

Precision computations for the LHC

Claude Duhr

Annual Theory Meeting 2022 Durham 14 December 2022

Established by the European Commission

Deutsche Forschungsgemeinschaft

The need for precision

- Particle physics today is driven by the LHC.
- Collides protons at high energies.
 - Gives us access to physics at new energy scales!

- The LHC is a proton collider.
 - Proton = bound state of quarks and gluons.
 - LHC = Collisions of quarks and gluons.
 - ➡ How to make predictions?

QCD factorisation

The 'master formula' for LHC observables:

$$d\sigma(pp \to X) = \sum_{i,j} \int_0^1 dx_1 \, dx_2 f_i(x_1) \, f_j(x_2) \frac{d\hat{\sigma}(ij)}{d\hat{\sigma}(ij)} \to X$$

<u>Parton Distribution Functions</u> non-perturbative; describe structure of the proton

Partonic cross section

computable in perturbation theory as collisions between quarks and gluons

$$p = \underbrace{i, x_1}_{j, x_2} d\hat{\sigma} = \text{scattering amplitude}$$

Scattering amplitudes

• *A* computed from Feynman diagrams:

- Each diagram translates into an analytic formula.
- ➡ Perturbative expansion ~ expansion in number of loops.
- Probabilities are related to the square of the amplitude:

Proba ~
$$|\mathcal{A}|^2 = \mathcal{A}\mathcal{A}^* =$$

- In general we do not know how to compute amplitudes exactly.
 - → Perturbation theory: $\alpha_s =$ coupling constant $\simeq 0.118$

$$\mathcal{A} = \mathcal{A}^{(0)} + \alpha_s \, \mathcal{A}^{(1)} + \alpha_s^2 \, \mathcal{A}^{(2)} + \dots \\ \mathbf{IO} \quad \mathbf{NLO} \quad \mathbf{NNLO} \\ \sim 10\% \quad \sim 1\%$$

- Precision increases with the number of terms.
 - How many terms needed?
- To reach 1%, need next-to-next-toleading order (NNLO) precision.
 - ➡ Is this needed?

[Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi]

Loop integrations

- State of the art:
 - ➡ 1 loop: usually doable.
 - ➡ 2 loops: results for low multiplicity.
 - → 3 loops: some $2 \rightarrow 1$.

 $\int d^4k \, d^4l \qquad \Rightarrow 2x4 = 8 \text{ integrations: Cannot be so hard?}$ $\Rightarrow \text{ cf. phase space for 4 jets:}$ $(4-1) \ge 3 = 9 \text{ integrations.}$

- Loop integrals are usually divergent!
 - ➡ UV divergencies: removed by renormalisation.
 - ➡ IR divergencies: cancel against real emissions.

We know how to combine reals and virtuals at NLO and NNLO.

[NNLO: Anastasiou, Melnikov, Petriello; Catani, de Florian, Grazzini; Gehrmann, Gehrmann-de Ridder, Glover; Czakon; Czakon, Fiedler, Mitov; Caola, Melnikov, Schulze; Caola, Melnikov, Röntsch; Gaunt, Stahlhofen, Tackmann, Walsh; Boughezal, Focke, Giele, Liu, Petriello; Cacciari, Dreyer, Karlberg, Salam, Zanderighi; G.Bevilacqua, A.Kardos, G.Somogyi, Z.Trocsanyi, Z.Tulipant; L.Magnea, L.Maina, G.Pelliccioli, C.Signorile-Signorile, P.Torrielli, S.Uccirati, ...]

State of the art

- Loop integrations:
 - ➡ 1 loop: usually doable.

- → 2 loops: typically $2 \rightarrow 2$ and $2 \rightarrow 3$ with massless particles.
- → 3 loops: $2 \rightarrow 1$ and first $2 \rightarrow 2$ with massless particles.
- Combing real and virtual corrections:
 - ➡ NLO: usually doable.
 - → NNLO: typically $2 \rightarrow 2$ and first $2 \rightarrow 3$.
 - → N3LO: $2 \rightarrow 1$.

- In the rest of the talk: focus (mostly) on virtual contributions.
- Virtual corrections require the integration over momentum of unresolved particle.

