Supermassive Black Holes from Direct Inflationary Collapse

Aurora Ireland (University of Chicago) New Horizons in Primordial Black Hole Physics 19.6.23

Based on upcoming work with Dan Hooper, Gordan Krnjaic, & Albert Stebbins

Motivations

- Quasars powered by supermassive black holes (SMBH) with masses $M \sim 10^{8-10} M_{\odot}$ found in *excess* in the high-redshift universe
- Generally thought that SMBH grow from lower mass seeds (possibly Population III stars) through accretion
- Eddington limited accretion rate $\Rightarrow M \sim 10^2 M_{\odot} \rightarrow 10^{10} M_{\odot}$ in ~ 0.8 Gyr
 - SMBH must grow continuously for first ~Gyr of universe's history
- Most SMBH do not seem to have grown much since ~1 Gyr after the Big Bang
 - Comoving number density of $M \sim 10^{10} M_{\odot}$ SMBH has remained approx. constant since $z \sim 5$

Motivations

1) How did these SMBH come to be so massive on such a short time scale?

2) Why did their growth rate dramatically slow during subsequent ~ 13 Gyr?

Possibility: Predominantly *primordial* rather than astrophysical in origin?

PBH

- Form from collapse of large primordial density fluctuations
- Requires significant enhancement of $\mathcal{P}_{\mathcal{R}}$ on small scales

$$\sigma_{\delta}^{2} = \int_{0}^{\infty} \frac{dk}{k} W^{2}(k, R) \mathcal{P}_{\delta}(k) \qquad P_{\delta}^{G} = \frac{1}{\sqrt{2\pi}\sigma_{\delta}} \exp\left[-\frac{\delta^{2}}{2\sigma_{\delta}^{2}}\right] \qquad \beta \simeq 2 \int_{\delta_{th}}^{\infty} d\delta P_{\delta}$$

 \Rightarrow Presuming Gaussian statistics for \mathcal{R} , need $\mathcal{P}_{\mathcal{R}} \sim \mathcal{O}(10^{-2})$

- Pretty easy to engineer in inflationary models
 - Single field: Inflection point, USR plateau, localized features (bumps, dips, steps), etc.
 - *Multifield:* Instabilities in scalar sector (hybrid inflation), non-canonical kinetic terms, non-minimal couples to R, trajectories deviating from geodesics in field space, etc.

PBH

- Issue: SMBH form *late*! (size set by size of horizon at time of collapse)
 - After BBN: $T \sim \text{MeV} \Rightarrow M_{\text{hor}} \sim 10^5 M_{\odot}$
 - Before matter domination, recombination: $T \sim eV \Rightarrow M_{hor} \sim 3 \times 10^{17} M_{\odot}$
- Such large amplification at late times inevitably leads to spectral distortions of the CMB
 - $T \sim 10-400 \text{ keV} \Rightarrow$ double Compton scattering, thermal Bremmstrahlung inefficient $\Rightarrow \mu$ -type distortions!
 - $T \leq 10 \text{ keV} \Rightarrow \text{Compton scattering inefficient}$ $\Rightarrow y$ -type distortions

Spectral distortion constraints

• For a sharply peaked $\mathcal{P}_{\mathcal{R}} = \sigma_{\mathcal{R}}^2 k \, \delta(k - k_{BH})$, μ - and y-type spectral distortions can be estimated as [Chluba et al, 2012]:

$$\begin{split} \mu &\approx 2.2 \sigma_{\mathcal{R}}^2 \left\{ \exp\left[-\left(\frac{1.5 \times 10^5 \, M_{\odot}}{M_{\rm BH}}\right)^{1/2} \left(\frac{\gamma}{0.2}\right)^{1/2} \left(\frac{3.91}{g_{\star,S}(T)}\right)^{1/3} \left(\frac{g_{\star,S}(T)}{3.36}\right)^{1/4} \right] \right. \\ \left. - \exp\left[-\left(\frac{4.5 \times 10^9 \, M_{\odot}}{M_{\rm BH}}\right) \left(\frac{\gamma}{0.2}\right) \left(\frac{3.91}{g_{\star,S}(T)}\right)^{2/3} \left(\frac{g_{\star,S}(T)}{3.36}\right)^{1/2} \right] \right\} \\ \left. y &\approx 0.4 \, \sigma_{\mathcal{R}}^2 \, \exp\left[-\left(\frac{4.5 \times 10^9 \, M_{\odot}}{M_{\rm BH}}\right) \left(\frac{\gamma}{0.2}\right) \left(\frac{3.91}{g_{\star,S}(T)}\right)^{2/3} \left(\frac{g_{\star,S}(T)}{3.36}\right)^{1/2} \right] \right] \end{split}$$

