2

Pl
ℒ†

FP(ϕ) = −
v′￼(ϕ)
v(ϕ)

∂
∂ϕ

+ v(ϕ)
∂2

∂ϕ2
v =

V
24π2M4

Pl

Stochastic-  formalismδN

Number of -folds is a stochastic variable e 𝒩

[Enqvist, Nurmi, Podolsky, Rigopoulos [2008]

Vennin, Starobinsky [2015]
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ϕ
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ϕend

Quantum diffusion during inflation: properties of perturbations
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Full PDF of the first passage time

χ(t, ϕ) ≡ ⟨eit𝒩⟩ = ∫
∞

−∞
eit𝒩P(𝒩, ϕ) d𝒩 P(𝒩, ϕ) =

1
2π ∫

+∞

−∞
e−it𝒩 χ(t, ϕ) dtℒ†

FP ⋅ χ(t, ϕ) = − i t χ(t, ϕ)

Pattison, Vennin, Assadullahi, Wands [2017]

Characteristic function ( includes all moments ) Obeys differential equation Full PDF given by inverse Fourier transform
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This type of non-Gaussianities cannot be captured by perturbative parametrisations (such as the fNL expansion)
 !
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Additional regimes:

If  small ):
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non-trivial imprint of the false-vacuum profile

If  : large PBH productiona ∼ 𝒪(1)

False vacuum: implications for Primordial Black Holes

Linear model
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Primordial Black Holes

LIGO SCIENTIFIC, VIRGO collaboration [2016]:
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Primordial Black Holes

[Plot realised via www.benty-fields.com/trending]
S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, 


M. Kamionkowski, E. D. Kovetz, A. Raccanelli, A. G. Riess [2016]:

Did LIGO detect dark matter?
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Primordial Black Holes : How?

PBHs may be originated from peaks of the density perturbations generated in the early universe 


ζ
̂ζ ⃗k

δ

(aH)−1

λPBH

λCMB

comoving scales

timeInflationary epoch Inflation end 
(reheating)

Hot Big Bang

radiation era matter era

PBH

δ ∼
δρ
ρ

k=aH

∼ ζ > ζc ∼ 1

3



Primordial black holes: observational constraints
Depends on the mass at which PBHs form

109g < MPBH < 1016g from  to β < 10−24 β < 10−17 PBH Hawking evaporation on Big Bang Nucleosynthesis 

and on the extragalactic photon background

1016g < MPBH < 1050g from  to β < 10−11 β < 10−5

MPBH < 109g Not yet evaporated:

no direct observational constraints

B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama [2021]

Constraints on Primordial Black Holes

Gravitational and astrophysical effects 



Primordial black holes: observational constraints

109g < MPBH < 1016g from  to β < 10−24 β < 10−17 PBH Hawking evaporation on Big Bang Nucleosynthesis 

and on the extragalactic photon background

B. Carr, K. Kohri, Y. Sendouda, J. Yokoyama [2021]

Constraints on Primordial Black Holes



False vacuum: preserving slow roll

Slow roll requires: | ··ϕ | ≪ 3H | ·ϕ | , |V,ϕ | What happens if  ?|V,ϕ | = 0

··ϕ + 3 H(ϕ, ·ϕ) ·ϕ + V,ϕ = 0 H2(ϕ, ·ϕ) =
1

3M2
Pl (V(ϕ) +

·ϕ2

2 )
ϕ

·ϕ

minimum  (ϕ = 0, ·ϕ = 0)
V(ϕ) ≃ V0 + m2ϕ2/2H2

0 =
V0

3 M2
Pl

Linearised Klein-Gordon equation

ϕ = A exp −
3
2

1 + 1 −
4 m2

9 H2
0

H0 t + B exp −
3
2

−1 − 1 −
4 m2

9 H2
0

H0 t

m ≫ 3H0/2 : damped oscillations, friction term  subdominant: far from slow-roll regime3H ·ϕ

3H ·ϕ ≃ − m2ϕ = − V,ϕ(ϕ) ··ϕ ≃
m4

9 H2
0

ϕ =
m2

9 H2
0

V,ϕ ≪ V,ϕ(ϕ)

··ϕ + 3H0
·ϕ + m2ϕ = 0

m ≪ 3H0/2 ϕ ≃ A exp (− 3H0t) + B exp (−
1
3

m2

H2
0

H0t) ≃ B exp (−
m2t
3H0 )

slow-roll regime: acceleration term subdominant 

 (  - suppressed) m2/H2

0



 formalismδN

ds2 = − dt2 + a2(t) δij dxi dxj
FLRW metric:

deviations from homogeneity and isotropy: ds2 = − dt2 + a2(t) e2ζ(t, ⃗x ) γij slices of uniform energy density

worldlines comoving

t−
x−

ã(t, ⃗x ) = a(t) eζ(t, ⃗x )local scale factor: 

expansion from flat slice at time  to a slice of uniform energy density: tin

N(t, ⃗x ) = log [ ã(t, ⃗x )
a(tin) ] ζ(t, ⃗x ) = N(t, ⃗x ) − N0(t) ≡ δN N0(t) = log [ a(t)

a(tin) ]



