Beyond perturbative non-Gaussianity for primordial black holes 2211.08348; EPL **142**(4), 2023, 49001

Andrew Gow



NEHOP Naples, 19 June 2023



 Primordial curvature perturbation typically assumed to be Gaussian, but may not be

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 1/9        |



- Primordial curvature perturbation typically assumed to be Gaussian, but may not be
- $\blacktriangleright$  PBHs form in tail of  $P(\zeta),$  so non-Gaussianity can strongly affect them

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 1/9        |



- Primordial curvature perturbation typically assumed to be Gaussian, but may not be
- $\blacktriangleright$  PBHs form in tail of  $P(\zeta),$  so non-Gaussianity can strongly affect them

• Common to write 
$$\zeta = \zeta(\zeta_G)$$

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 1/9        |



- Primordial curvature perturbation typically assumed to be Gaussian, but may not be
- $\blacktriangleright$  PBHs form in tail of  $P(\zeta),$  so non-Gaussianity can strongly affect them
- Common to write  $\zeta = \zeta(\zeta_G)$
- ▶ Typically treated perturbatively (*f*<sub>NL</sub>, *g*<sub>NL</sub>, ...)

| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 1/9        |
|------------------------------------|----------------------------------|------------|
| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|                                    |                                  |            |



- Primordial curvature perturbation typically assumed to be Gaussian, but may not be
- $\blacktriangleright$  PBHs form in tail of  $P(\zeta),$  so non-Gaussianity can strongly affect them
- Common to write  $\zeta = \zeta(\zeta_G)$
- ► Typically treated perturbatively (*f*<sub>NL</sub>, *g*<sub>NL</sub>, ...)
- Not sufficient for non-G in the far tail

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 1/9        |



- Primordial curvature perturbation typically assumed to be Gaussian, but may not be
- $\blacktriangleright$  PBHs form in tail of  $P(\zeta),$  so non-Gaussianity can strongly affect them
- Common to write  $\zeta = \zeta(\zeta_G)$
- ► Typically treated perturbatively (*f*<sub>NL</sub>, *g*<sub>NL</sub>, ...)
- Not sufficient for non-G in the far tail
- Need to find a non-perturbative method

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 1/9        |



## ► Classical USR transformation $\zeta = -\frac{1}{3}\ln\left(1 - 3\zeta_G\right)$

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 2/9        |



## ► Classical USR transformation $\zeta = -\frac{1}{3}\ln(1 - 3\zeta_G)$

Doesn't include full effects

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 2/9        |



### ► Classical USR transformation $\zeta = -\frac{1}{3}\ln(1 - 3\zeta_G)$

- Doesn't include full effects
- Want general  $P(\zeta_G) \to P(\zeta)$

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 2/9        |



Classical USR transformation

$$\zeta = -\frac{1}{3}\ln\left(1 - 3\zeta_G\right)$$

- Doesn't include full effects
- Want general  $P(\zeta_G) \to P(\zeta)$
- Can do in general with CDF transformation:

$$F[\zeta(r), r] = F_G[\zeta_G(r), r]$$

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 2/9        |



▶ PBHs depend on compaction C, rather than  $\zeta$ 

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 3/9        |



- ▶ PBHs depend on compaction C, rather than  $\zeta$
- Additional non-linearity in this relation

$$C = C_l - \frac{3}{8}C_l^2, \quad C_l = -\frac{4}{3}r\zeta'$$

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 3/9        |



- ▶ PBHs depend on compaction C, rather than  $\zeta$
- Additional non-linearity in this relation

$$C = C_l - \frac{3}{8}C_l^2, \quad C_l = -\frac{4}{3}r\zeta'$$

▶ Need to get  $P(C_l)$  to determine PBH properties

| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 3/9        |

#### Compaction probability

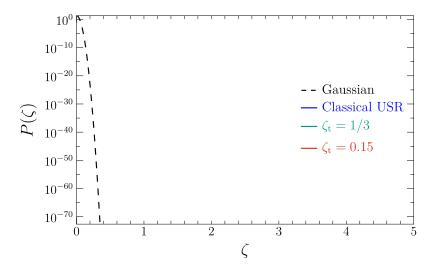


• Bivariate Gaussian P(X, Y)

