Small Primordial Black Holes as Window on Quantum Gravity

Sebastian Zell

UCLouvain

Work<sup>1</sup> with Gia Dvali, Lukas Eisemann and Marco Michel

20<sup>th</sup> June 2023

<sup>1</sup> M. M., S. Z., The Timescales of Quantum Breaking, arXiv:2306.09410.
 G. D., L. E., M. M., S. Z., Black Hole Metamorphosis and Stabilization by Memory Burden, Phys. Rev. D 102 (2020), arXiv:2006.00011.

1

#### Black hole evaporation



# Black hole evaporation



#### Black hole evaporation



What happens to a black hole as it evaporates?

What happens to a black hole as it evaporates?



- Why it is an open question
- 2 Searching for small primordial black holes
- 3 Hints from analogue models

Breakdown of Hawking evaporation  $\bullet 000$ 

Searching for small primordial black holes

Hints from analogue models

#### Scales of a black hole



 $r_g \sim GM$ 

Searching for small primordial black holes

Hints from analogue models

## Scales of a black hole

► Geometry

$$r_g \sim GM$$

► Dimensionless parameter<sup>2</sup>

$$S \sim \hbar^{-1} r_g M$$

<sup>2</sup> J. Bekenstein, *Black holes and entropy*, Phys. Rev. D 7 (1973).

# Scales of a black hole

► Geometry

$$r_g \sim GM$$

$$S \sim \hbar^{-1} r_g M$$

► Hawking particle production:<sup>3</sup>

$$\Gamma \sim rac{1}{r_g} \qquad E \sim rac{\hbar}{r_g}$$

<sup>2</sup> J. Bekenstein, *Black holes and entropy*, Phys. Rev. D 7 (1973).

<sup>3</sup>S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975).

# Scales of a black hole

► Geometry

$$r_g \sim GM$$

$$S \sim \hbar^{-1} r_g M$$

► Hawking particle production:<sup>3</sup>

$$-\sim rac{1}{r_g} \qquad E\sim rac{\hbar}{r_g}$$



Naive timescale of (half) evaporation

$$t_{1/2} \sim Sr_g$$

<sup>2</sup> J. Bekenstein, *Black holes and entropy*, Phys. Rev. D **7** (1973).

<sup>3</sup>S. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975).

## Semi-classical limit

▶ Hawking evaporation: quantum fields in fixed metric

- ▶ Hawking evaporation: quantum fields in fixed metric
- ▶ Exact only in semi-classical limit

$$G 
ightarrow 0 \qquad M 
ightarrow \infty \qquad r_g \sim GM$$
 fixed

- ▶ Hawking evaporation: quantum fields in fixed metric
- ▶ Exact only in semi-classical limit

$$G 
ightarrow 0 \qquad M 
ightarrow \infty \qquad r_g \sim GM$$
 fixed

▶ No backreaction: particle production by eternal black hole

- ▶ Hawking evaporation: quantum fields in fixed metric
- ▶ Exact only in semi-classical limit

$$G 
ightarrow 0 \qquad M 
ightarrow \infty \qquad r_g \sim GM$$
 fixed

▶ No backreaction: particle production by eternal black hole



 $|\mathsf{BH}; M
angle$ 

- ▶ Hawking evaporation: quantum fields in fixed metric
- ▶ Exact only in semi-classical limit

$$G 
ightarrow 0 \qquad M 
ightarrow \infty \qquad r_g \sim GM$$
 fixed

▶ No backreaction: particle production by eternal black hole



- ▶ Hawking evaporation: quantum fields in fixed metric
- ▶ Exact only in semi-classical limit

$$G 
ightarrow 0 \qquad M 
ightarrow \infty \qquad r_g \sim GM$$
 fixed

▶ No backreaction: particle production by eternal black hole



### Finite mass black hole

Extrapolate Hawking evaporation to finite mass

- ▶ Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission

$$\frac{\hbar r_g^{-1}}{M}$$

- ▶ Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission

$$\frac{\hbar r_g^{-1}}{M} = \frac{1}{S}$$

## Finite mass black hole

- ▶ Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission

$$\frac{\hbar r_g^{-1}}{M} = \frac{1}{S}$$



 $|\mathsf{BH}; M
angle$ 

## Finite mass black hole

- ▶ Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission

$$\frac{\hbar r_g^{-1}}{M} = \frac{1}{S}$$

 $|\mathsf{BH}; M\rangle$ 

- ▶ Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission

$$\frac{\hbar r_g^{-1}}{M} = \frac{1}{S}$$



- ▶ Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission



- ▶ Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission



- Extrapolate Hawking evaporation to finite mass
- ▶ Small correction after single emission



