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- Maybe Dark matter (… but could have been made after BBN)

- Baryons/electrons

- Maybe Gravitational waves (… but model dependent)
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Seeing into the past

- Maybe PBH … you know this already
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2. Leading candidate to seed galactic magnetic fields via dynamo
Need seed large scale > 10 kpc  fields 

1. Opportunity to see further back into cosmic history pre-BBN

3. Observational consequences

Primordial Magnetic Fields 

Ultra high energy cosmic ray propagation
Modify blazar emission spectra

4.  Known formation mechanisms
1st order phase transitions

Inflationary long wavelength modes

Compensated isogurvature perturbations

Durrer and Neronov (2013)

Flitter, Creque-Sarbinowski, Kamionkowsi, Dai 2304.03299

Turner, Widrow (1988); Ratra (1992)
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Figure 1. Schematic overview of the main constraints on IGMFs, as discussed in Sec. 2.3. The lower and
upper bounds on LB come from the decay of magnetic fields due to magnetic diffusion and the Hubble
radius, respectively [161]. The upper bounds are due to Zeeman splitting and Faraday rotation observations
of extragalactic objects [161]. The ‘early magnetic dissipation’ bound indicates the region of the parameter
space excluded by freely decaying MHD in the early Universe [58,115]. Other limits from cosmology
come from CMB observations (spectrum [58,162] and anisotropies [163]); the currently strongest limit [60],
labelled ‘JS19’, is shown for the case of a scale-invariant spectrum (aB = 0) which leads to the most
conservative bounds.

stronger IGMFs along the line of sight to the object would have a measurable impact on the observations,
thus giving a robust upper limit for the IGMF strength.

Another constraint on IGMFs is derived from Faraday rotation measurements of polarised
radio emission from quasars and other extragalactic sources. Faraday rotation describes the
(wavelength-dependent) rotation of the polarisation plane of polarised electromagnetic radiation when it
traverses a magnetised medium. Therefore, the value of the relevant observable, the so-called rotation
measure (RM), may be subdivided into contributions from the host galaxy, the IGM, and the Milky Way.
With a rigorous statistical analysis of RM data, one can then identify the impact of the IGMF, and hence
derive limits on the IGMF strength which in general depend on LB. There are many studies on the
topic [167–174], all of which give upper limits ranging from nG to a few µG. This is also confirmed by
other methods, like the interpretation of radio observations as the result of shock acceleration in galaxy
clusters [175,176]. In this context, fast radio bursts (FRBs) can play an important role [177], delivering both
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Kerr-Newman Metric
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The origin of our universe’s cosmological magnetic fields remains a mystery. In this study, we con-
sider whether these magnetic fields could have been generated in the early universe by a population
of charged, spinning primordial black holes. To this end, we calculate the strength of the magnetic
fields generated by this population, and describe their evolution up to the current epoch. We find
that extremal black holes in the mass range M ⇠ 1028 � 1036 g could potentially produce magnetic
fields with present day values as large as B ⇠ 10�20 � 10�15 G. While we remain largely agnostic as
to the origin of these spinning, charged black holes, we do briefly discuss how new physics may have
induced a chemical potential which could have briefly maintained the black holes in an electrically
charged state in the early universe.

I. INTRODUCTION

According to the standard paradigm, the magnetic
fields present within galaxies and galaxy clusters were
generated through the amplification of preexisting, but
much weaker magnetic fields through the dynamo mech-
anism [1–5]. This process is e↵ective, however, only if a
non-zero magnetic field is present for the dynamos to am-
plify. The origin of these magnetic field “seeds,” which
were present at the onset of structure formation, remains
an open question and has generated a great deal of spec-
ulation [4, 6–10]. In particular, it has been proposed that
primordial magnetic fields could arise within the context
of inflation [9, 11–16], or during phase transitions that
took place in the early universe [17–23].

