Gravitational wave signatures from "magnetised" supermassive primordial black holes

Theodoros Papanikolaou

21/06/2023 New Horizons in Primordial Black Hole physics (NEHOP) Napoli, Italy

Contents

1. Introduction

2. Primordial magnetic fields from PBH disks

3. Magnetically induced gravitational waves

4. Conclusions

Magnetic Fields in the Universe

- Magnetic fields (MFs) can play a key role in the process of particle acceleration through the intergalactic medium as well as on the propagation of cosmic rays.
- They can influence as well the dynamical evolution of the primordial plasma in the early Universe.
- Regarding the amplitudes of MFs, in **galactic scales** we observe a MF amplitude $\sim 10^{-7} \rm G$ [J. P. Vallée 2004] while on **intergalactic scales**, there is strong evidence for a pre-galactic seed MF amplitude $\sim 10^{-18} \rm G$ [Dermer et al. 2011].
- However, their dynamical behavior, amplification and above all, their generation mechanism are still not clear.

Primordial magnetic fields from PBH disks

[T. Papanikolaou, K. N. Gourgouliatos, Phys.Rev.D 107 (2023) 10, 103532, arXiv: 2301.10045 [astro-ph.CO]]

Primordial magnetic fields from PBH disks

- Primordial black holes form during the radiation-dominated erabetween BBN and recombination $\Rightarrow 10^5 M_{\odot} < M < 10^{17} M_{\odot}$.
- A disk can easily form due to the vortex-like motion of the primordial plasma between BBN and recombination [Trivedi et al. - 2018].
- In such a physical setup, a seed primordial magnetic field (PMF) à la Biermann [Biermann - 1950] can naturally be generated reading as

$$\frac{\partial \overrightarrow{B}}{\partial t} = \nabla \left(\overrightarrow{u} \times \overrightarrow{B} \right) - \frac{ck_B}{e} \frac{\nabla \rho \times \nabla T}{\rho}. \quad (1)$$

 A seed MF is generated if the energy density and temperature gradients are not parallel to each other.

Locally Isothermal Disks

- Biermann battery induced seed MFs requires disk equation of states (EoS) where $\nabla \rho \times \nabla T \neq 0$. Thus, **isothermal or barotropic are ruled out.**
- Thus, a viable choice for the disk EoS without major ad hoc assumptions is the that of **locally isothermal disk** [G. D'Angelo and S. H. Lubow 2010].

$$p(R, \phi, z) = \rho(R, \phi, z)c_s^2(R), \quad \frac{p}{\rho} = \epsilon^2 \frac{GM}{R}, \quad (2)$$

with
$$\rho(R,z) = f(R) \exp\left(\frac{R - \sqrt{R^2 + z^2}}{\epsilon^2 \sqrt{R^2 + z^2}}\right)$$
. (3)

Eq. (2) can describe quite well a gas that radiates energy gained by socks [S. H. Lubow et al. - 1999], here created by the turbulent motion of the primordial plasma between BBN and recombination era [P. Trivedi et al. - 2018].

The seed PMF

• Considering therefore an ideal gas EoS relating p and ρ one gets the temperature profile $T\sim 1/R$. At the end, Eq. (1) can be recast as

$$\frac{\partial \overrightarrow{B}}{\partial t} = -\frac{c\mu m_{\rm e}GM}{eR^2} \frac{zR}{(R^2 + z^2)^{3/2}} \hat{\phi} . \quad (4)$$

One then obtains a **toroidal seed MF** that is antisymmetric with respect to the equatorial plane.

• This **linear growth of** \overrightarrow{B} is expected to saturate when ∇T and $\nabla \rho$ are smoothed out as it can be seen by Eq. (1). This saturation time $t_{\rm S}$ is defined as

$$t_{\rm s} = \min[t_{\rm dis}, t_{\rm soun}], \text{ where } t_{\rm dis} \equiv (T/\nabla T)/u_{\rm th,e}, t_{\rm sound} \equiv (\rho/\nabla \rho)/c_{\rm s}$$
. (5)

