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The Big Picture

Larger	quesQon:	What	is	dark	maNer	made	of?
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The Big Picture

Idea:	Dark	maNer	could	be	made	up	of	primordial	black	holes	(PBHs)	!	

Larger	quesQon:	What	is	dark	maNer	made	of?

PBHs	form	in	the	very	early	universe	( 	second)	from	direct	collapse	of	overdensiUes.	
	

≲ 𝒪(1)
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Sarah Geller           

Primordial Black Holes as Dark Matter 

PBHs from Multifield Inflation with Non-minimal Couplings 

Parameter	space	has	been	heavily	constrained	by	mulQple	experiments	
and	calculaQons!

∼ 1017 − 1022g ≃ 2 × 10−7 − 2 × 10−2GeV

source:	Green	and	Kavanagh	
2007.10722v3

PBHs	in	this	mass	range		
could	consQtute	 	fracQon	of	Dark	MaWer𝒪(1)

Non-interacQng	to	good	approximaQon	

Massive	Compact	Halo	Objects	(MACHOs)		

Wide	range	of	possible	PBH	masses	allowed		
from	collapse	of	primordial	over-densiQes	

Avoid	need	to	posit	one	or	more	BSM	fields	
(aside	from	inflaton)
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The Big Picture

Idea:	Dark	maNer	could	be	made	up	of	primordial	black	holes	(PBHs)	!	

Larger	quesQon:	What	is	dark	maNer	made	of?

PBHs	form	in	the	very	early	universe	( 	second)	from	direct	collapse	of	overdensiUes.	
	

≲ 𝒪(1)
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Problem:	
There	are	both	observaUonal	and	theoreUcal	constraints	on	the	mass	ranges	of	PBHs	that	could	
account	for	any	sizable	fracUon	of	the	dark	maNer.	



The Big Picture

Idea:	Dark	maNer	could	be	made	up	of	primordial	black	holes	(PBHs)	!	

Larger	quesQon:	What	is	dark	maNer	made	of?

PBHs	form	in	the	very	early	universe	( 	second)	from	direct	collapse	of	overdensiUes.	
	

≲ 𝒪(1)

Our	Specific	QuesQons:		
1. Are	primordial	black	holes	a	generic	predicUon	of	inflaUonary	models?	

2. What	is	the	predicted	gravitaUonal	wave	(GW)	spectrum	from	this	PBH	producUon	and	is	it	
observable	with	current	or	forthcoming	detectors?

6

Problem:	
There	are	both	observaUonal	and	theoreUcal	constraints	on	the	mass	ranges	of	PBHs	that	could	
account	for	any	sizable	fracUon	of	the	dark	maNer.	



Sarah Geller           

Primordial Black Holes from Critical Collapse

PBHs from Multifield Inflation with Non-minimal Couplings 

		Curvature	perturbaUons																																										
		decompose	into	modes																																				
		with	freq.	k																																													
																																		

adapted	from	E.	McDonough	2017

Cross	outside	Hubble		
horizon	before	end		
of	inflaUon	k<aH		
(“Super-Hubble”)	

“freeze	out”

Cross	back	into	Hubble	
patch	when	k=aH	
k>aH	“Sub-Hubble”
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Sarah Geller           

Primordial Black Holes from Critical Collapse

PBHs from Multifield Inflation with Non-minimal Couplings 

		Curvature	perturbaUons																																										
		decompose	into	modes																																				
		with	freq.	k																																													
																																		

M̄ = γMH(tc), 	γ ∼ .2

adapted	from	E.	McDonough	2017

Cross	outside	Hubble		
horizon	before	end		
of	inflaUon	k<aH		
(“Super-Hubble”)	

“freeze	out”

Cross	back	into	Hubble	
patch	when	k=aH	
k>aH	“Sub-Hubble”

For	 ,	PBH	will	form	

at	Ume	 	for	mode		
with	wavenumber			

δ =
δρ
ρ

> δc
tc

kPBH = a(tc)H(tc)

𝒫R(kPBH) ≥ 10−3

Mass	distribuUon		
centered	around

mass	within		
Hubble	volume	at	 	
MH(tc) ≡

tc

	Corresponds	to	
	threshold	for	

kpbh
a(tc)

= H(tc)

H(tc)
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Model and Methods
Model:	A	generic	infla+onary	poten+al	with	mul+ple	(2)	scalar	fields	and	non-minimal		
couplings	to	gravity.	