The origin of the primordial magnetic field is some-
what obscured by the complicated plasma and magne-
tohydrodynamics processes that have taken place over
cosmic time. One can attempt, however, to constrain
the properties of the seed field by studying the magnetic
fields found within the voids of the intergalactic medium,
where primordial fields could exist in a relatively pristine
state. In such environments, the evolution of the mag-
netic field would be largely driven by the expansion of
the universe, leading to the dilution of the field strength
as B / a

�2 (corresponding to ⇢B / a
�4), and to the

growth of the field’s correlation length as ⇠ / a.
In this letter, we consider the possibility that pri-

mordial magnetic fields may have been generated in the
early universe by a subdominant population of primor-
dial black holes. In order to produce a non-zero magnetic
field, these black holes must have been both spinning and
electrically charged, so we use the formalism of the Kerr-
Newman metric. In our scenario, this population is tem-
porarily charged in the early universe due to a nonzero
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chemical potential, which eventually relaxes to zero at
which point the black holes discharge. Upon discharge,
the Kerr-Newman magnetic fields evolve according to
Hubble expansion and the (now neutral) black holes con-
stitute a present day dark matter abundance. While such
a scenario is admittedly quite speculative and involves
some very exotic elements, we find that astrophysically
interesting magnetic fields could have potentially been
generated by such objects.

II. KERR-NEWMAN BLACK HOLES

Generating a magnetic field requires both an electro-
magnetic current and a departure from spherical sym-
metry. For this reason, we are interested here in black
holes that are both charged and rotating. Such Kerr-
Newman black holes are entirely characterized by their
mass, M , angular momentum, J , and charge, Q. In
Boyer-Lindquist coordinates, the geometry associated
with such an object is described by the following line
element [24–26]:
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MAGNETIC FIELDS

We begin by considering an isolated black hole whose
mass, angular momentum, and charge are not apprecia-
bly evolving with time, hence neglecting the possible ef-
fects of Hawking evaporation and accretion. This sta-
tionary geometry is described by the Kerr-Newman met-
ric given in Eq. (1). To determine the E and B fields, we

need both the metric and the vector potential Aµ, which
satisfy [26]
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In considering the case of an isotropic population of
black holes,1 it will be useful to have an expression for
the magnetic field of a single black hole averaged over a
sphere of radius R > r+. We adopt the following volume-
averaged convention2:

h ~Bi =
1
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V

d
3
x ~B , (16)

where V = 4⇡R3
/3 is the volume of the sphere over which

we are averaging. Starting from Eq. (15) and omitting
the algebraic details, the volume-averaged magnetic field
magnitude can be written as
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In the ↵ ⌧ R limit, the average magnetic field reduces to
hBi ⇡ 2Q↵/R

3. This limit will be applicable throughout
our entire parameter space of interest.
The primordial magnetic field is also characterized by

a correlation length ⇠, which governs the extent to which
di↵usion and damping will suppress any magnetic fields
that are generated by black holes in the early universe.

1 A possible objection to this scenario is that the black holes might
act as an ensemble of magnetic dipoles which interact to form
domains of some characteristic scale. This will not be applica-
ble in this case, however, as we will consider black hole number
densities which are su�ciently small such that no more than one
black hole will be present in a given Hubble radius at early times.

2 We have chosen this convention since it admits a closed form
expression for the average field. We have confirmed numeri-
cally that our definition coincides with the RMS average value,
B2

RMS = 1
V

R
d3x ~B2, up to an O(1) factor.
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that are generated by black holes in the early universe.
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act as an ensemble of magnetic dipoles which interact to form
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ble in this case, however, as we will consider black hole number
densities which are su�ciently small such that no more than one
black hole will be present in a given Hubble radius at early times.
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In the ↵ ⌧ R limit, the average magnetic field reduces to
hBi ⇡ 2Q↵/R

3. This limit will be applicable throughout
our entire parameter space of interest.
The primordial magnetic field is also characterized by

a correlation length ⇠, which governs the extent to which
di↵usion and damping will suppress any magnetic fields
that are generated by black holes in the early universe.

1 A possible objection to this scenario is that the black holes might
act as an ensemble of magnetic dipoles which interact to form
domains of some characteristic scale. This will not be applica-
ble in this case, however, as we will consider black hole number
densities which are su�ciently small such that no more than one
black hole will be present in a given Hubble radius at early times.

2 We have chosen this convention since it admits a closed form
expression for the average field. We have confirmed numeri-
cally that our definition coincides with the RMS average value,
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black hole will be present in a given Hubble radius at early times.