- Constraints from COBE/FIRAS:
 - $|\mu| \leq 9.0 \times 10^{-5}$
 - $|y| \lesssim 1.5 \times 10^{-5}$

Spectral distortion constraints

- Tension:
 - Need small σ^2 for consistency with spectral distortions
 - Need large σ^2 for nonvanishing β
- Naively restricted to PBH with $M \lesssim 10^2 M_{\odot}$

Departures from Gaussianity

- Estimate $\sigma_{\mathcal{R}}^2 \sim \mathcal{O}(10^{-2})$ presumed Gaussian probability distribution function (pdf) \Rightarrow Less amplification required for heavier tailed distributions!
- Assumption of Gaussian statistics for δ is generically false
 - Non-linear mapping between curvature perturbation ${\mathcal R}$ and density contrast δ
 - Statistics of ${\mathcal R}$ in models with local amplification are generally non-Gaussian
- To quantify degree of non-Gaussianity required, consider fiducial pdf:

$$P_{\delta}^{(n)} = \frac{1}{2\sqrt{2}\,\Gamma(1+1/n)\sigma_0} \exp\left(-\left[\frac{|\delta|}{\sqrt{2}\sigma_0}\right]^n\right) \qquad \longleftarrow \begin{array}{c} \text{Gaussian: } n=2\\ \text{Exponential: } n=1\\ \text{Power law: } n<1 \end{array}$$

Departures from Gaussianity

Max PBH mass fraction at formation for $\sigma^2 = \int d\delta \, \delta^2 P_{\delta}^{(n)}$ saturating spectral distortion constraints

- Plenty of inflationary models capable of producing heavy exponential tails, but we need to do better than exponential
- Claim: Non-minimal self-interacting curvaton model can produce sufficiently
 heavy power law tail
- Curvaton χ
 - Light $(m_{\chi}^2 \ll H)$ spectator during inflation with subdominant ρ_{χ}
 - Responsible for generating curvature perturbation
 - Initially isocurvature perturbations converted to adiabatic upon decay
 - Non-Gaussianity from inefficient conversion

- Consider standard curvaton scenario with $V(\chi) = \frac{1}{2}m_{\chi}^2\chi^2$
- During inflation:
 - Background value "frozen-in" at χ_*
 - Receives perturbations $\delta \chi_* \simeq H_*/2\pi$ (initially Gaussian)
- After inflation:
 - Starts to oscillate about minimum when $H \simeq m_{\chi}$
 - Decays when $H \sim \Gamma_{\chi}$ (isocurvature \rightarrow adiabatic)
- Non-linear mapping between ζ and $\zeta_{\chi} \Rightarrow$ non-Gaussian pdf
- δN formalism allows for fully non-perturbative calculation of ζ and its statistics

- δN formalism
 - Compute non-linear evolution of cosmological perturbations on super-Hubble scales
 - Curvature perturbation = difference between perturbed vs unperturbed amount of expansion: $\zeta = N(\bar{\chi} + \delta \chi) N(\bar{\chi})$
- First used to investigate NG in curvaton model in [Sasaki et al, 2006]

• Total obeys:
$$e^{4\zeta_b} - \frac{4r}{3+r} \left(e^{3\zeta_\chi} \right) e^{\zeta_b} + \frac{3r-3}{3+r} = 0$$
 with $r = \frac{3\Omega_{\chi,\text{dec}}}{4 - \Omega_{\chi,\text{dec}}}$