S̃ = ∫ d4x −g̃[f (ϕI) R̃ −
1
2

δIJg̃μν∂μϕI∂νϕJ − Ṽ (ϕI)] f(ϕI) =
1
2 [M2

pl +
N

∑
I=1

ξI(ϕI(xμ))2]
Mul$field	ac$on Non-minimal	coupling
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Model and Methods
Model:	A	generic	infla+onary	poten+al	with	mul+ple	(2)	scalar	fields	and	non-minimal		
couplings	to	gravity.	

Impose	a	few	addiUonal	symmetries	to	limit	number	of	degrees	of	freedom	in	field	space.	

V(r, θ) =
1

4f 2(r, θ) (ℬ(θ)r2 + 𝒞(θ)r3 + 𝒟(θ)r4)

S̃ = ∫ d4x −g̃[f (ϕI) R̃ −
1
2

δIJg̃μν∂μϕI∂νϕJ − Ṽ (ϕI)] f(ϕI) =
1
2 [M2

pl +
N

∑
I=1

ξI(ϕI(xμ))2]
Mul$field	ac$on Non-minimal	coupling

Poten&al	is	characterized	by	func+ons	 		
depending	on	5	parameters:	 	

ℬ, 𝒞, 𝒟
ξ, b, c1, c2, c4

��� ��� ��� ��� ��� �
��×��-��

��×��-��
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near inflection point 

min-max feature 

Ultra slow-roll
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Parameter Space Degeneracy Directions
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Interplay	of	parameters	leads	to	degeneracies
Vary	one	parameter	at		+me,		
get	back	to	a	self-similar	poten+al	with	
	different	values	of	the	parameters:

ℱ(b, c1, c2, c4)

c1 → c1 + δ |c1 |

c4 → c4 + δ |c4 |

b → b + δ |b |

c2 → c2 + δ |c2 |

ℱ′ (b′ , c′ 1, c′ 2, c′ 4)

ℱ ≃ ℱ′ 



Parameter Space Degeneracy Directions
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Why	does	it	maWer	to	find	degenerate	regions	of	parameter	space?	
EssenQally:	helps	to	answer	quesQon	of	how	generic	a	feature	DM	PBHs	are	in	these	models	

Degeneracy	is	a	statement	about	
observables,	determined	by	the	power	
spectrum

Define	as	degenerate	if	total	Δχ2 < .01

MulUfield	models	allow	for	degeneracies-	
less	well-constrained.	

Degeneracies	aren’t	perfect:	have	finite	
extent—so	they	do	impact	the	
likelihoods.	



(Sky)walkers conduct random walks to map degenerate regions of the parameter 
space Tatooine.

(Degenerate	 	total	 <.01)≡ Δχ2
Methods: MCMC simulations 
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(Sky)walkers conduct random walks to map degenerate regions of the parameter 
space Tatooine.

(Degenerate	 	total	 <.01)≡ Δχ2
Methods: MCMC simulations 
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Compare with Planck 2018 CMB temperature & polarization data and constraints on PBHs 
as Dark Matter. 



(Sky)walkers conduct random walks to map degenerate regions of the parameter 
space Tatooine.

(Degenerate	 	total	 <.01)≡ Δχ2
Methods: MCMC simulations 
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Compare with Planck 2018 CMB temperature & polarization data and constraints on PBHs 
as Dark Matter. 