2 We have chosen this convention since it admits a closed form
expression for the average field. We have confirmed numeri-
cally that our definition coincides with the RMS average value,
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Integrating over the angular volume element evaluated
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These expressions, in conjunction with the fact that the
mass of a black hole can be identified with energy, yields
the first law of black hole thermodynamics:
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where ⌦ and � are the angular velocity and the electro-
static potential of the black hole. Note that the quanti-
ties  (and hence TBH), ⌦, and � are constant over the
horizon. In order to obtain explicit forms for ⌦ and �
in the context of a Kerr-Newman black hole, we need to
take the di↵erential of the area given in Eq. (5). After
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Comparing this to Eq. (9), we can determine the black
hole’s angular velocity and electrostatic potential:

⌦ =
↵

r
2
+
+ ↵2

, � =
r+Q

r
2
+
+ ↵2

. (12)

III. GENERATING COSMOLOGICAL
MAGNETIC FIELDS

We begin by considering an isolated black hole whose
mass, angular momentum, and charge are not apprecia-
bly evolving with time, hence neglecting the possible ef-
fects of Hawking evaporation and accretion. This sta-
tionary geometry is described by the Kerr-Newman met-
ric given in Eq. (1). To determine the E and B fields, we

need both the metric and the vector potential Aµ, which
satisfy [26]
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Note that the E� and B� components are both vanishing,
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In considering the case of an isotropic population of
black holes,1 it will be useful to have an expression for
the magnetic field of a single black hole averaged over a
sphere of radius R > r+. We adopt the following volume-
averaged convention2:
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/3 is the volume of the sphere over which
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In the ↵ ⌧ R limit, the average magnetic field reduces to
hBi ⇡ 2Q↵/R

3. This limit will be applicable throughout
our entire parameter space of interest.
The primordial magnetic field is also characterized by

a correlation length ⇠, which governs the extent to which
di↵usion and damping will suppress any magnetic fields
that are generated by black holes in the early universe.

1 A possible objection to this scenario is that the black holes might
act as an ensemble of magnetic dipoles which interact to form
domains of some characteristic scale. This will not be applica-
ble in this case, however, as we will consider black hole number
densities which are su�ciently small such that no more than one
black hole will be present in a given Hubble radius at early times.

2 We have chosen this convention since it admits a closed form
expression for the average field. We have confirmed numeri-
cally that our definition coincides with the RMS average value,
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d3x ~B2, up to an O(1) factor.
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domains of some characteristic scale. This will not be applica-
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Step1: Form Schwarzschild PBH

PBH are easy to make with the right ingredients

- enhanced small scale power 
- large non-gaussianities
- first order phase transitions

Nearly all formation mechanisms form Schwarzschild PBH
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1.BH formation 3. Mergers 4. Hawking Radiation2. Binary Capture

FIG. 1. The time sequence of early universe events considered in this paper. (1) BH Formation: Small-scale density
perturbations collapse after inflation to form a primordial BH population with little angular momentum, a? ⇠ 0. Even though
the energy density associated with this population may have been small compared to the total at this time, the relative fraction
of the energy density in BHs increases until they evaporate. (2) Capture: If the binary capture rate is larger than the Hubble
rate, �bc > H, the BHs will e�ciently form gravitational bound states. (3) Mergers: Once the capture rate freezes out,
�bc ⇠ H, bound objects are no longer disrupted by multi-body dynamics and can begin to inspiral, leading to the production of
a stochastic background of high-frequency gravitational waves. The energy density in these gravitational waves can contribute
significantly to �Ne↵ . (4) Evaporation: If the BHs merge before evaporating, the population acquires significant angular
momentum, a? ⇠ 0.7, which increases the proportion of Hawking radiation in gravitons. When the BH population evaporates,
it produces Standard Model particles which thermalize to create the initial conditions for the hot radiation dominated early
universe. The gravitons produced as part of this radiation do not thermalize, but instead contribute to �Ne↵ .

If the early universe had ever been dominated by Schwarzschild BHs, each type of new light, decoupled particle
species is robustly predicted to contribute to �Ne↵ at the following level [29]:
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0.1� 0.3 Dirac Fermion

0.02� 0.04 MasslessVector
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(Schwarzschild BH Domination) , (2)

where the larger value for each species corresponds to BH masses ⇠ 109 g, which evaporate just before BBN and the
smaller value corresponds to BH masses < 105 g, whose Hawking evaporation reheats the universe to T � 200 GeV,
su�cient to produce all known particle species. Intriguingly, with the exception of the graviton, every contribution
in Eq. (2) is within the projected sensitivity of stage IV CMB experiments, �Ne↵ ⇠ 0.02 [33]. A major result of our
paper is the generalization of this result to the case of rotating BHs, as summarized in Fig. 5.