$$X = r\zeta'_G, \quad Y = \zeta_G$$

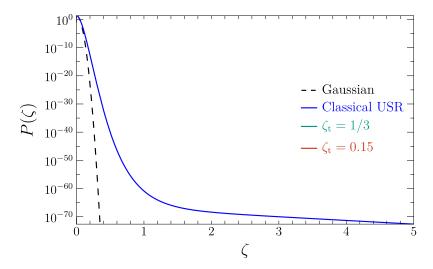
| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 4/9        |

#### Compaction probability



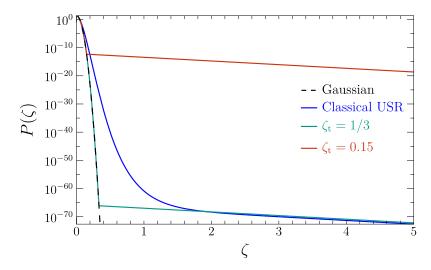

• Bivariate Gaussian 
$$P(X, Y)$$
  
 $X = r\zeta'_G, \quad Y = \zeta_G$ 

# • Compaction probability $P(C_l) = \int \mathsf{d}\zeta_G \frac{3}{4|\mathcal{J}_1(\zeta_G)|} P\left[-\frac{1}{\mathcal{J}_1(\zeta_G)} \left(\frac{3}{4}C_l + 2\Sigma_{XY}\mathcal{J}_2(\zeta_G)\right), \zeta_G\right]$ $\mathcal{J}_1(\zeta_G) = \frac{\mathsf{d}\zeta}{\mathsf{d}\zeta_G}, \quad \mathcal{J}_2(\zeta_G) = \frac{\mathsf{d}\zeta}{\mathsf{d}\Sigma_{YY}}$


| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 4/9        |



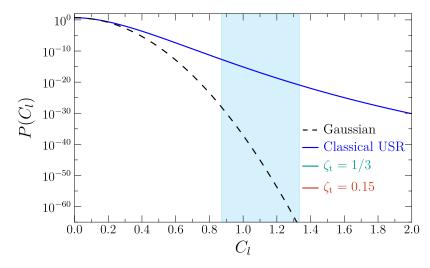



| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 5/9        |





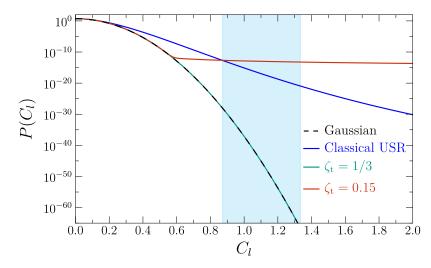
| Andrew Gow                         | ICG Portsmouth                   |     |
|------------------------------------|----------------------------------|-----|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 5/9 |






| Andrew Gow                         | ICG Portsmouth                   |     |
|------------------------------------|----------------------------------|-----|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 5/9 |