CMB constraints at pivot scale,  . Assume a Gaussian likelihood over Planck/BICEP/
Keck  

k*
As(k*), ns(k*), α(k*), r(k*)

PBH constraints at Hubble crossing during USR: .   Assume uniform likelihood for  𝒫R(kPBH), ΔN
𝒫R(kPBH) ≥ 10−3, 14 ≤ ΔN ≤ 25



(Degenerate	 	total	 <.01)≡ Δχ2Methods: MCMC simulations 
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Gravitational Wave Forecasts from PBH formation 

Scalar	mode	perturbaUons	that	give	rise	
to	PBHs	will	contribute	to	the	GW	
	spectrum	at		second	order

			ξ = 100,b = − 1.8 × 10−4, c1 = 2.5 × 10−4,
c2 = 3.570913 × 10−3, c4 = 3.9 × 10−3
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GravitaUonal	waves	induced	by	linear	
scalar	modes	at	second	order	have	
dimensionless	spectral	density	today:		

ΩGW,0h2 ≈ 1 . 62 × 10−5 ( 1
24 ( k

aH )
2

Ph(k, η))
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Gravitational Wave Forecasts from PBH formation 

Scalar	mode	perturbaUons	that	give	rise	to	
	PBHs	will	contribute	to	the	GW	
	spectrum	at		second	order

			ξ = 100,b = − 1.8 × 10−4, c1 = 2.5 × 10−4,
c2 = 3.570913 × 10−3, c4 = 3.9 × 10−3
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GravitaUonal	waves	induced	by	linear	scalar	
modes	at	second	order	have	dimensionless	
spectral	density	today:		

ΩGW,0h2 ≈ 1 . 62 × 10−5 ( 1
24 ( k

aH )
2

Ph(k, η))



Conclusions: What can we say about how likely PBHs 
in DM range are in these models?
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Beginning	with	a	generic	mulUfield	inflaUon	model	and	allowing	for	non-minimal	gravitaUonal	
couplings,	we	find	a	robust	region	of	the	parameter	space	in	our	model	that	is	compa6ble	with	
Planck	data	and	can	produce	PBHs	in	the	light	asteroid-mass	range.

Constraints	on	allowed	regions	in	parameter	space	are	driven	mostly	by	fiing	 	(Gaussian	tail	on	
one	end	of	posterior	distribuUon)		and	 	(sharp	cutoff	at	other	end)	.		

ns
N*

Parameters	of	model	are	constrained	at	 	but	degeneracy	direcUon	leads	to	fine-tuned	
raUos	of	parameters	at	percent	level.		

≈ 10 %

Most	constraining	quan6ty	is	 	with	error	bars	at	 thus	rela6ve	fine-tuning	of	parameters	
to	match	both	PBH	and	CMB	constraints	is	 .	

ns ∼ 1 %
𝒪 (10−5)



Questions and Answers
1.how	does	the	conformal	transformaUon	on	field	space	actually	work?	
2.		what	are	other	possible/removed	constraints	on	the	parameter	space	of	\omega_{PBH	DM}	
3.	what	is	the	UV	(SUGRA)	embedding	for	this	class	of	models?	how	is	the	EFT	derived?	
4.	Does	inflaUon	itself	require	fine	tuning	of	iniUal	condiUons?	
5.	more	about	the	moUvaUon	for	non-minimal	couplings.		
6.	when	is	quantum	diffusion	a	problem	during	USR?	
7.	say	more	about	reheaUng	in	MFI	models?	
8.what	are	the	non-GaussianiUes	in	your	models	like?	what	is	f_{NL}?	
9.how	many	observables	vs	dof	do	you	have	(ignoring	the	GWs	for	the	moment?)		
10.	Did	you	marginalize	over	the	reheaUng	histories?	How	do	you	fit	N_{*}?		
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Parameter Space Orthogonal Directions
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5	super-sets:	same	color	=	degeneracy	direcQon,	changing	colors=	orthogonal	direcQon	



Parameter Space Orthogonal Directions
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Sarah Geller           

The D-dim Conformal Transformation from Jordan Frame  Einstein Frame (1)→

PBHs from Multifield Inflation with Non-minimal Couplings 

Kaiser	1003.1159v2

S̃ = ∫ dDx −g̃ [f(ϕ1 . . . ϕN)R̃ −
1
2

δIJg̃μν ∇̃μϕI ∇̃νϕJ − Ṽ(ϕ1 . . . ϕN)],Jordan	Frame	AcUon: f(ϕ) =
1
2 [MD−2

0 + ξI(ϕI)2]

g̃μν → gμν = Ω2(x)gμν ⟹Conformal	transformaUon:

gμν = Ω−2g̃μν and −g = ΩD(x) −g̃

Γa
bc = Γ̃a

bc +
1
Ω [δa

b ∇cΩ + δa
c ∇bΩ − gbc ∇aΩ], R =

1
Ω [R̃ −

2(D − 1)
Ω

□ Ω − (D − 1)(D − 4)
1

Ω2
gμν ∇μΩ∇νΩ]□ Ω =

1
−g

∂μ [ −ggμν∂νΩ]