• Regarding now the dynamical time $t_{\rm dyn}$, it is defined as the time needed to establish the vertical hydrostatic equilibrium, namely $t_{\rm dyn}\equiv H_{\rm d}/c_{\rm s}$. Thus, the duration of the linear growth of \overrightarrow{B} will be

$$\Delta T = t_{\rm s} - t_{\rm dyn} \,. \quad (6)$$

The magnetic field amplitude

• Accounting for the mass distribution of PBHs, one gets for the Fourier transform of the \overrightarrow{B} that

$$\mathbf{B}_{k} = \int_{M_{\min}}^{M_{\max}} dM \frac{dn}{dM} \int \left(\int \mathbf{B}(\mathbf{x} - \mathbf{x}') d^{3}\mathbf{x}' \right) e^{i\mathbf{k}\cdot\mathbf{x}} d^{3}\mathbf{x}. \quad (7)$$

• To estimate the MF intensity, one should derive the MF power spectrum defined as $P_B \equiv \langle B_k B_k^* \rangle / V_k$, with $V_k = 4\pi (2\pi/k)^3/3$. At the end, one obtains that

$$\langle B \rangle_{\rm s} = \sqrt{\frac{k^3 P_B(k, t_{\rm s})}{2\pi^2}} \,. \quad (8)$$

• At this point, we need to stress that we introduce a coherent/correlation scale r_{ξ} which is roughly equal to the PBH mean separation scale, i.e

$$r_{\xi} \sim \bar{r}_{\rm PBH} = \left(\frac{M_{\rm PBH}}{\rho_{\rm PBH}}\right)^{1/3} = \left(\frac{4\gamma\pi\rho_{\rm tot,f}H_{\rm f}^{-3}/3}{\Omega_{\rm PBH}(t)\rho_{\rm tot}(t)}\right)^{1/3} \simeq 10 {\rm kpc} \left(\frac{M}{10^{10}M_{\odot}}\right)^{1/2} \left(\frac{10^{-4}}{\Omega_{\rm PBH,f}}\right)^{1/3} \left(\frac{1{\rm meV}}{T}\right) \propto a \, .$$

 This correlation length can be viewed as a UV cutoff scale, below which the magnetic field will interfere,

$$k \le k_{\rm UV} \sim 1/\bar{r}_{\rm PBH} = 10^{19} \Omega_{\rm PBH,f}^{1/3} \frac{M_{\odot}}{M} \left(\frac{a_{\rm f}}{a}\right) \rm Mpc^{-1}$$
.

The magnetic field amplitude

• Assuming monochromatic PBH mass functions and accounting for the effect of cosmic expansion, i.e. $B \sim a^{-2}$, one gets

$$\langle |\mathbf{B_k}| \rangle (z) \simeq 10^{-86} q \Omega_{\text{PBH,f}} \ell_R^2 \left(\frac{M}{M_{\odot}}\right)^2 \left(\frac{k}{1 \text{Mpc}^{-1}}\right)^3 (1+z)^2 \quad (G), \quad (9)$$
with $q = \frac{H_d}{R_{\text{ISCO}}} \le 1$, and $\ell_R = \frac{R_d}{R_{\text{ISCO}}}$.

• For z=30, $k=100 {\rm Mpc^{-1}} \Rightarrow r=10 {\rm kpc}$ and accounting for the fact that $q\leq 1$ and $\Omega_{\rm PBH,f} < 10^{-9} \sqrt{M/M_{\odot}}$ (for $\Omega_{\rm PBH,eq} \leq 1$) one gets

$$B(k = 100 \text{Mpc}^{-1}, z = 30) \le 10^{-30} \text{G} \left(\frac{\ell_{\text{R}}}{10^6}\right)^2 \left(\frac{M}{10^{14} M_{\odot}}\right)^{3/2}$$
. (10)

• For $\ell_R \leq 10^{11}$ [J. C. McKinney et al. - MNRAS (2012)] depending on the accretion rate and $M \geq 10^{10} M_{\odot}$ one gets a seed MF~ $10^{-32} - 10^{-28} \rm G$ which is the minimum seed MF amplitude so as to generate a MF~ $10^{-18} \rm G$ on intergalactic scales due to turbulent/galactic dynamo and instability processes [T. Vachaspati - 2021].

Magnetically induced gravitational waves (MIGWs) from supermassive PBHs

[T. Papanikolaou, K. N. Gourgouliatos, arXiv: 2306.05473 [astro-ph.CO]]

The magnetic anisotropic stress

• Regarding the stress-energy tensor associated to a magnetic field $B^{'}$, this can be recast as:

$$T_{ij}^{(B)} \equiv \frac{1}{4\pi} \left[\frac{B^2 g_{ij}}{2} - B_i B_j \right] .$$
 (11)

From (10) one can define an associated anisotropic stress reading as

$$\Pi_{ij} \equiv \left(P_i^l P_j^m - \frac{P_{ij} P^{lm}}{2}\right) T_{lm}, \quad (12)$$

where P_{ij} is a projection operator defined as $P_{ij} \equiv \delta_{ij} - \hat{\mathbf{k}}_i \hat{\mathbf{k}}_j$ and $\hat{\mathbf{k}} = \mathbf{k}/k$.