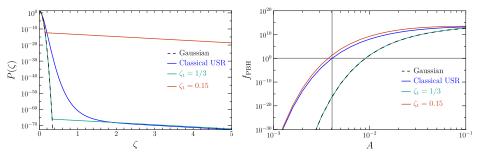
#### Tail vs transition






| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 5/9        |

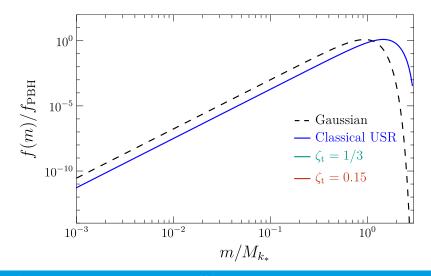
#### Tail vs transition






| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 5/9        |

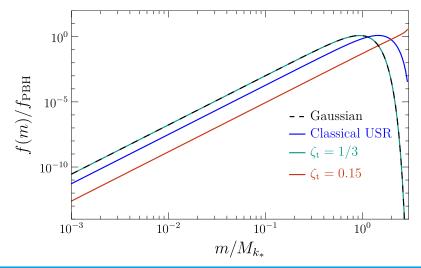
#### Tail vs transition






| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 5/9        |

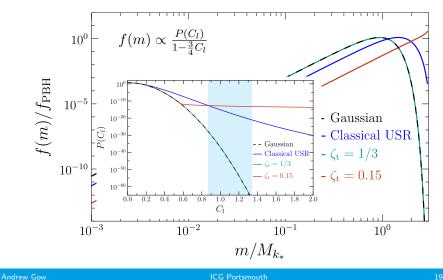
#### PBH mass distribution






| Andrew Gow                         | ICG Portsmouth                   | 19/ |
|------------------------------------|----------------------------------|-----|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity |     |

#### PBH mass distribution

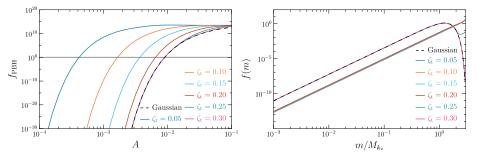





| ndrew Gow ICG Portsmouth           |                                  | 19/06/2023 |  |
|------------------------------------|----------------------------------|------------|--|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 6/9        |  |

#### PBH mass distribution

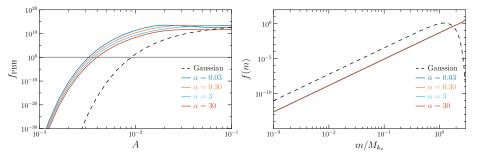





Beyond perturbative non-G for PBHs

Non-perturbative non-Gaussianity

#### Transition point $\zeta_{t}$






| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 7/9        |

#### Exponential slope $\alpha$





| Andrew Gow                         | ICG Portsmouth                   | 19/06/2023 |
|------------------------------------|----------------------------------|------------|
| Beyond perturbative non-G for PBHs | Non-perturbative non-Gaussianity | 8/9        |



#### ► Non-Gaussianity can greatly enhance PBH formation

| Andrew Gow                         | ICG Portsmouth | 19/06/2023 |
|------------------------------------|----------------|------------|
| Beyond perturbative non-G for PBHs | Conclusions    | 9/9        |



- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail

| Andrew Gow                         | ICG Portsmouth | 19/06/2023 |
|------------------------------------|----------------|------------|
| Beyond perturbative non-G for PBHs | Conclusions    | 9/9        |



- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail
- Non-perturbative treatment can be used for any  $P(\zeta)$

| Andrew Gow                         | ICG Portsmouth | 19/06/2023 |
|------------------------------------|----------------|------------|
| Beyond perturbative non-G for PBHs | Conclusions    | 9/9        |



- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail
- Non-perturbative treatment can be used for any  $P(\zeta)$
- Transition between Gaussian and non-Gaussian behaviour is more important than the far tail

| Andrew Gow                         | ICG Portsmouth | 19/06/2023 |
|------------------------------------|----------------|------------|
| Beyond perturbative non-G for PBHs | Conclusions    | 9/9        |



- ► Non-Gaussianity can greatly enhance PBH formation
- Perturbative treatment may miss deviations from Gaussianity in the far tail
- Non-perturbative treatment can be used for any  $P(\zeta)$
- Transition between Gaussian and non-Gaussian behaviour is more important than the far tail
- Shallow tail in  $P(\zeta)$  highlights divergence in mass distribution

2211.08348; EPL 142(4), 2023, 49001

| Andrew Gow                         | ICG Portsmouth | 19/06/2023 |
|------------------------------------|----------------|------------|
| Beyond perturbative non-G for PBHs | Conclusions    | 9/9        |