ΩD−2(x) =
2

MD−2
(D)

f[ϕ(x)] Transforms	metric	as:

E-H	term:	 ∫ dDx −g [
MD−2

(D)

2
R −

1
2

D − 1
D − 2

MD−2
(D)

1
f 2

gμν ∇μ f ∇ν f]
Einstein	Frame	AcUon:

V(ϕI) =
Ṽ(ϕI)
ΩD

∫ dDx −g [−
1
4f

MD−2
(D) δIJgμν ∇μϕI ∇νϕJ]KineUc		

terms:

combine	to	form	𝒢IJ

(in	our	2-field	model,	 )M(2) = Mpl
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Sarah Geller           

The Conformal Transformation from Jordan Frame  Einstein Frame (2)→

PBHs from Multifield Inflation with Non-minimal Couplings 

Kaiser	1003.1159v2

S̃ = ∫ dDx −g [f(ϕ1 . . . ϕN)R̃ −
1
2

δIJgμν ∇μϕI ∇νϕJ − Ṽ(ϕ1 . . . ϕN)],Jordan	Frame	AcUon: f(ϕ) =
1
2 [MD−2

0 + ξI(ϕI)2]

	can	be	put	in	form	 	only	if	 	(field	space	Riemann	tensor)	vanishes	idenUcally	𝒢IJ δIJ RI
JKL

To	show	that	a	 	can’t	be	put	in	form	 	it	suffices	to	show	that	the	Einstein	frame	Ricci	scalar	is	nonzero:	 	

By	compuUng	the	Ricci	scalar,	can	show	every	term	in	it	depends	on	 	and	the	Riemann	tensor	would	have	to	vanish	

everywhere	in	field	space	(OR	can	happen	if	only	one	of	the	fields	is	non-minimally	coupled,	but	then	potenUal	gets		

new	interacUons).	

𝒢IJ δIJ R ≠ 0

ϕI
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Sarah Geller           

PBHs as Dark Matter: The Available Parameter Space

PBHs from Multifield Inflation with Non-minimal Couplings 

Constraints	from	Femto-lensing?	

A	Gould	(1992)	proposed	gamma-ray	bursts	could	be	used		
to		constrain	PBHs	in	the	range	 	via	interference	
fringes.	Later	work	(Katz	et	al.	)	showed	constraints	should	be	discounted		
because	1.	gamma	ray	bursts	too	large	for	point	sources	and		
2.	need	to	consider	wave	opUcs		
(Source:	Green	and	Kavanagh	2020)	

1017 ∼ 1020	g

Subaru	HSC	Constraints?

“High	cadence	opUcal	observaUon	of	M31	constraints…are	weaker	than	iniUally	found	due	to	finite	sources	and	wave	
opUcs	effects.”	
(Source:	Green	and	Kavanagh	2020)	
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Sarah Geller           

SUGRA and SUSY Background of Inflaton Potential (1)

PBHs from Multifield Inflation with Non-minimal Couplings 

W̃ = μbIJΦIΦJ + cIJKΦIΦJΦK + 𝒪 ( Φ4
I

Mpl)
= b1(Φ1)2 + b2(Φ2)2 + c1(Φ1)3 + c2(Φ1)2Φ2 + c3Φ1(Φ2)2 + c4(Φ2)3 + 𝒪 ( Φ4

I

Mpl)
K(Φ, Φ̄) = ∑

I,J

(ΦI − Φ̄I)2

One	next	integrates	out	the	auxiliary	fields,	get	the	Lagrangian	we

ℒ = 𝒢IJgμν∂μΦI∂νΦ̄J̄ − V(Φ, Φ̄)

Φ(y)I = Φ(y) + 2θψ(y) + θθF(y)