It has long been known that Hawking radiation rates are sensitive to the angular momentum of the BH [34], and
in this paper we revisit graviton and gravitational wave signatures that arise from an early universe population of
evaporating Kerr BHs [35]. Although the simplest scenarios for primordial BH generation yield an initial population
of Schwarzschild BHs, we identify regions of parameter space in which the BHs undergo one or more mergers in the
early universe, resulting in a secondary BH population with substantial spin. This possibility leads to at least three
potentially observable signals:

1. Gravitational Waves, ⌦GW

BH mergers in the early universe could produce a significant energy density of gravitational waves, although
with a spectrum that peaks well above the range probed by detectors such as LIGO, VIRGO, BBO, ET or LISA.
If these mergers occur only shortly before the BHs evaporate, future space-based gravitational wave detectors
could potentially probe this signal.

2. Dark Radiation from Mergers, �Ne↵,GW

The gravitational waves generated by these BH mergers could also contribute significantly to the energy density
in radiation (i.e. to Ne↵). If these mergers occur only shortly before the BHs evaporate, we find that �Ne↵ can

Post formation, mergers can generate spin
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FIG. 1. The time sequence of early universe events considered in this paper. (1) BH Formation: Small-scale density
perturbations collapse after inflation to form a primordial BH population with little angular momentum, a? ⇠ 0. Even though
the energy density associated with this population may have been small compared to the total at this time, the relative fraction
of the energy density in BHs increases until they evaporate. (2) Capture: If the binary capture rate is larger than the Hubble
rate, �bc > H, the BHs will e�ciently form gravitational bound states. (3) Mergers: Once the capture rate freezes out,
�bc ⇠ H, bound objects are no longer disrupted by multi-body dynamics and can begin to inspiral, leading to the production of
a stochastic background of high-frequency gravitational waves. The energy density in these gravitational waves can contribute
significantly to �Ne↵ . (4) Evaporation: If the BHs merge before evaporating, the population acquires significant angular
momentum, a? ⇠ 0.7, which increases the proportion of Hawking radiation in gravitons. When the BH population evaporates,
it produces Standard Model particles which thermalize to create the initial conditions for the hot radiation dominated early
universe. The gravitons produced as part of this radiation do not thermalize, but instead contribute to �Ne↵ .
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where the larger value for each species corresponds to BH masses ⇠ 109 g, which evaporate just before BBN and the
smaller value corresponds to BH masses < 105 g, whose Hawking evaporation reheats the universe to T � 200 GeV,
su�cient to produce all known particle species. Intriguingly, with the exception of the graviton, every contribution
in Eq. (2) is within the projected sensitivity of stage IV CMB experiments, �Ne↵ ⇠ 0.02 [33]. A major result of our
paper is the generalization of this result to the case of rotating BHs, as summarized in Fig. 5.

It has long been known that Hawking radiation rates are sensitive to the angular momentum of the BH [34], and
in this paper we revisit graviton and gravitational wave signatures that arise from an early universe population of
evaporating Kerr BHs [35]. Although the simplest scenarios for primordial BH generation yield an initial population
of Schwarzschild BHs, we identify regions of parameter space in which the BHs undergo one or more mergers in the
early universe, resulting in a secondary BH population with substantial spin. This possibility leads to at least three
potentially observable signals:

1. Gravitational Waves, ⌦GW

BH mergers in the early universe could produce a significant energy density of gravitational waves, although
with a spectrum that peaks well above the range probed by detectors such as LIGO, VIRGO, BBO, ET or LISA.
If these mergers occur only shortly before the BHs evaporate, future space-based gravitational wave detectors
could potentially probe this signal.

2. Dark Radiation from Mergers, �Ne↵,GW

The gravitational waves generated by these BH mergers could also contribute significantly to the energy density
in radiation (i.e. to Ne↵). If these mergers occur only shortly before the BHs evaporate, we find that �Ne↵ can
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sulting from hierarchical mergers, we utilize previous stud-
ies of the evolution of BH spins through binary coalescence.
Due to advancements in numerical relativity (NR) and post-
Newtonian (PN) methods, a number of groups have devel-
oped reliable formulae for the final spin following a merger
of two spinning BHs (Buonanno et al. 2008; Kesden 2008;
Tichy & Marronetti 2008; Healy et al. 2014; Hofmann et al.
2016; Jiménez-Forteza et al. 2017). Intuitively, there are two
contributions to the spin following a coalescence: the indi-
vidual spins of the two progenitor BHs and the binary sys-
tem’s orbital angular momentum. As the BBHs inspiral to-
ward each other, they lose energy and orbital angular mo-
mentum through the emission of GWs. When the Bus finally
merge, as shown by Buonanno et al. (2008), the remaining or-
bital angular momentum that contributes to the final BH spin
can be approximated by the orbital angular momentum of a
test particle at the innermost stable circular orbit of the final
BH (where the mass of the test particle is taken to be the re-
duced mass of the BBHs). The contribution from the orbital
angular momentum will be most significant for equal mass
BBHs and will dominate over the contribution from the spin
angular momentum. For example, as is well understood from
NR simulations, a merger of nonspinning BBHs of equal mass
will result in a final BH with a dimensionless spin magnitude
of 0.6864 (Hofmann et al. 2016). In order for the spins of
the BBHs to cancel the orbital angular momentum, resulting
in a nonspinning BH, the spins must be sufficiently large and
antialigned to the orbital angular momentum, and the mass
ratio q ⌘ m2/m1  1 must be sufficiently small. In fact, using
the results of Buonanno et al. (2008), the antialigned contri-
butions to the spins, a