• At the end, defining $\Pi_B(k,\eta)$ as $\langle \Pi_{ij}(\mathbf{k},\eta)\Pi_{ij}(\mathbf{q},\eta)\rangle \equiv \Pi_B(k,\eta)\delta(\mathbf{k},\mathbf{q})$, $\Pi_B(k,\eta)$ can be related with the magnetic field power spectrum as

$$\Pi_{B}(k,\eta) = \int d^{3}\mathbf{q} P_{B}(q,\eta) P_{B}(|\mathbf{q} - \mathbf{k}|, \eta) (1 + \gamma^{2}) (1 + \beta^{2}), \quad \beta = \hat{k} \cdot \hat{p}, \quad \gamma = \hat{k} \cdot \widehat{k - p} . \quad (13)$$

GWs from magnetised PBHs

• Having derived before $\Pi_B(k,\eta)$, one can extract the respective equation of motion for the tensor perturbations reading as [Caprini & Durrer - 2006]

$$h_{\mathbf{k}}^{s,"} + 2\mathcal{H}h_{\mathbf{k}}^{s,'} + k^2 h_{\mathbf{k}}^s = \frac{8\pi G}{a^2} \sqrt{\Pi_B(k,\eta)} .$$
 (14)

 Solving the above mentioned equation, we can extract the tensor power spectrum and the GW signal which will read as follows:

$$\mathcal{P}_h(\eta, k) \equiv \frac{k^3 |h_{\mathbf{k}}|^2}{2\pi^2}, \quad \Omega_{\text{GW}}(\eta, k) = \frac{1}{24} \left[\frac{k}{aH} \right]^2 \overline{\mathcal{P}}_h(\eta, k). \quad (15)$$

• At the end, at leading order in $k/k_{\mathrm{UV}} \ll 1$ one gets that

$$\begin{split} &\Omega_{\rm GW}(k,\eta_0) \simeq 6 \times 10^{-85} \left(\frac{k}{\rm Mpc^{-1}}\right) \left(\frac{10^{10} M_{\odot}}{M}\right)^4 q^4 \ell_R^8 \Omega_{\rm PBH,f}^7 \leq 1.5 \times 10^{-13} \quad (16) \\ &\text{since} \quad \ell_R < 10^{11}, \quad q < 1, \quad M > 10^{10} M_{\odot} \quad \text{and} \quad \Omega_{\rm PBH,f} < 10^{-4} \left(\frac{M}{10^{10} M_{\odot}}\right)^{1/2}. \end{split}$$

GWs from magnetised PBHs

- One should account for galactic and turbulent dynamo MF amplification mechanisms present during LSS formation ⇒ MHD simulations.
- Avoiding MHD simulations, we adopt an effective power-law toy-model for the MF amplification which reads as

$$\alpha(k) \equiv \frac{B^{\text{ampl.}}(k)}{B^{\text{non-ampl.}}(k)} = \alpha(k_*) \left(\frac{k}{k_*}\right)^{n_B}, \quad \text{with} \quad k_* = 100 \text{Mpc}^{-1}, \quad n_B \ge 0 \quad \text{and}$$

$$\alpha(k_* = 100 \text{Mpc}^{-1}) = \frac{10^{-18}}{10^{-30} q \left(\frac{\ell_R}{10^6}\right)^2 \left(\frac{M_{\text{PBH}}}{10^{14} M_{\odot}}\right)^{5/2}}.$$
 (17)

• Since $P_B(k) \propto B_k^2$ and $\Omega_{\rm GW} \propto \int\!\!\int\!\!P_B^2$ one gets that $\Omega_{\rm GW}^{\rm ampl.} \propto \alpha^4(k)\Omega_{\rm GW}^{\rm non-ampl.}$. At the end one gets that

$$\Omega_{\text{GW}}(k, \eta_0) \simeq 6 \times 10^{51 - 8n_B} \left(\frac{k}{\text{Mpc}^{-1}}\right)^{4n_B + 1} \left(\frac{10^{10} M_{\odot}}{M}\right)^{14} \Omega_{\text{PBH,f}}^7.$$
(18)