• Solution:
$$\zeta_b = \ln X$$
 with $X = \frac{B^{1/2} + \sqrt{ArB^{-1/2} - B}}{(3+r)^{1/3}}$

$$A = e^{3\zeta_{\chi}} = (1+\delta_{\chi})^2 = \left(1+\frac{\delta_{\chi_*}}{\chi_*}\right)^2 \qquad B = \frac{1}{2} \left[C^{1/3} + (r-1)(3+r)^{1/3}C^{-1/3}\right] \qquad C = (Ar)^2 + \sqrt{(Ar)^4 + (3+r)(1-r)^3}$$

- This solution gives us a mapping between ζ and the Gaussian reference variable $\delta_{\chi} = \delta \chi_* / \chi_*$, with pdf: $P_{\delta_{\chi}}[\delta_{\chi}] = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{\delta_{\chi}^2}{2\sigma_0^2}\right]$
- By conservation of probability:

$$P_{\zeta}[\zeta] = P_{\delta_{\chi}} \left[\delta_{\chi}^{+}(\zeta) \right] \left| \frac{d\delta_{\chi}^{+}}{d\zeta} \right| + P_{\delta_{\chi}} \left[\delta_{\chi}^{-}(\zeta) \right] \left| \frac{d\delta_{\chi}^{-}}{d\zeta} \right|$$

where
$$\delta_{\chi}^{\pm} = -1 \pm \sqrt{\frac{3+r}{4r}}e^{3(\zeta+\langle\zeta_b\rangle)} + \frac{3r-3}{4r}e^{-(\zeta+\langle\zeta_b\rangle)}$$

• PBH mass fraction at formation:

$$\beta = 2 \int_{\delta_{\chi, \text{th}}^+}^{\infty} d\delta_{\chi} P_{\delta_{\chi}}[\delta_{\chi}] + 2 \int_{-\infty}^{\delta_{\chi, \text{th}}^-} d\delta_{\chi} P_{\delta_{\chi}}[\delta_{\chi}] \qquad \Rightarrow \qquad \beta = \text{erfc}\left(\frac{\delta_{\chi, \text{th}}^+}{\sqrt{2}\sigma_0}\right) + \text{erfc}\left(\frac{|\delta_{\chi, \text{th}}^-|}{\sqrt{2}\sigma_0}\right)$$

- Recall: For PBH formation, need localized amplification of \mathcal{P}_{ζ} on small scales
 - σ_0^2 computed from a knowledge of the primordial power spectrum
- [Pi & Sasaki, 2022] accomplish by introducing a non-trivial kinetic term:

$$\mathcal{L} = rac{1}{2} (\partial \phi)^2 - V(\phi) + rac{1}{2} f(\phi)^2 (\partial \chi)^2 - rac{1}{2} m_\chi^2 \chi^2$$

• Choose $f(\phi)$ such that kinetic term is suppressed on scale $k_{BH} \Rightarrow$ peak in \mathcal{P}_{ζ} !

$$\mathcal{P}_{\delta_{\chi}}(k) = \frac{k^3}{2\pi^2} \left| \frac{\delta \chi_k}{\chi} \right|^2 = \frac{1}{\chi(t_k)^2} \left(\frac{H(t_k)}{2\pi f(\phi_k)} \right)^2$$

• Compare against spectral distortion constraints: $\sigma_c^2 =$

$$\zeta_{\zeta}^{2} = \int d\delta_{\chi} \, \zeta_{b}^{2} \, P_{\delta_{\chi}}[\delta_{\chi}] - \left(\int d\delta_{\chi} \, \zeta_{b} \, P_{\delta_{\chi}}[\delta_{\chi}]\right)^{2}$$

• Result:

Largest deviation from Gaussianity when $r \ll 1$ (curvaton very subdominant at decay)