Breakdown of Hawking evaporation  $_{\texttt{OOO}} \bullet$ 

earching for small primordial black holes

Hints from analogue models

#### No self-similarity?



Breakdown of Hawking evaporation  $_{\texttt{OOO}} \bullet$ 

earching for small primordial black holes

Hints from analogue models

#### No self-similarity?



Searching for small primordial black holes

Hints from analogue models

#### No self-similarity?



Open questions:

I How long is the classical description of a black hole valid?

What happens after a potential breakdown?

Breakdown of Hawking evaporation

Hints from analogue models

## Primordial black holes<sup>4</sup>

▶ If Hawking evaporation valid throughout: PBHs with  $M \lesssim 10^{15}$  g have disappeared by today

<sup>4</sup> B. Carr, S. Hawking, *Black holes in the early Universe*, Mon. Not. Roy. Astron. Soc. **168** (1974).

- ▶ If Hawking evaporation valid throughout: PBHs with  $M \lesssim 10^{15}$  g have disappeared by today
- ▶ Slowdown possible:<sup>5</sup> lighter PBHs can have survived

- <sup>4</sup> B. Carr, S. Hawking, *Black holes in the early Universe*, Mon. Not. Roy. Astron. Soc. **168** (1974).
- <sup>5</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, *Black Hole Metamorphosis and Stabilization by Memory Burden*, arXiv:2006.00011.

- ▶ If Hawking evaporation valid throughout: PBHs with  $M \lesssim 10^{15}$  g have disappeared by today
- ▶ Slowdown possible:<sup>5</sup> lighter PBHs can have survived
- ▶ Small PBHs as window on quantum gravity

- <sup>4</sup> B. Carr, S. Hawking, *Black holes in the early Universe*, Mon. Not. Roy. Astron. Soc. **168** (1974).
- <sup>5</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, *Black Hole Metamorphosis and Stabilization by Memory Burden*, arXiv:2006.00011.

- ▶ If Hawking evaporation valid throughout: PBHs with  $M \lesssim 10^{15}$  g have disappeared by today
- ▶ Slowdown possible:<sup>5</sup> lighter PBHs can have survived
- ▶ Small PBHs as window on quantum gravity
- ► Constraints change drastically additional material

- <sup>4</sup> B. Carr, S. Hawking, *Black holes in the early Universe*, Mon. Not. Roy. Astron. Soc. **168** (1974).
- <sup>5</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, *Black Hole Metamorphosis and Stabilization by Memory Burden*, arXiv:2006.00011.

- $\blacktriangleright\,$  If Hawking evaporation valid throughout: PBHs with  $M \lesssim 10^{15}\,{\rm g}$  have disappeared by today
- ► Slowdown possible:<sup>5</sup> lighter PBHs can have survived
- ▶ Small PBHs as window on quantum gravity
- ► Constraints change drastically additional material
- ▶ Small PBHs as viable dark matter candidates

- <sup>4</sup> B. Carr, S. Hawking, *Black holes in the early Universe*, Mon. Not. Roy. Astron. Soc. **168** (1974).
- <sup>5</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, *Black Hole Metamorphosis and Stabilization by Memory Burden*, arXiv:2006.00011.

Searching for small primordial black holes  $\circ$ 

Hints from analogue models

#### Primordial black holes as dark matter



Figure from: B. Carr, F. Kühnel, *Primordial Black Holes as Dark Matter: Recent Developments*, arXiv:2006.02838.

Searching for small primordial black holes  $\circ$ 

Hints from analogue models

#### Primordial black holes as dark matter



Figure from: B. Carr, F. Kühnel, *Primordial Black Holes as Dark Matter: Recent Developments*, arXiv:2006.02838.