Start	with	 	4-dimensional	supergravity	with	2	chiral	superfields	𝒩 = 1

complex	scalar	
field

fermion auxiliary	field

With	a	generic	choice	of	superpotenUal	(linear	terms	dropped	-	started	with:	

unless	 	is	gauge	singlet.)ΦI

In	(local)	SUGRA	we	also	choose	a	Kähler	potenUal	(such	that	imaginary	part	of	 	remains	heavy/decoupled)ΦI

V(Φ, Φ̄) = exp
K(Φ, Φ̄)

M2
pl

𝒢IJ̄ ∇IW(Φ)∇J̄W̄(Φ̄) −
3

M2
pl

W(Φ)W̄(Φ̄)

The	potenUal	for	the	scalar	field	part	of	 	is:W(Φ, Φ̄)

∇I = ∂I +
1

M2
pl

K,Iwhere

(McDonough,Long,Kolb),	(Linde),(Bertolami,	Ross)
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Sarah Geller           

SUGRA and SUSY Background of Inflaton Potential (2)

PBHs from Multifield Inflation with Non-minimal Couplings 

V(Φ, Φ̄) = exp
K(Φ, Φ̄)

M2
pl

𝒢IJ̄ ∇IW(Φ)∇J̄W̄(Φ̄) −
3

M2
pl

W(Φ)W̄(Φ̄) ∇I = ∂I +
1

M2
pl

K,Iwhere

(McDonough,Long,Kolb),	(Linde),(Bertolami,	Ross)

Take	the	limit	of	 	as	 	to	get	the	expression	for	 .	The	 	dependence	drops	out	because	of	the		

choice	of	Kähler	potenUal		which	makes	the	imaginary	part	of	the	complex	scalar	field	heavy-	it	decouples	for	all	of		

inflaUon.	

V(Φ, Φ̄)
|ΦI |2

M2
pl

→ 0 V(ϕ) ψ
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Does Inflation Itself Require Fine-Tuning of the Initial Conditions?
eg.		a	smooth	patch	of	size	 ?		Numerical	simulaUons	have	been	done	but	are	limited	by	difficulty	of	puing	
these	simulaUons	onto	computers.	
Most	are	1+1	dimensional.	

r > rH ∼
1
H

Source:	David	Kaiser	Jan.	2021

Some	3+1	dimensional	Numerical	RelaUvity	Sims		
have	been	done	recently	e.g.	Clough,	Lim,	Flauger	1712.07352 

For	recent	review	of	InflaUon	see:		
InflaUon	a|er	Planck:	Judgement	Day		Chowdhury,		
MarUn,	Ringeval,	Vennin

Work	by	Kaiser,	Fitzpatrick,	Bloomfield,	Hilbert	
(arXiv:1906.08651) simulated 
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2.	How	does	renormalizaQon	work	in	this	context?		

RenormalizaUon	of	a	QFT	is	possible	in	a	fixed	curved	background,	not	in	dynamical	curved		
background.			

IF	we	set	aside	renormalizaQon	of	the	gravitaQonal	sector,	and	consider	an	EFT	for		
self	interacQng	scalar	fields	in	3+1	dimensions,	then	we	must	include	the	 	and		
	can	be	any	dimensionless	free	parameter	

f(ϕ)R̃ ∈ ℒ
ξ

More on the non-minimal couplings…
1.	Why	isn’t	 ?		

	is	a	fixed	point	of	the	 -funcUon,	but	any	nonzero	value	will	work	for	renormalizaUon.	If	we	start	with	
	then	the	RG	 	 	will	run	to	higher	values	in	the	UV.	If	at	tree	level,	 ,	it	will	stay	there	for	any	

energy	scale.	

ξ = − 1/6

−1/6 β
ξ ≠ − 1/6 ⟹ ξ ξ = − 1/6

ℒ ∋ f(ϕ)R̃ ∼ (M2 + ∑
I

ξI(ϕI)2) R̃
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More on the non-minimal couplings…
3.	Why	do	we	only	consider	non-negaQve	values	of	 	in	our	models?		

When	we	perform	the	conformal	transformaUon,	the	conformal	factor	is	 .	