-
1, a

-
2, and the mass ratio, q, must satisfy

1
q

a
-
1 + qa

-
2 + 2

p
3 = 0 (2)

in order to end up with a nonspinning BH. Thus, even for
maximally antialigned spins, the mass ratio must satisfy q <p

3 -
p

2 ⇡ 0.32 in order to overwhelm the orbital angular
momentum. As we shall see, this explains why major merg-
ers (in which q ⇠ 1) result in BHs with a relatively high spin
distribution, peaked at a = 0.69, and with little support below
a ⇡ 0.5.

In this work, we consider major mergers (q& 0.7) as the ba-
sis of the hierarchical merger scenario. If the BHs of each gen-
eration interact with each other dynamically, they are more
likely to form binaries with BHs of similar mass (Sigurdsson
& Hernquist 1993; Rodriguez et al. 2016b) and we would ex-
pect mergers of near-equal mass BHs (Rodriguez et al. 2016a;
O’Leary et al. 2016). We would similarly expect near-unity
mass ratios for BBHs of primordial origin, as PBH formation
scenarios generally allow a narrow mass range for the first
generation (Kovetz et al. 2016), and we assume that because
of dynamical considerations, such BHs only merge with part-
ners of the same generation.

The assumption of major mergers differs from the semi-
nal work of Hughes & Blandford (2003), which considered
the spin evolution of supermassive BHs as they grow through
minor mergers. In contrast to major mergers, minor mergers
tend to decrease the spin of the final BH, because the binary’s
orbital angular momentum is smallest when it augments the
total BBH spins (a prograde orbit) and largest when it coun-
teracts it (a retrograde orbit).

We also assume that, in the absence of any aligning mech-
anism, the spins of each generation of BHs in the hierarchi-

Figure 1. Probability distribution for the dimensionless spin magnitude for
each generation of BHs formed through hierarchical mergers. Unless labeled
otherwise, the first generation is nonspinning (a = 0) and all mergers take
place between equal mass BHs (q = 1). For each generation, the spin direc-
tions are assumed to be isotropically distributed. Note the rapid convergence
to a universal distribution (turquoise solid line). The dotted orange line shows
the second-generation distribution for the case where the first generation has
near-maximal (a = 0.99) spins. The initially nonspinning (a = 0) and initially
near-maximally spinning (a = 0.99) cases are indistinguishable by the fourth
generation, converging on the universal distribution.

cal merger scenario are isotropically distributed on the sphere.
The effects of BBH spins that are preferentially aligned or an-
tialigned with the orbital angular momentum are discussed in
Section 3. However, it is important to note that spins that are
initially partially aligned (antialigned) with the orbital angu-
lar momentum can become significantly antialigned (aligned)
during the inspiral due to precession (Kesden et al. 2010).
This will not affect an isotropic distribution of spins, as a dis-
tribution of spins that is isotropic at large distances will re-
main isotropic during the inspiral up to the point of plunge
(Kesden et al. 2010). Furthermore, the magnitudes of the
BBH spins remain nearly constant during the inspiral (up to
2PN order), which further lends confidence to our calculation
of the hierarchical merger spin distribution.

2. METHODS

2.1. Hierarchical Merger Spin Distribution

We apply the formulas of Hofmann et al. (2016) to predict
the final BH spin from a merger of two BHs, given the spin
vectors and masses of the component BHs. This allows us
to build a statistical distribution of spin magnitudes resulting
from hierarchical mergers, similar to the distributions found
by Tichy & Marronetti (2008) and Lousto et al. (2010).