#### Analogue quantum systems

▶ Ideally: study evaporation without semi-classical limit
- ▶ Ideally: study evaporation without semi-classical limit
- ► Easier: analogue quantum systems
  - Share important properties with gravity
  - Accessible for computations and experiments

- ▶ Ideally: study evaporation without semi-classical limit
- ► Easier: analogue quantum systems
  - Share important properties with gravity
  - Accessible for computations and experiments





- ▶ Ideally: study evaporation without semi-classical limit
- ► Easier: analogue quantum systems
  - > Share important properties with gravity
  - Accessible for computations and experiments



 <sup>6</sup> W. Unruh, Experimental Black-Hole Evaporation?, Phys. Rev. Lett. 46 (1981).
 <sup>7</sup> G. Dvali, C. Gomez, Black Holes as Critical Point of Quantum Phase Transition, arXiv:1207.4059.

- ▶ Ideally: study evaporation without semi-classical limit
- ► Easier: analogue quantum systems
  - Share important properties with gravity
  - Accessible for computations and experiments



 <sup>6</sup> W. Unruh, Experimental Black-Hole Evaporation?, Phys. Rev. Lett. 46 (1981).
 <sup>7</sup> G. Dvali, C. Gomez, Black Holes as Critical Point of Quantum Phase Transition, arXiv:1207.4059. Searching for small primordial black holes

Hints from analogue models  $0 \bullet 0$ 

#### Analogue quantum systems

▶ Exact numerical time evolution computable<sup>8</sup>

<sup>8</sup> M. Michel, S. Zell, *TimeEvolver: A Program for Time Evolution With Improved Error Bound*, arXiv:2205.15346.

### Analogue quantum systems

- ▶ Exact numerical time evolution computable<sup>8</sup>
- ► Indications for
  - Early breakdown of classical description<sup>9</sup>

 $t_q \sim \sqrt{S} r_g$ 

- <sup>8</sup> M. Michel, S. Zell, *TimeEvolver: A Program for Time Evolution With Improved Error Bound*, arXiv:2205.15346.
- <sup>9</sup> M. Michel, S. Zell, The Timescales of Quantum Breaking, arXiv:2306.09410.

### Analogue quantum systems

- ▶ Exact numerical time evolution computable<sup>8</sup>
- ► Indications for
  - Early breakdown of classical description<sup>9</sup>

$$t_q \sim \sqrt{S} r_g ~(\ll S r_g)$$

- <sup>8</sup> M. Michel, S. Zell, *TimeEvolver: A Program for Time Evolution With Improved Error Bound*, arXiv:2205.15346.
- <sup>9</sup> M. Michel, S. Zell, The Timescales of Quantum Breaking, arXiv:2306.09410.

Hints from analogue models  $0 \bullet 0$ 

### Analogue quantum systems

- ▶ Exact numerical time evolution computable<sup>8</sup>
- Indications for

Early breakdown of classical description<sup>9</sup>

$$t_q \sim \sqrt{S} r_g ~~(\ll S r_g)$$

Slowdown of evaporation<sup>10</sup> (additional material)
$$\Gamma_q \sim \frac{1}{S} \frac{1}{r_g}$$

- <sup>8</sup> M. Michel, S. Zell, *TimeEvolver: A Program for Time Evolution With Improved Error Bound*, arXiv:2205.15346.
- <sup>9</sup> M. Michel, S. Zell, *The Timescales of Quantum Breaking*, arXiv:2306.09410.
- <sup>10</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, Black Hole Metamorphosis and Stabilization by Memory Burden, arXiv:2006.00011.