Separate universe approach

On super-Hubble scale, the evolution of the universe at each position is independent

 ( and follows the same evolution as the background)

: known from the evolution of a family of unperturbed universesζ

 amount of expansion in unperturbed universeN(t, ⃗x ) :

causal contact in the past

comoving Hubble radius

asymptotic

 future 

η

x

no future contact

H−1x1

x2

[Salopek and Bond; Sasaki and Stewart; Wands; Lyth and Liddle]



Stochastic-  formalismδN

Phase space field vector: Φ = (ϕ1, π1, ⋯ϕn, πn)

Φcg =
1

(2π)3/2 ∫k<kσ

d3kΦke−ik ⃗x

dΦcg

dN
= F(Φcg) + G(Φcg) ⋅ ξ ⟨ξi( ⃗x i, Ni) ξi( ⃗x j, Nj)⟩ = δij δ(Ni − Nj) (G2)ij =

d log kσ

dN
𝒫Φi,Φj [kσ(N), N]

δNcg( ⃗x ) = 𝒩( ⃗x ) − ⟨𝒩⟩ = ζcg( ⃗x ) =
1

(2π)3/2 ∫
kend

kin

d ⃗k ζ ⃗k ei ⃗k ⋅ ⃗x

Curvature perturbation coarse grained between:

 the scale that crosses the Hubble radius at initial time ( ) and the scale that crosses the Hubble radius at final time kin kend



Φ(N + δN) = Φ(N) + F(Φ)δN + G(Φ) ⋅ ∫
N+δN

N
dÑ ξ(Ñ)

Where to evaluate  and ? At  or at ?F G Φ(N) Φ(N + δN)

Φα(N) = (1 − α)Φ(N) + αΦ(N + δN) 0 ≤ α ≤ 1

Φ(N + δN) = Φ(N) + F[Φα(N)]δN + G[Φα(N)] ⋅ ∫
N+δN

N
dÑ ξ(Ñ)

Itô prescription: 


Stratonovitch prescription:   

α = 0

α =
1
2

Fokker-Planck equation

∂
∂N

P(Φ, N |Φin, Nin) = ℒFP(Φ)P(Φ, N |Φin, Nin)

ℒFP(Φ) = −
∂

∂Φi [Fi(Φ) + αGlj(Φ)
∂Gij(Φ)

∂Φl ] +
1
2

∂2

∂ΦiΦj
Gil(Φ)Gjl(Φ)

Evolution given by the Langevin equation:

Fokker-Planck equation:



First passage time distribution

ℒ†
FP(Φ) = Fi(Φ)

∂
∂Φi

+ αGil(Φ)
∂Glj(Φ)

∂Φl

∂
∂Φi

+
1
2

Gil(Φ)Gjl(Φ)
∂2

∂ΦiΦj

∂
∂𝒩

P(𝒩, Φ) = ℒ†
FP(Φ) ⋅ P(𝒩, Φ)

Boundary conditions ∂Ω = ∂Ω− ∪ ∂Ω+

 : all moments of the FPT vanish on  (absorbing boundary)


 Sometimes additional conditions required on : absorbing or reflective boundary 

(gradients of moments projected onto the orthogonal direction to the tangent surface of  vanish)  

∂Ω− ∂Ω−

∂Ω+
∂Ω+

∫ dΦ f1(Φ)[ℒFP(Φ) ⋅ f2(Φ)] = ∫ dΦ [ℒ†
FP(Φ) ⋅ f1(Φ)] f2(Φ)

first passage time problem 

inflationary domain
Φin 𝒩

𝒩
𝒩

end of inflation

∂Ω−

∂Ω+

ℒ†
FP(Φin) ⋅ ⟨𝒩n⟩(Φin) = − n⟨𝒩n−1⟩(Φin)hierarchy of coupled differential equations:



Characteristic function

χ𝒩(t, Φ) ≡ ⟨eit𝒩⟩

χ𝒩(t, Φ) =
∞

∑
n=0

(it)n

n!
⟨𝒩n(Φ)⟩Taylor expansion around :t = 0

Act with the Fokker-Planck operator: ℒ†
FP ⋅ χ𝒩(t, Φ) = − itχ𝒩(t, Φ) set of uncoupled differential equations

 is the Fourier transform of the first passage time distribution:χ𝒩 χ𝒩(t, Φ) = ∫
+∞

−∞
eit𝒩P(𝒩, Φ)d𝒩

Using: :ζcg = δNcg = 𝒩 − ⟨𝒩⟩ P(ζcg, Φ) =
1

2π ∫
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e−it[ζcg + ⟨𝒩⟩(Φ)] χ𝒩(t, Φ) dt
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∂χ𝒩(t, Φ)

∂t
|t=0