If	we	allowed	one	coupling	 	to	have	 	for	all	 ,		
then	there	exists	a	value	of	 	such	that	 conformal	transformaUon	is	not	everywhere	
well	defined.			

ξϕ, ξχ

Ω2 ∼ f(ϕI) ∼ [M2 + ∑
I

ξI(ϕI)2]
ξK sign(ξK) ≠ sign(ξI) I ≠ K
Ω(x) Ω(x) = 0	for	ϕ ≠ 0 ⟹
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Sarah Geller           

Quantum Diffusion During Ultra-Slow Roll Phase

PBHs from Multifield Inflation with Non-minimal Couplings 

Main	idea:		
1.	During	Ultra	Slow-roll,	quantum	fluctuaUons	must	not		
make	field	zoom	past	the	min/max	feature	( )	too	quickly	or	 	will		
not	get	large	enough	for	PBH	formaUon.		
2.	Also	can’t	have	insufficient	kineUc	energy	for	the	field	to	classically	pass	through	the	local	minimum	or	quantum	
diffusion	effects	become	dominant

V,σ ≃ 0 𝒫R

The	condiQon	that	must	be	saQsfied	for	us	to	ignore	quantum	diffusion	effects	during	slow	roll	is:		

𝒫R(k) < 1/6

Approach:	Back-reacUon	from	quantum	fluctuaUons	 	variance	in	kineUc	energy	density:	→

⟨(ΔK)2⟩ ≃
3H4

4π2
ρkin (ρkin = ·σ2/2)

Classical	evoluUon	>>	Quantum	diffusion	during	ultra	slow-roll	IF	 	.	Equivalent	to	ρkin > ⟨(ΔK)2⟩
Idea:	Use	 	as	bound	to	determine	when	system	will	tunnel.	Tunnel	to	right	 restart	inflaUon,	tunnel	
le|	 	first	order	phase	transiUon	ends	inflaUon.	

ΔEΔt ≤ ℏ/2 →
→
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1905.12562v2	Nguyen,	van	de	Vis,	Sfakianakis,	Giblin,	Kaiser	2019	

ReheaUng	has	been	studied	in	such	models	using		
laice	simulaUons	

RadiaUon	dominaUon	( )		
within	1-3	e-folds	 	

w ≃ 1/3
⟹ 18 ≲ ΔN ≲ 25

Our	model	 	
e-folds.		
Between	 ,	energy	red-shi|s	as	

	

Nreh ∼ 𝒪(1)

tend	and	trd

ρ(trd) = ρ(tend)e−3Nreh

ΔN =
1
2

log
2H2(tpbh)

H(tend)
e−Nreh/4tc
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··Qσ + 3H ·Qσ +
k2

a2
+ ℳσσ − ω2 −

1
M2
pla

3

d
dt ( a3 ·σ2

H ) Qσ = 2
d
dt (ωQs) − 2 (

V,σ
·σ

+
·H

H ) (ωQs)

··Qs + 3H ·Qs + [ k2

a2
+ μ2

s ] Qs

EquaUon	of	moUon	for	the	AdiabaUc	Modes:

EquaUon	of	moUon	for	the	Isocurvature	Modes:

Modes	couple	only		
when	 !	
Scalar	turn	rate	acts		
as	a	source	term	

ω ≠ 0

�� �� �� �� �� �� ���

-���

-���

-���

���

���

���

���

���
= 4M2

pl
ω
·σ

k2

a2
(ψ + a2H( ·E − Ba−1)

μ = Mpl, b1 = b2 = − 1.8 × 10−4, c1 = 2.5 × 10−4, c4 = 3.9 × 10−3, ξϕ = ξχ = 100, c2 = c3 = 3.570193 × 10−3

fNL(k1, k2, k3) =
5
6

ℬζ(k1, k2, k3)
𝒫ζ(k1)𝒫ζ(k2) + 𝒫ζ(k2)𝒫ζ(k3) + 𝒫ζ(k2)𝒫ζ(k3)

is	defined	in	terms	of	power	spectrum	and	bispectrum:fNL

ζ = − ψ −
H
·ρ

δρwhere

calculated	using	k1 = k2, k3
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Ωk

ns(k*)