Hints from analogue models  $0 \bullet 0$ 

### Analogue quantum systems

- ▶ Exact numerical time evolution computable<sup>8</sup>
- Indications for

Early breakdown of classical description<sup>9</sup>

$$t_q \sim \sqrt{S} r_g ~~(\ll S r_g)$$

Slowdown of evaporation<sup>10</sup> additional material
$$\Gamma_q \sim \frac{1}{S} \frac{1}{r_g} \quad (\ll \frac{1}{r_g})$$

- <sup>8</sup> M. Michel, S. Zell, *TimeEvolver: A Program for Time Evolution With Improved Error Bound*, arXiv:2205.15346.
- <sup>9</sup> M. Michel, S. Zell, *The Timescales of Quantum Breaking*, arXiv:2306.09410.
- <sup>10</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, Black Hole Metamorphosis and Stabilization by Memory Burden, arXiv:2006.00011.



 Cumulative backreaction of evaporation: classical description of black hole can break down

### Summary

- Cumulative backreaction of evaporation: classical description of black hole can break down
- Open questions
  - I How long is classical description valid?
  - What happens after a potential breakdown?

### Summary

 Cumulative backreaction of evaporation: classical description of black hole can break down

Open questions

- How long is classical description valid?
- What happens after a potential breakdown?
- ▶ Small primordial black holes as window on quantum gravity



 Cumulative backreaction of evaporation: classical description of black hole can break down

Open questions

- How long is classical description valid?
- What happens after a potential breakdown?
- ▶ Small primordial black holes as window on quantum gravity
- ► Analogue models: indications for early slowdown

Constructing the model  $\bullet 000$ 

Phenomenology of small primoridial black holes  $_{\rm O}$ 

### Key property: entropy



$$S = \hbar^{-1} r_g M$$

<sup>11</sup> J. Bekenstein, *Black holes and entropy*, Phys. Rev. D 7 (1973).

## Key property: entropy

▶ Entropy<sup>11</sup>

$$S = \hbar^{-1} r_g M$$

Different microstates

$$\# = \exp(S)$$

 $^{11}$  J. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973).

Constructing the model  $_{\odot \bullet \odot \odot}$ 

Phenomenology of small primoridial black holes  $_{\rm O}$ 

# Prototype model<sup>12</sup>

• Use *S* modes  $\hat{a}_1^{\dagger}, \ldots, \hat{a}_S^{\dagger}$ 

$$\frac{\hat{\mathcal{H}}_{S}}{r_{g}^{-1}} = \sqrt{S} \sum_{k=1}^{S} \frac{\hat{n}_{k}}{\hat{a}_{k}^{\dagger} \hat{a}_{k}}$$

Constructing the model  $_{\odot \bullet \odot \odot}$ 

Phenomenology of small primoridial black holes  $_{\rm O}$ 

14

# Prototype model<sup>12</sup>

• Use *S* modes  $\hat{a}_1^{\dagger}, \ldots, \hat{a}_S^{\dagger}$ 

$$\frac{\hat{\mathcal{H}}_S}{r_g^{-1}} = \hat{n}_0 + \sqrt{S} \left(1 - \frac{\hat{n}_0}{S}\right) \sum_{k=1}^S \hat{n}_k$$

Constructing the model  $0 \bullet 00$ 

Phenomenology of small primoridial black holes  $_{\rm O}$ 

# Prototype model<sup>12</sup>

• Use *S* modes 
$$\hat{a}_1^{\dagger}, \ldots, \hat{a}_S^{\dagger}$$

$$rac{\hat{\mathcal{H}}_{\mathcal{S}}}{r_{g}^{-1}} = \hat{n}_{0} + \sqrt{S}\left(1 - rac{\hat{n}_{0}}{S}
ight)\sum_{k=1}^{S}\hat{n}_{k}$$

► Effective energy gaps

$$\Delta E_k pprox \sqrt{S} r_g^{-1} \left( 1 - rac{\langle \hat{n}_0 
angle}{S} 
ight)$$

Constructing the model  $0 \bullet 00$ 

Phenomenology of small primoridial black holes  $_{\rm O}$ 

# Prototype model<sup>12</sup>

• Use *S* modes 
$$\hat{a}_1^{\dagger}, \ldots, \hat{a}_S^{\dagger}$$

$$\frac{\hat{\mathcal{H}}_{S}}{r_{g}^{-1}} = \hat{n}_{0} + \sqrt{S} \left(1 - \frac{\hat{n}_{0}}{S}\right) \sum_{k=1}^{S} \hat{n}_{k}$$