Although we assume major mergers and isotropically dis-
tributed spin orientations, we wish to remain general with re-
spect to other aspects of the hierarchical merger scenario. In
particular, we do not at the outset specify the spin distribu-
tion of the first generation of BHs (before any mergers have
occurred) or the exact distribution of mass ratios of merging
BHs (although we limit ourselves to q � 0.7). Furthermore,
the desired spin distribution presumably evolves as each gen-
eration’s BHs merge to form the next generation, but we do
not wish to restrict ourselves to a particular generation of the
hierarchical merger scenario. Fortunately, as we show below,
the resulting spin distribution is relatively insensitive to the
spin magnitudes of the first generation, the mass ratios (within
the range 0.7 q 1), or which generation we consider (start-
ing with the second generation). We demonstrate this explic-
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1.BH formation 3. Mergers 4. Hawking Radiation2. Binary Capture

FIG. 1. The time sequence of early universe events considered in this paper. (1) BH Formation: Small-scale density
perturbations collapse after inflation to form a primordial BH population with little angular momentum, a? ⇠ 0. Even though
the energy density associated with this population may have been small compared to the total at this time, the relative fraction
of the energy density in BHs increases until they evaporate. (2) Capture: If the binary capture rate is larger than the Hubble
rate, �bc > H, the BHs will e�ciently form gravitational bound states. (3) Mergers: Once the capture rate freezes out,
�bc ⇠ H, bound objects are no longer disrupted by multi-body dynamics and can begin to inspiral, leading to the production of
a stochastic background of high-frequency gravitational waves. The energy density in these gravitational waves can contribute
significantly to �Ne↵ . (4) Evaporation: If the BHs merge before evaporating, the population acquires significant angular
momentum, a? ⇠ 0.7, which increases the proportion of Hawking radiation in gravitons. When the BH population evaporates,
it produces Standard Model particles which thermalize to create the initial conditions for the hot radiation dominated early
universe. The gravitons produced as part of this radiation do not thermalize, but instead contribute to �Ne↵ .

If the early universe had ever been dominated by Schwarzschild BHs, each type of new light, decoupled particle
species is robustly predicted to contribute to �Ne↵ at the following level [29]:

�Ne↵ '

8
>>>>><

>>>>>:

0.05� 0.1 Real Scalar

0.1� 0.3 Dirac Fermion

0.02� 0.04 MasslessVector

0.07� 0.14 MassiveVector

0.003� 0.006 Graviton

(Schwarzschild BH Domination) , (2)

where the larger value for each species corresponds to BH masses ⇠ 109 g, which evaporate just before BBN and the
smaller value corresponds to BH masses < 105 g, whose Hawking evaporation reheats the universe to T � 200 GeV,
su�cient to produce all known particle species. Intriguingly, with the exception of the graviton, every contribution
in Eq. (2) is within the projected sensitivity of stage IV CMB experiments, �Ne↵ ⇠ 0.02 [33]. A major result of our
paper is the generalization of this result to the case of rotating BHs, as summarized in Fig. 5.

It has long been known that Hawking radiation rates are sensitive to the angular momentum of the BH [34], and
in this paper we revisit graviton and gravitational wave signatures that arise from an early universe population of
evaporating Kerr BHs [35]. Although the simplest scenarios for primordial BH generation yield an initial population
of Schwarzschild BHs, we identify regions of parameter space in which the BHs undergo one or more mergers in the
early universe, resulting in a secondary BH population with substantial spin. This possibility leads to at least three
potentially observable signals:

1. Gravitational Waves, ⌦GW

BH mergers in the early universe could produce a significant energy density of gravitational waves, although
with a spectrum that peaks well above the range probed by detectors such as LIGO, VIRGO, BBO, ET or LISA.
If these mergers occur only shortly before the BHs evaporate, future space-based gravitational wave detectors
could potentially probe this signal.