Outline of the talk:

 The frontier of precision computations for the LHC.
 The mathematics of loop computations.

The frontier of precision computations for the LHC

Loop integrations

Numerical

- **X** Often very slow.
- Potential large cancellations
 & instabilities.
- In principle applicable to any integral!

Analytical

- Fast & Reliable.
- All cancellations analytic.
- Analytic computations tough: 'every integral is different'!

State of the art

2-to-2 with massive propagators. $t\overline{t} \ HH \ Hj$ Examples: $\gamma\gamma(\text{finite } m_t)$ 2-to-2 with massless propagators (no virtual tops!). $jj Hj(m_t = \infty) \gamma\gamma$

Vj VV VH

State-of-the-art NNLO

Fully differential predictions for $2 \rightarrow 2$ processes at NNLO are becoming the standard, e.g.:

 $p p \rightarrow t t$

[Czakon, Fiedler, Mitov; Catani, Devoto, Grazzini, Kallweit, Mazzitelli]

 $p p \rightarrow V + j$

[Boughezal, Focke, Liu, Petriello; Boughezal, Campbell, Ellis, Focke, Liu, Petriello: Gehrmannde Ridder, Gehrmann, Glover, Huss, Morgan]

 $p \, p \to \gamma \, \gamma$

[Catani, Cieri, de Florian, Ferrera, Grazzini]

 $p p \rightarrow \gamma + j$

[Chen, Gehrmann,

Glover, Höfer, Huss]

 $p p \rightarrow H + j$

[Boughezal, Caola, Melnikov, Petriello; Schulze; Boughezal, Focke, Giele, Liu, Petriello; Chen, Pires; Czakon, van Hameren, Gehrmann, Glover, Jaquier]

 $p p \to V V'$

[Cascioli, Gehrmann Grazzini, et al.; Gehrmann, Grazzini, Kallweit, et al.: Grazzini, Kallweit, Wiesemann, Yook]

 $p p \rightarrow j j$

[Currie, Gehrmann-de Ridder, Gehrmann, Glover, Huss, Mitov, Poncelet]

 $p p \to V H$

[Ferrera, Grazzini, Tramontano: Gauld, Gehrmann-de Ridder, Glover, Huss, Majer]

• The relevant two-loop virtual integrals are mostly known (analytically or numerically).

Frontier: two-loop computations with massive propagators.

- Algebraic complexity ('bookkeeping of algebraic expressions'):
 - Increase in the number of scales!
 - Swell in algebraic complexity standard computer algebra tools cannot handle this!

- Numerical ways of dealing with algebraic complexity.
 [Badger et al.; Ita et al.; Peraro; ...]

 Heavily inspired by computational algebraic geometry.
- Analytic complexity ('doing the integrals'):
 Complicated special functions in many variables.
 Better understanding of how to perform loop integrals? [Henn]
 Some developments were inspired by modern mathematics and/or more formal areas of physics.

The 2-to-3 frontier

Two-loop integrals for 5-point functions (with massless propagators) are slowly becoming available.

[Gehrmann, Henn, Lo Presti; Papadopoulos, Tommasini, Wever; Genrmane, Henn, Wasser, Zhang, Zoia; Abreu, Ita, Moriello, Page, Tscherbow]

- Extremely challenging computation, offen requiring the development of novel computational techniques and/or new insight from mathematics.
- This opens the way for two-loop amplitudes for $2 \rightarrow 3$ processes at the LHC:

[Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia; Abreu, Dormans, Frebres Cordero, Ita, Page, Sotnikov]

The 2-to-3 frontier

• Over the last year, the first NNLO predictions for $p p \rightarrow 3\gamma$, $p p \rightarrow 2\gamma + j$ and $p p \rightarrow 3j$ have been published.

[Czakon, Mitov, Poncelet]

- First N³LO computation for the LHC: Higgs production in gluon fusion (in large m_t limit).
- Algebraic complexity under control:
 - → ~100.000 diagrams & 1.028 integrals.

[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger]

• Analytic complexity an issue: Elliptic functions show up...