- Quadratic potential:
 - χ and $\delta \chi$ obey same eqs on superhorizon scales $\Rightarrow \chi \sim \delta \chi \Rightarrow \frac{\delta \chi}{\chi} = \frac{\delta \chi_*}{\chi_*}$
 - No non-linear evolution for curvaton contrast δ_{χ} following horizon exit
 - Exact relation: $e^{3\zeta_{\chi}} = (1 + \delta_{\chi})^2$
- Introduce self-interactions \Rightarrow mapping between ζ_{χ} and initial Gaussian perturbations $\delta \chi_*$ becomes even more dramatically non-linear!
- Schematic evolution:
 - 1) $t_* \leq t \leq t_{\text{int}}$: slow-roll, $\chi \simeq \chi_*$ frozen-in
 - 2) $t_{int} \leq t \leq t_{osc}$: non-quadratic interaction regime (begins when $V'' \sim H^2$)
 - 3) $t_{\rm osc} \lesssim t \lesssim t_{\rm dec}$: quadratic field oscillations

- Gaussian reference variable: $\delta \chi_*$
- Mapping between ζ , ζ_{χ} : $e^{4\zeta_b} \frac{4r}{3+r} \left(e^{3\zeta_{\chi}} \right) e^{\zeta_b} + \frac{3r-3}{3+r} = 0$
- Need mapping between ζ_{χ} and $\delta \chi_*$; generically $\delta \chi_*^j = g_j(\zeta_{\chi})$
- For weak interactions, can demonstrate:

$$\begin{aligned} \zeta_{\chi}(\delta\chi_{*}) = &\frac{2}{3} \frac{\chi_{\rm osc}'}{\chi_{\rm osc}} \delta\chi_{*} + \frac{1}{3} \left(\frac{\chi_{\rm osc}\chi_{\rm osc}''}{\chi_{\rm osc}'^{2}} \right) \left(\frac{\chi_{\rm osc}'}{\chi_{\rm osc}} \right)^{2} \delta\chi_{*}^{2} \\ &+ \frac{2}{9} \left(1 - \frac{3}{2} \frac{\chi_{\rm osc}\chi_{\rm osc}''}{\chi_{\rm osc}'^{2}} + \frac{1}{2} \frac{\chi_{\rm osc}^{2}\chi_{\rm osc}''}{\chi_{\rm osc}'^{3}} \right) \left(\frac{\chi_{\rm osc}'}{\chi_{\rm osc}} \right)^{3} \delta\chi_{*}^{3} \end{aligned}$$

• Pdf: $P_{\zeta}[\zeta] = \sum_{j} \left| \frac{g_{j}(\zeta)}{d\zeta} \right| P_{\delta\chi_{*}}[g_{j}(\zeta)]$

- Of course, can also implement δN formalism numerically
- Following inflation: $\dot{\chi} + 3H\dot{\chi} + \frac{dV}{d\chi} = -\Gamma_{\chi}\dot{\chi}$ $\dot{\rho}_{rad} + 4H\rho_{rad} = \Gamma_{\chi}\dot{\chi}^2$ $H^2 = \frac{8\pi}{3M_{Pl}^2}(\rho_{rad} + \rho_{\chi})$
- Solve until curvaton has completely decayed (t_f s.t. $H_f \ll \Gamma_{\chi}$)
- Compute # e-folds elapsed: $N(t_f) = \ln a_f/a_i$
- Now perturb initial conditions, $\chi_* \to \chi_* + \delta \chi_*$ with $\delta \chi_* = H_*/2\pi$, and evolve to the same final hypersurface of fixed energy density
- $\zeta = N(\chi_* + \delta \chi_*) N(\chi_*)$
- Repeat for many different $\delta \chi_*$ for statistics

Non-linear growth between horizon exit and onset of oscillations dramatically boosts non-Gaussianity

Conclusions

- We observe evidence of an excess of SMBH at high redshift
 - Can't be readily explained by accretion or mergers
- Possibility: Primordial origin?
- Amplification of $\mathcal{P}_{\mathcal{R}}$ required is naively in tension with constraints on CMB spectral distortions
- Can circumvent bounds and produce PBH with smaller peak provided a sufficiently non-Gaussian pdf
- The *non-minimal self-interacting curvaton model* is a physical model capable of producing SMBH via such a dramatically non-Gaussian pdf!