2. Dark Radiation from Mergers, �Ne↵,GW

The gravitational waves generated by these BH mergers could also contribute significantly to the energy density
in radiation (i.e. to Ne↵). If these mergers occur only shortly before the BHs evaporate, we find that �Ne↵ can
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FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]

⇠0 & 10�7 Mpc

✓
hB0i

10�15 G

◆
. (31)

This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
the horizon: L � �qAµJ

µ

EM
. Since the time-like compo-

nent couples to the charge density J
0

EM
, we can identify

the combination �qA0|r+ with a chemical potential, µq:

L � �qA0J
0

EM
⌘ µqJ

0

EM
. (32)

Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:

dN ⇠
d!

exp [(! �m⌦� q�)/TBH]⌥ 1
, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.
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FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]
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This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
the horizon: L � �qAµJ

µ

EM
. Since the time-like compo-

nent couples to the charge density J
0

EM
, we can identify

the combination �qA0|r+ with a chemical potential, µq:
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Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:

dN ⇠
d!

exp [(! �m⌦� q�)/TBH]⌥ 1
, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.
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FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]
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This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
the horizon: L � �qAµJ

µ
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. Since the time-like compo-
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Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:
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exp [(! �m⌦� q�)/TBH]⌥ 1
, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.
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FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]
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This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
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Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:
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, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.
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FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]
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This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
the horizon: L � �qAµJ

µ

EM
. Since the time-like compo-

nent couples to the charge density J
0

EM
, we can identify

the combination �qA0|r+ with a chemical potential, µq:

L � �qA0J
0

EM
⌘ µqJ

0

EM
. (32)

Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:

dN ⇠
d!

exp [(! �m⌦� q�)/TBH]⌥ 1
, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.

Constant correlation length

4

FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]

⇠0 & 10�7 Mpc

✓
hB0i

10�15 G

◆
. (31)

This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
the horizon: L � �qAµJ

µ

EM
. Since the time-like compo-

nent couples to the charge density J
0

EM
, we can identify

the combination �qA0|r+ with a chemical potential, µq:

L � �qA0J
0

EM
⌘ µqJ

0

EM
. (32)

Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:

dN ⇠
d!

exp [(! �m⌦� q�)/TBH]⌥ 1
, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.
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Figure 1. Schematic overview of the main constraints on IGMFs, as discussed in Sec. 2.3. The lower and
upper bounds on LB come from the decay of magnetic fields due to magnetic diffusion and the Hubble
radius, respectively [161]. The upper bounds are due to Zeeman splitting and Faraday rotation observations
of extragalactic objects [161]. The ‘early magnetic dissipation’ bound indicates the region of the parameter
space excluded by freely decaying MHD in the early Universe [58,115]. Other limits from cosmology
come from CMB observations (spectrum [58,162] and anisotropies [163]); the currently strongest limit [60],
labelled ‘JS19’, is shown for the case of a scale-invariant spectrum (aB = 0) which leads to the most
conservative bounds.

stronger IGMFs along the line of sight to the object would have a measurable impact on the observations,
thus giving a robust upper limit for the IGMF strength.

Another constraint on IGMFs is derived from Faraday rotation measurements of polarised
radio emission from quasars and other extragalactic sources. Faraday rotation describes the
(wavelength-dependent) rotation of the polarisation plane of polarised electromagnetic radiation when it
traverses a magnetised medium. Therefore, the value of the relevant observable, the so-called rotation
measure (RM), may be subdivided into contributions from the host galaxy, the IGM, and the Milky Way.
With a rigorous statistical analysis of RM data, one can then identify the impact of the IGMF, and hence
derive limits on the IGMF strength which in general depend on LB. There are many studies on the
topic [167–174], all of which give upper limits ranging from nG to a few µG. This is also confirmed by
other methods, like the interpretation of radio observations as the result of shock acceleration in galaxy
clusters [175,176]. In this context, fast radio bursts (FRBs) can play an important role [177], delivering both

PBH seed galactic B fields

Batista Saveliev 2105.12020



Overview

Motivation for primordial B fields

Kerr-Newman PBH

Cosmological history

Model building



Towards a Complete Model

Possible realization: add misaligned scalar coupled to charged

In analogy with Affleck-Dine or spontaneous baryogengesis



Towards a Complete Model

Possible realization: add misaligned scalar coupled to charged

By isotropy, only time component nonzero



Towards a Complete Model

Possible realization: add misaligned scalar coupled to charged

By isotropy, only time component nonzero

As long as scalar evolves in time, chemical potential is on
It splits energy levels of +/- to bias accumulation of net charge

4

FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]

⇠0 & 10�7 Mpc

✓
hB0i

10�15 G

◆
. (31)

This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
the horizon: L � �qAµJ

µ

EM
. Since the time-like compo-

nent couples to the charge density J
0

EM
, we can identify

the combination �qA0|r+ with a chemical potential, µq:

L � �qA0J
0

EM
⌘ µqJ

0

EM
. (32)

Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:

dN ⇠
d!

exp [(! �m⌦� q�)/TBH]⌥ 1
, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.
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FIG. 1. The present day strength and correlation length of the
magnetic fields generated by primordial black holes, for the
optimal case of Q?↵? = 0.5. Also shown are the constraints
on this parameter space from gravitational microlensing sur-
veys [28–31], gravitational wave observations [32–34], and
from the impact of accretion [35]. Astrophysically relevant
magnetic fields (B >⇠ 10�20 G) could be generated by primor-
dial black holes in the mass range ofM ⇠ 1028�1036 g without
violating existing constraints. For non-extremal black holes,
the strength of the resulting magnetic fields would be smaller
than those shown by a factor of Q?↵?/0.5.