The dawn of N³LO

• N^3LO corrections to $2 \rightarrow 1$ processes are mature.

N³LO for 2-to-1 processes

150

 \rightarrow K-factors (N³LO/NNLO) ~ 2-5 %.

[Table from Snowmass '21 Whitepaper [2203.06730]]

0.984

+0.6%

-0.5%

 $\pm 2\%$

 $\pm 2.13\%$

Scale dependence & PDF uncertainties ~ few %.

N³LO for 2-to-1 processes

- We are also starting to see the first differential predictions for $2 \rightarrow 1$ processes at N³LO.
 - ➡ For example fiducial cross section for Drell-Yan production in the fiducial volume at N³LO+N³LL:

$$\begin{array}{l} 66\,{\rm GeV} < \,m_{\ell\ell} \,\leq\, 116\,{\rm GeV} \\ |\eta^{\ell^{\pm}}| < 2.5 \\ |\vec{p}_T^{\ \ell^{\pm}}| > 27\,{\rm GeV} \end{array}$$

Order	σ [pb] Symmetric cuts	
k	$N^k LO$	$N^{k}LO+N^{k}LL$
0	$721.16^{+12.2\%}_{-13.2\%}$	
1	$742.80(1)^{+2.7\%}_{-3.9\%}$	$748.58(3)^{+3.1\%}_{-10.2\%}$
2	$741.59(8)^{+0.42\%}_{-0.71\%}$	$740.75(5)^{+1.15\%}_{-2.66\%}$
3	$722.9(1.1)^{+0.68\%}_{-1.09\%} \pm 0.9$	$726.2(1.1)^{+1.07\%}_{-0.77\%}$

• Recently also the first 3-loop integrals contributing to $2 \rightarrow 2$ scattering have started to appear. [Henn, Mistlberger, Smirnov, Wasser]

• We also have first results for 3-loop processes at the LHC:

 $q \, \bar{q} \to \gamma \gamma \qquad \qquad q \, \bar{q} \to q \, \bar{q} \qquad \qquad g \, g \to g \, g$

[Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi]

→ Together with the 2-loop corrections to $p p \rightarrow 2\gamma + j$, these are all the loop corrections needed to compute diphoton production at N³LO. The mathematics of loop computations

Scattering amplitudes

- What kind of objects are scattering amplitudes?
- Scattering amplitudes are functions of the energies and momenta of the scattered particles.
 - ➡ What kind of functions?
- Unitarity: Probabilities must add up to 1.
 - Consequence: Amplitudes must have discontinuities:

 $\operatorname{Disc} \mathcal{A} \neq 0$

➡ They cannot be simple polynomials or rational functions.

• One-loop integrals:

$$\log z = \int_1^z \frac{dt}{t} \qquad \qquad \operatorname{Li}_2(z) = -\int_0^z \frac{dt}{t} \,\log(1-t)$$

Extension to two-loop integrals with massless partons.

Beyond one loop, also multiple polylogarithms appear:

$$G(0;z) = \log z$$

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n; t) \quad G(a_1; z) = \log\left(1 - \frac{z}{a_1}\right)$$

$$G(0, 1; z) = -\text{Li}_2(z)$$

[Poincaré; Kummer; Lappo-Danilevsky; Goncharov; ...]

→ Well understood mathematics! [Goncharov; Brown; Goncharov; Brown; Brown; Goncharov; Brown; Goncharov; Brown; Brown; Goncharov; Brown; Goncharov; Brown; Goncharov; Brown; B

[Goncharov; Brown; Goncharov, Spradling, Vergu, Volovich; CD; Panzer; ...]

The elliptic sunrise

- Polylogarithms are not the end of the story.
- Prototype example: the massive sunrise graph.

Evaluates to a (complete) elliptic integral of the 1st kind:

$$\mathbf{K}(\lambda) = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-\lambda x^2)}}$$

The elliptic sunrise

- Elliptic curve ~ set of points (x, y) that satisfy an equation of the form $y^2 = P(x)$, where P(x) is a polynomial of degree 3 or 4.
- Example:

$$y^2 = x(x-1)(x-1/\lambda)$$
 $y^2 = R_2(x,m_2^2,m_3^2)R_2(s,x,m_1^2)$
 \Rightarrow cf. the elliptic integral: $K(\lambda) = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-\lambda x^2)}}$

- Kinematics encoded in 'shape' of the elliptic curve.
- When looked over the complex numbers, it becomes torus.

