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Motivations
• Quasars powered by supermassive black holes (SMBH) with masses 

𝑀~10!"#$𝑀⊙ found in excess in the high-redshift universe

• Generally thought that SMBH grow from lower mass seeds (possibly 
Population III stars) through accretion 

• Eddington limited accretion rate ⇒ 𝑀~10&𝑀⊙ → 10#$𝑀⊙ in ~0.8 Gyr

• SMBH must grow continuously for first ~Gyr of universe’s history

• Most SMBH do not seem to have grown much since ~1 Gyr after the Big Bang

• Comoving number density of 𝑀 ∼ 10!"𝑀⊙ SMBH has remained approx. constant 
since 𝑧~5



Motivations

1) How did these SMBH come to be so massive on such a short time scale?
 
2) Why did their growth rate dramatically slow during subsequent ~ 13 Gyr?

Possibility: Predominantly primordial rather than astrophysical in origin? 

???



PBH
• Form from collapse of large primordial density fluctuations

• Requires significant enhancement of 𝒫ℛ	on small scales

⇒ Presuming Gaussian statistics for ℛ, need  𝒫ℛ	~	𝒪 10"&

• Pretty easy to engineer in inflationary models
• Single field: Inflection point, USR plateau, localized features (bumps, dips, steps), etc.

• Multifield: Instabilities in scalar sector (hybrid inflation), non-canonical kinetic terms, 
non-minimal couples to R, trajectories deviating from geodesics in field space, etc.



PBH
• Issue: SMBH form late! (size set by size of horizon at time of collapse)

• After BBN: 𝑇 ∼ MeV ⇒ 𝑀$%&	~	10'𝑀⊙

• Before matter domination, recombination: 𝑇 ∼ eV ⇒ 𝑀$%&	~	3×10!(𝑀⊙

• Such large amplification at late times inevitably leads to spectral distortions of 
the CMB

• 𝑇	~  10-400 keV ⇒ double Compton scattering, thermal Bremmstrahlung inefficient 
                                ⇒ 𝜇-type distortions!

• 𝑇 ≲	10 keV ⇒ Compton scattering inefficient 
                       ⇒ 𝑦-type distortions



Spectral distortion constraints
• For a sharply peaked 𝒫ℛ = 𝜎ℛ"	𝑘	𝛿 𝑘 − 𝑘#$ , 𝜇- and 𝑦-type spectral distortions 

can be estimated as [Chluba et al, 2012]:

• Constraints from COBE/FIRAS:

• |𝜇| ≲ 9.0×10)'

• |𝑦| ≲ 1.5×10)'	



Spectral distortion constraints
• Tension: 

• Need small 𝜎* for 
consistency with 
spectral distortions

• Need large 𝜎* for non-
vanishing 𝛽

• Naively restricted to 

PBH with 𝑀 ≲ 10"𝑀⊙

𝜎ℛ" = 0.01	 ⇒ 	 𝛽 ≃ 10#"$



Departures from Gaussianity
• Estimate 𝜎ℛ"	~	𝒪 10/"  presumed Gaussian probability distribution function (pdf)
⇒ Less amplification required for heavier tailed distributions!

• Assumption of Gaussian statistics for 𝛿 is generically false

• Non-linear mapping between curvature perturbation ℛ and density contrast 𝛿
• Statistics of ℛ in models with local amplification are generally non-Gaussian

• To quantify degree of non-Gaussianity required, consider fiducial pdf:

Gaussian: 𝑛 = 2
Exponential: 𝑛 = 1
Power law: 𝑛 < 1



Departures from Gaussianity

Max PBH mass fraction at formation for 𝜎! = ∫ 𝑑𝛿	𝛿!𝑃"
($) saturating spectral distortion constraints



Non-Minimal Self-Interacting Curvaton
• Plenty of inflationary models capable of producing heavy exponential tails, but 

we need to do better than exponential

• Claim: Non-minimal self-interacting curvaton model can produce sufficiently 
heavy power law tail

• Curvaton 𝜒 

• Light (𝑚+
*≪ 𝐻) spectator during inflation with subdominant 𝜌+

• Responsible for generating curvature perturbation

• Initially isocurvature perturbations converted to adiabatic upon decay

• Non-Gaussianity from inefficient conversion



Non-Minimal Self-Interacting Curvaton

• Consider standard curvaton scenario with 𝑉 𝜒 = 3
"
𝑚4
"𝜒"

• During inflation: 

• Background value “frozen-in” at 𝜒∗
• Receives perturbations 𝛿𝜒∗ ≃ 𝐻∗/2𝜋 (initially Gaussian)

• After inflation:

• Starts to oscillate about minimum when 𝐻 ≃ 𝑚+

• Decays when 𝐻~𝛤+ (isocurvature → adiabatic)

• Non-linear mapping between 𝜁 and 𝜁4 ⇒ non-Gaussian pdf

• 𝛿𝑁 formalism allows for fully non-perturbative calculation of 𝜁 and its statistics



Non-Minimal Self-Interacting Curvaton
• 𝛿𝑁 formalism
• Compute non-linear evolution of cosmological perturbations on super-Hubble scales

• Curvature perturbation = difference between perturbed vs unperturbed amount of 
expansion: 𝜁 = 𝑁 �̅� + 𝛿𝜒 − 𝑁 �̅�

• First used to investigate NG in curvaton model in [Sasaki et al, 2006]
 

• Total obeys:

• Solution:

with

with



Non-Minimal Self-Interacting Curvaton
• This solution gives us a mapping between 𝜁	and the Gaussian reference variable 
𝛿4 = 𝛿𝜒∗/𝜒∗, with pdf:

• By conservation of probability:

where
 

• PBH mass fraction at formation: 

⇒

Evaluate roots 
at 𝜁!" ≃ 0.932



Non-Minimal Self-Interacting Curvaton
• Recall: For PBH formation, need localized amplification of 𝒫6 on small scales

• 𝜎"* computed from a knowledge of the primordial power spectrum

• [Pi & Sasaki, 2022] accomplish by introducing a non-trivial kinetic term:

• Choose 𝑓 𝜙  such that kinetic term is suppressed on scale 𝑘#$ ⇒ peak in 𝒫6!



Non-Minimal Self-Interacting Curvaton
• Compare against spectral distortion constraints:

• Result:

Largest deviation from Gaussianity when 𝑟 ≪ 1 (curvaton very subdominant at decay)  



Non-Minimal Self-Interacting Curvaton
• Quadratic potential:

• 𝜒 and 𝛿𝜒 obey same eqs on superhorizon scales ⇒ 𝜒~𝛿𝜒  ⇒ 4+
+
= 4+∗

+∗
• No non-linear evolution for curvaton contrast 𝛿+ following horizon exit

• Exact relation: 𝑒56& = 1 + 𝛿+
*

• Introduce self-interactions ⇒ mapping between 𝜁4 and initial Gaussian 
perturbations 𝛿𝜒∗ becomes even more dramatically non-linear!

• Schematic evolution:
• 1) 𝑡∗ ≲ 𝑡 ≲ 𝑡789: slow-roll, 𝜒 ≃ 𝜒∗ frozen-in

• 2) 𝑡789 ≲ 𝑡 ≲ 𝑡%:;: non-quadratic interaction regime (begins when 𝑉<< ∼ 𝐻*)

• 3) 𝑡%:; ≲ 𝑡 ≲ 𝑡=>;: quadratic field oscillations



Non-Minimal Self-Interacting Curvaton
• Gaussian reference variable: 𝛿𝜒∗	

 

• Mapping between 𝜁, 𝜁4: 
 

• Need mapping between 𝜁4 and 𝛿𝜒∗;  generically 𝛿𝜒∗
9 = 𝑔9 𝜁4

• For weak interactions, can demonstrate:

 

• Pdf: 



Non-Minimal Self-Interacting Curvaton
• Of course, can also implement 𝛿𝑁 formalism numerically

• Following inflation:
 

• Solve until curvaton has completely decayed (𝑡: s.t. 𝐻: ≪ 𝛤4)

• Compute # e-folds elapsed: 𝑁 𝑡: = ln 𝑎:/𝑎;
• Now perturb initial conditions, 𝜒∗ → 𝜒∗ + 𝛿𝜒∗ with 𝛿𝜒∗ = 𝐻∗/2𝜋, and evolve to 

the same final hypersurface of fixed energy density

• 𝜁 = 𝑁 𝜒∗ + 𝛿𝜒∗ −𝑁 𝜒∗
• Repeat for many different 𝛿𝜒∗ for statistics



Non-Minimal Self-Interacting Curvaton

Non-linear growth between horizon exit and onset of oscillations dramatically boosts non-Gaussianity



Conclusions
• We observe evidence of an excess of SMBH at high redshift

• Can’t be readily explained by accretion or mergers

• Possibility: Primordial origin?

• Amplification of 𝒫ℛ required is naively in tension with constraints on CMB 
spectral distortions

• Can circumvent bounds and produce PBH with smaller peak provided a 
sufficiently non-Gaussian pdf

• The non-minimal self-interacting curvaton model is a physical model capable of 
producing SMBH via such a dramatically non-Gaussian pdf!