From this figure, we see that astrophysically relevant
magnetic fields (B >

⇠ 10�20 G) could potentially have
been generated by primordial black holes with masses in
the range of M ⇠ 1028�1036 g, without violating any ex-
isting constraints. Throughout this mass range, once the
black holes discharge, their Hawking radiation is negligi-
ble, so this population constitutes a faction of the dark
matter today [38, 39].

In this parameter space of interest, the correlation
length of the present day magnetic field falls in the range
of ⇠ ⇠ 10�6

� 10�1 Mpc. Across this range of values,
the magnetic fields are predicted to survive the e↵ects of
magnetic dissipation and di↵usion [5, 6, 40, 41]. More ex-
plicitly, in order to avoid early magnetic dissipation the
present day field should satisfy [42]

⇠0 & 10�7 Mpc

✓
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10�15 G
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. (31)

This condition is easily fulfilled for the relevant parame-
ter space in Fig. 1, corresponding to magnetic fields with
B ⇠ 10�20

� 10�15 G and ⇠ & 10�12
� 10�7 Mpc. Thus,

in this regime we are justified in considering only Hub-
ble expansion in translating the early universe field to its
present day value.

V. CHARGED BLACK HOLES AND
CHEMICAL POTENTIALS

Thus far, we have remained agnostic regarding the ori-
gin of the Kerr-Newman black holes. Of course it’s very
di�cult to create black holes with geometrically signifi-
cant charge in the early universe. In a cosmological set-
ting, any net charge would be quickly neutralized by the
surrounding plasma, which we assume has a compensat-
ing charge to maintain the charge neutrality of the uni-
verse. Even if one were to consider a charged black hole
in a vacuum, its charge is expelled exponentially quickly
through Hawking radiation [43]. The existence of a pop-
ulation of charged black holes would thus require the in-
troduction of new physics.
The Hawking radiation of electrically neutral black

holes is symmetric with respect to the production of par-
ticles and anti-particles. By contrast, charged black holes
preferentially radiate particles with the same sign charge
as that of the black hole, an e↵ect which can be param-
eterized in terms of a chemical potential at the event
horizon. Note that the electromagnetic potential, Aµ,
of the Kerr-Newman black hole from Eq. (13) sources a
chemical potential for charged particles through its la-
grangian coupling to a particle of charge q produced at
the horizon: L � �qAµJ

µ

EM
. Since the time-like compo-

nent couples to the charge density J
0

EM
, we can identify

the combination �qA0|r+ with a chemical potential, µq:

L � �qA0J
0

EM
⌘ µqJ

0

EM
. (32)

Alternatively, consider the spectrum of particle emis-
sion from a Kerr-Newman black hole, which follows a
thermal distribution [38, 44]:

dN ⇠
d!

exp [(! �m⌦� q�)/TBH]⌥ 1
, (33)

where ! and m are the energy and angular momentum of
the emitted particle, ⌦ and � are the angular velocity and
electrostatic potential of the black hole from Eq. (12),
and the ⌥ refers to bosons and fermions, respectively.
We can identify µq ⌘ q� as a chemical potential, biasing
the emission of particles whose charge has the same sign
as that of the black hole. Note that �A0|r+ is identi-
fied with �, which matches the approach from Eq. (32).
From this expression, we also see that m⌦ acts in a simi-
lar manner, leading the black hole to preferentially expel
particles whose angular momentum is aligned with that
of the black hole. Thus, the black hole will shed both
quantities as it evaporates, evolving towards a neutral,
non-rotating state.
Just as the intrinsic chemical potential of the Kerr-

Newman black hole allows it to shed its charge, one can
imagine charging up a black hole (or maintaining a black
hole in a charged state) by means of an external chemical
potential. If such a chemical potential is greater than
that of the black hole itself, then the black hole will build
up charge until it reaches an extremal state.

Eventually and PBH quickly discharge
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