GWs from magnetised PBHs

$$M = 10^{10} M_{\odot}, \Omega_{\text{PBH,f}} = 8 \times 10^{-12}$$

$$10^{-17}$$

$$n_B = 0.0$$

$$n_B = 0.2$$

$$n_B = 0.4$$

$$n_B = 0.6$$

$$n_B = 0.8$$

$$n_B = 1.0$$

$$10^{-13}$$

$$10^{-14}$$

$$10^{-22}$$

$$10^{-25}$$

$$10^{-14}$$

$$10^{-13}$$

$$10^{-13}$$

$$10^{-12}$$

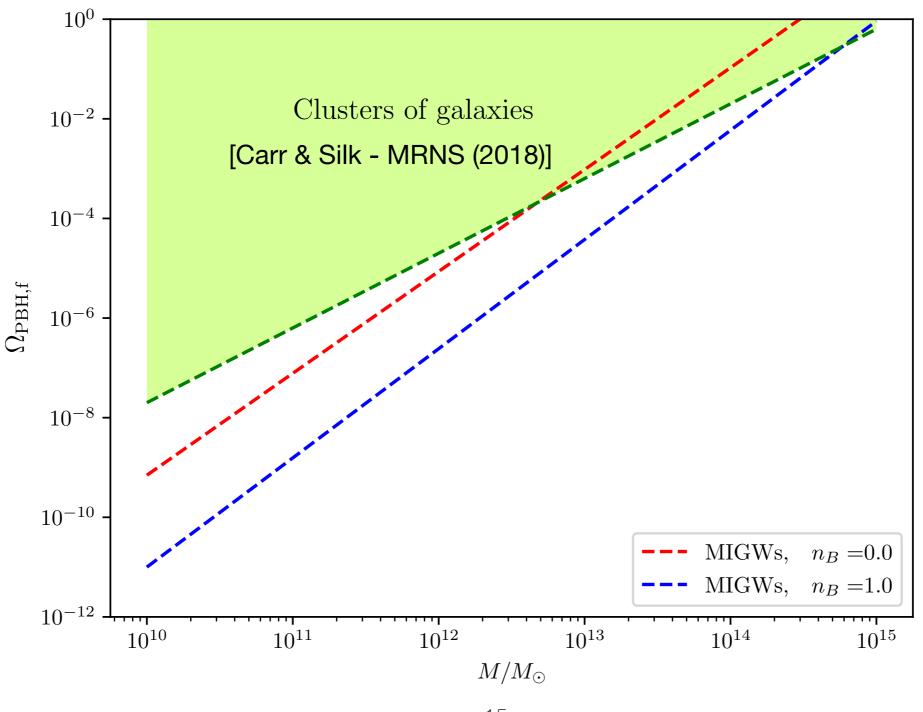
$$10^{-11}$$

$$10^{-10}$$

$$10^{-9}$$

$$f = \frac{k}{2\pi} < \frac{k_{UV}}{2\pi} = 10^5 \frac{M_{\odot}}{M} \Omega_{\text{PBH,f}}^{1/3} = 5 \times 10^{-11} \left(\frac{10^{10} M_{\odot}}{M}\right)^{5/6} \le 5 \times 10^{-7} (\text{Hz})$$

Constraints on $\Omega_{PBH,f}$



Conclusions

- Primordial magnetic fields can naturally arise à la Biermann from accretion disks around supermassive PBHs with masses $M>10^{10}M_{\odot}$.
- A population of magnetised PBHs can induce a stochastic GW background at low frequencies $f_{\rm GW} < 5 \times 10^{-7} \rm Hz$ and with $\Omega_{\rm GW} < 1.5 \times 10^{-13}$.
- Accounting for the galactic/turbulent dynamo MF amplification mechanisms through an effective model, we set conservative constraints on $\Omega_{\rm PBH,f}$ being tighter compared to that coming from LSS probes.
- One needs to perform MHD simulations in order to have an accurate answer regarding the MF amplification and the effect on the GW signal.
- The formalism developed here for the derivation of the MIGWs is quite generic
 and can be applied to any population of "magnetised" PBHs, e.g. PBHs with
 magnetic charge [Maldacena 2021] or Kerr-Newmann PBHs [Hooper et al. 2023, See Krnjaic's Talk], promoting thus the portal of MIGWs to a new GW
 counterpart associated to PBHs, potentially detectable by future GW
 detectors.