α(k*)

r(k*)

βiso(k*)

fNL

𝒫R(kpbh)

ΔN

spaUal	curvature	energy	density

	spectral	index

running	of	spectral	index

tensor/scalar	raUo

isocurvature	fracUon

local	non-Gaussianity

peak	amplitude	of	𝒫R

e-folds	before	 	when	peak	first	passes	outside	tend
1

H(kpbh)

Observables

“With	four	parameters	I	can	fit	an	elephant	and	with	five	I	can	make	him	wiggle	his	trunk”	
		Enrico	Fermi	to	John	Von	Neumman																																										(hNps://www.nature.com/arUcles/427297a)
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Ωk

ns(k*)

α(k*)

r(k*)

βiso(k*)

fNL

𝒫R(kpbh)

ΔN

spaUal	curvature	energy	density

	spectral	index

running	of	spectral	index

tensor/scalar	raUo

isocurvature	fracUon

local	non-Gaussianity

peak	amplitude	of	𝒫R

e-folds	before	 	when	peak	first	passes	outside	tend
1

H(kpbh)

V(r, θ) =
1

(1 + r2 (ξϕ cos2 θ + ξχ sin2 θ))
2 [ℬ(θ)r2 + 𝒞(θ)r3 + 𝒟(θ)r4]

Observables

Parameters

Non-minimal	couplings:	ξϕ, ξχ

“Yukawa”	couplings:	c1, c2, c3, c4

IniUal	condiUons:	 	r(ti), θ(ti), ·r(ti),
·θ(ti)

(dimensionless)	mass	matrix	
	elements:	b1, b2, b3( = b12)

Deg.	of	Freedom

2

3

4

4

“With	four	parameters	I	can	fit	an	elephant	and	with	five	I	can	make	him	wiggle	his	trunk”	
		Enrico	Fermi	to	John	Von	Neumman																																										(hNps://www.nature.com/arUcles/427297a)

Observables and Parameters

35

https://www.nature.com/articles/427297a


Sarah Geller           PBHs from Multifield Inflation with Non-minimal Couplings 

Ωk

ns(k*)

α(k*)

r(k*)

βiso(k*)

fNL

𝒫R(kpbh)

ΔN

spaUal	curvature	energy	density

	spectral	index

running	of	spectral	index

tensor/scalar	raUo

isocurvature	fracUon

local	non-Gaussianity

peak	amplitude	of	𝒫R

e-folds	before	 	when	peak	first	passes	outside	tend
1

H(kpbh)

V(r, θ) =
1

(1 + r2 (ξϕ cos2 θ + ξχ sin2 θ))
2 [ℬ(θ)r2 + 𝒞(θ)r3 + 𝒟(θ)r4]

Observables

Parameters

Non-minimal	couplings:	ξϕ, ξχ

“Yukawa”	couplings:	c1, c2, c3, c4

IniUal	condiUons:	 	r(ti), θ(ti), ·r(ti),
·θ(ti)

(dimensionless)	mass	matrix	
	elements:	b1, b2, b3( = b12)

Deg.	of	Freedom

2

3

4

4

1

1

3

1

ξϕ = ξχ

c2 = c3

b1 = b2, b3 = 0

only	r(ti)

“With	four	parameters	I	can	fit	an	elephant	and	with	five	I	can	make	him	wiggle	his	trunk”	
		Enrico	Fermi	to	John	Von	Neumman																																										(hNps://www.nature.com/arUcles/427297a)

6

8

Observables and Parameters
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Determining the Value of NCMB
We	do	not	marginalize	over	reheaUng	histories	due	to	computaUonal	costs.		

We	allow	 	e-folds	to	account	for	the	usual	uncertainty	in	reheaUng.	MulUfield	inflaUonary	
models	such	as	those	we	consider	typically	have	efficient	reheaUng	 .			

	is	thus	a	derived	value	rather	than	a	parameter.		

We	allow	the	MCMC	to	opUmize	the	value	within	the	given	window	to	fit	the	CMB+	PBH	constraints

NCMB = 55 ± 5
Nreh ∼ 𝒪(1)

NCMB