► Effective energy gaps

$$\Delta E_k \approx \sqrt{S} r_g^{-1} \left( 1 - \frac{\langle \hat{n}_0 \rangle}{S} \right) \stackrel{\langle \hat{n}_0 \rangle = S}{=} 0$$

Constructing the model  $_{\odot \bullet \odot \odot}$ 

Phenomenology of small primoridial black holes  $_{\rm O}$ 

# Prototype model<sup>12</sup>

• Use S modes 
$$\hat{a}_1^{\dagger}, \ldots, \hat{a}_S^{\dagger}$$

$$\frac{\hat{\mathcal{H}}_S}{r_g^{-1}} = \hat{n}_0 + \sqrt{S} \left(1 - \frac{\hat{n}_0}{S}\right) \sum_{k=1}^S \hat{n}_k$$

Effective energy gaps

$$\Delta E_k \approx \sqrt{S} r_g^{-1} \left( 1 - \frac{\langle \hat{n}_0 \rangle}{S} \right) \stackrel{\langle \hat{n}_0 \rangle = S}{=} 0$$

▶ 2<sup>S</sup> microstates:

$$\left(\hat{a}_{0}^{\dagger}\right)^{S}\left(\hat{a}_{1}^{\dagger}\right)^{\left\{0,1\right\}}\ldots\left(\hat{a}_{S}^{\dagger}\right)^{\left\{0,1\right\}}\left|0\right\rangle$$

Constructing the model  $_{\odot \bullet \odot \odot}$ 

Phenomenology of small primoridial black holes o

## Prototype model<sup>12</sup>

• Use S modes 
$$\hat{a}_1^{\dagger}, \ldots, \hat{a}_S^{\dagger}$$

$$\frac{\hat{\mathcal{H}}_{S}}{r_{g}^{-1}} = \hat{n}_{0} + \sqrt{S} \left(1 - \frac{\hat{n}_{0}}{S}\right) \sum_{k=1}^{S} \hat{n}_{k}$$

► Effective energy gaps

$$\Delta E_k \approx \sqrt{S} r_g^{-1} \left( 1 - \frac{\langle \hat{n}_0 \rangle}{S} \right) \stackrel{\langle \hat{n}_0 \rangle = S}{=} 0$$

▶ 2<sup>S</sup> microstates:

$$\left(\hat{a}_{0}^{\dagger}\right)^{S}\left(\hat{a}_{1}^{\dagger}\right)^{\left\{0,1\right\}}\ldots\left(\hat{a}_{S}^{\dagger}\right)^{\left\{0,1\right\}}\left|0\right\rangle$$

► Dictionary  $\hat{n}_0$ : carries mass  $\langle \hat{n}_0 \rangle = S$ : black hole state  $\hat{n}_k$ : carry entropy

$$\frac{\hat{\mathcal{H}}_{S}}{r_{g}^{-1}} = \hat{n}_{0} + \sqrt{S} \left(1 - \frac{\hat{n}_{0}}{S}\right) \sum_{k=1}^{S} \hat{n}_{k}$$

$$\frac{\hat{\mathcal{H}}_S}{r_g^{-1}} = \hat{n}_0 + \sqrt{S} \left(1 - \frac{\hat{n}_0}{S}\right) \sum_{k=1}^S \hat{n}_k + \hat{n}_b + \frac{1}{S} \left(\hat{a}_0^{\dagger}\hat{b} + \text{h.c.}\right)$$

$$\frac{\hat{\mathcal{H}}_{S}}{r_{g}^{-1}} = \hat{n}_{0} + \sqrt{S} \left( 1 - \frac{\hat{n}_{0}}{S} \right) \sum_{k=1}^{S} \hat{n}_{k} + \hat{n}_{b} + \frac{1}{S} \left( \hat{a}_{0}^{\dagger} \hat{b} + \text{h.c.} \right)$$