Beyond elliptic

- It does not stop with elliptic curves!
 - Riemann sphere (~complex plane): polylogarithms.
 - Elliptic curves: elliptic polylogarithms.
 - ➡ K3 surfaces, Calabi-Yau manifolds,...

[Brown, Schnetz; Bloch, Kerr, Vanhove; Bourjaily, McLeod, von Hippel, Vergu, Volk, Wilhelm; Bönisch, CD, Fischbach, Klemm, Nega, Safari; CD, Klemm, Loebbert, Nega, Porkert; CD, Klemm, Nega, Tancredi; Pögel, Wang, Weinzierl]

[Picture drawn with Wolfram Demonstrations Project]

Sphere

Torus (elliptic curve)

Calabi-Yau manifold

New mathematical structures, with connections to string theory.

Bananas and ice-cones

• The equal-mass banana integrals (in 2D) can be expressed in terms of iterated integrals involving the periods of Calabi-Yau.

[Bönisch, CD, Fischbach, Klemm, Nega; Pögel, Wang, Weinzierl; CD, Klemm, Nega, Tancredi]

- ➡ Natural iterated integrals on the moduli space of the CY.
- Natural generalisation of the iterated integrals of modular forms encountered at 2 loops (and 3 loops).
- The same functions arise from the 'ice-cone' integral: [CD, Klemm, Nega, Tancredi]

Is there anything useful you can possibly do with this math?

• Are these things relevant for phenomenology?

 \rightarrow YES!

• Elliptic curves show up in many processes of phenomenological relevance:

$$pp \to Hj$$
 $e^+e^- \to e^+e^ pp \to t\bar{t}j$
 $pp \to t\bar{t}$ $pp \to \eta_c$ ρ -parameter

+many more!

• This is one of the major obstacles to obtaining (analytic) results for precision predictions!

Jul 2004

betp Bhabha scattering @ 2 loops

- One of the key processes at an e^+e^- collider is Bhabha scattering.
 - \rightarrow Elastic scattering $e^+e^- \rightarrow e^+e^-$
 - We would like to know NNLO QED corrections, retaining the complete dependence on the electron mass.
 - Missing ingredient: 2-loop corrections.
 - Open problem for 20 years!

A complete set of scalar master integrals for massive 2-loop Bhabha scattering: where we are *

M. Czakon^{ab}, J. Gluza^{ab} and T. Riemann^a

^aDeutsches Elektronen-Synchrotron, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany

^bInstitute of Physics, University of Silesia, ul. Uniwersytecka 4, 40007 Katowice, Poland

- 3 integral families:
 - 2 planar families, expressible in terms of polylogarithms:

[Henn, Smirnov, Smirnov (2013); Heller, von Manteuffel, Schabinger (2019)]

[CD, Smirnov, Tancredi (2021)]

1 non-planar family, involves an elliptic curve:

- We have analytic results for the 2-loop QED corrections to Bhabha scattering, including the full dependence on the electron mass! [Delto, CD, Tancredi, Zhu (to appear, 2023)]
 - Both for the polarised and unpolarised cross sections
- Analytic results involve iterated integrals over kernels associated with elliptic curves.
- We are currently comparing to existing approximate 2-loop results.

Conclusion

- In recent years we have seen many breakthroughs in our ability to perform analytic multi-loop computations.
 - \Rightarrow 2-to-3 processes at two loops are within reach.
 - N³LO corrections to 2-to-1 inclusive process are under becoming available, and 3-loop 2-to-2 amplitudes are being explored!
- Loop amplitudes involve very interesting mathematics.
 Elliptic curves, Calabi-Yau varieties, ...
- Understanding this mathematics will allow us to obtain new results of phenomenological interest.
 - Example: Complete 2-loop QED corrections to Bhabha scattering.