$$\sum_{k=1}^{S} \langle \hat{n}_k \rangle = 0$$



$$\frac{\hat{\mathcal{H}}_{S}}{r_{g}^{-1}} = \hat{n}_{0} + \sqrt{S} \left( 1 - \frac{\hat{n}_{0}}{S} \right) \sum_{k=1}^{S} \hat{n}_{k} + \hat{n}_{b} + \frac{1}{S} \left( \hat{a}_{0}^{\dagger} \hat{b} + \text{h.c.} \right)$$

$$\sum_{k=1}^{S} \langle \hat{n}_k \rangle \sim S$$

$$\frac{\hat{\mathcal{H}}_{S}}{r_{g}^{-1}} = \hat{n}_{0} + \sqrt{S} \left(1 - \frac{\hat{n}_{0}}{S}\right) \sum_{k=1}^{S} \hat{n}_{k} + \hat{n}_{b} + \frac{1}{S} \left(\hat{a}_{0}^{\dagger}\hat{b} + \text{h.c.}\right)$$

$$\stackrel{\langle \hat{n}_{0} \rangle}{\underset{k=1}{\overset{\langle \hat{n}_{0} \rangle}{\overset{\langle \hat{n}_{k} \rangle}{\overset{\langle \hat{n}_{k} \rangle}{\overset{\langle \hat{n}_{k} \rangle}{\overset{\langle \hat{n}_{0} \rangle}{\overset{\langle \hat{$$



<sup>13</sup>G. Dvali, A Microscopic Model of Holography: Survival by the Burden of Memory, arXiv:1810.02336.

# Full model<sup>16</sup>

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{\mathcal{S}_{>}} + \hat{n}_{b} + \frac{1}{S} \left( \hat{a}_{0}^{\dagger} \hat{b} + \text{h.c.} \right)$$

# Full model<sup>16</sup>

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_{S_{>}} + \hat{n}_{b} + \frac{1}{S} \left( \hat{a}_{0}^{\dagger} \hat{b} + \text{h.c.} \right) + \hat{\mathcal{H}}_{S_{<}} + \text{interactions}$$

## Full model<sup>16</sup>



## Full model<sup>16</sup>



# Full model<sup>16</sup>



► Exact time evolution:<sup>17</sup> transition suppressed dynamically

- <sup>14</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, Black Hole Metamorphosis and Stabilization by Memory Burden, arXiv:2006.00011.
- <sup>15</sup> M. Michel, S. Zell, *TimeEvolver: A Program for Time Evolution With Improved Error Bound*, arXiv:2205.15346.

# Full model<sup>16</sup>



▶ Exact time evolution:<sup>17</sup> transition suppressed dynamically

Slowdown at the latest after half evaporation Deck

- <sup>14</sup> G. Dvali, L. Eisemann, M. Michel, S. Zell, Black Hole Metamorphosis and Stabilization by Memory Burden, arXiv:2006.00011.
- <sup>15</sup> M. Michel, S. Zell, *TimeEvolver: A Program for Time Evolution With Improved Error Bound*, arXiv:2205.15346.

# Example: Big Bang nucleosynthesis (BBN)

 Assumption of Hawking evaporation: PBHs around 10<sup>10</sup> g evaporate during BBN

# Example: Big Bang nucleosynthesis (BBN)

- Assumption of Hawking evaporation: PBHs around 10<sup>10</sup> g evaporate during BBN
- ▶ Effect of slowdown on constraints

 $\triangleright M \gg 10^{10} \,\mathrm{g:}$  unchanged
## Example: Big Bang nucleosynthesis (BBN)

- Assumption of Hawking evaporation: PBHs around 10<sup>10</sup> g evaporate during BBN
- ► Effect of slowdown on constraints
  - $\triangleright M \gg 10^{10} \,\mathrm{g:}$  unchanged
  - $\triangleright$   $M \approx 10^{10}$  g: alleviated

## Example: Big Bang nucleosynthesis (BBN)

- Assumption of Hawking evaporation: PBHs around 10<sup>10</sup> g evaporate during BBN
- ▶ Effect of slowdown on constraints
  - $\triangleright M \gg 10^{10}\,{
    m g}$ : unchanged
  - $\triangleright~M pprox 10^{10}\,{
    m g}$ : alleviated
  - $\triangleright M \ll 10^{10} \, {
    m g}$ : new bounds

back