Dark Matter **PPAP Community Meeting** University of Manchester, 21st - 22nd September 2022

Dr Sally Shaw sally.shaw@ed.ac.uk

3 ways to detect dark matter particles Enabling discovery with a multi-faceted approach

Direct Detection - State of the Field

Dark Matter Phase Space

- Direct detection experiments have an enormous range of masses to cover
- Current experiments are not sensitive to many candidates at either ends of the mass range
- Need to "delve deep and search wide"
 - continue to scale up in mass
 - reduce and understand **low-energy** backgrounds
 - lower thresholds (new technology/techniques)

arXiv:2209.07426

Status of Direct Detection

Liquid Xenon

History of Direct Detection with Liquid Xenon

XENON10 **ZEPLIN-III** XENON100 **ZEPLIN-II** 15 kg 62kg 31 kg 12 kg (7.2 kg)(5 kg) (34 kg) (7 kg) $6.6 \times 10^{-43} \text{ cm}^2$ $8.8 \times 10^{-44} \text{ cm}^2$ 8.1×10-44 cm² $3.4 \times 10^{-44} \text{ cm}^2$ 2007 2007 2008 2010

Future of Direct Detection with Liquid Xenon

LZ

7,000 kg (5,500 kg)

Projected for 15 t-y: $1.4 \times 10^{-48} \text{ cm}^2$

Projected for 20 t-y: $1.4 \times 10^{-48} \text{ cm}^2$

XENONnT

"G3" / XLZD Consortium

5,900 kg (4,400 kg)

40,000 - 100,000 kg

Projected for 1000 t-y: $1.4 \times 10^{-49} \text{ cm}^2$

UK Involvement in LZ

Science and Technology **Facilities Council**

WIMP Search Convener

Imperial College London

Republic

10

and

ROYAL

HOLLOWAY

UNIVERSIT OF LONDON

~60 members in UK, 14 PIs (full collaboration ~350 members)

Brighton

Southamptor

Plymouth

Bournemouth

Calibration source deployment tubes (3 total)

LZ SURF, USA

17T Gd-loaded liquid scintillator

田田田

120 veto PMTs

2T LXe skin veto

131 skin PMTs

60,000 gallons of ultrapure water

494 LXe PMTs

7T active LXe target

Neutron calibration conduit (2 total)

LZ Timeline

CD3 & TDR March 2017

2017

PMT arrays arrive Dec 2018

2018

TPC Complete Aug 2019

FFR assembly

Dec 2018

Cryostat & TPC move underground Oct 2019

2019

Grid manufacture Spring 2018

OD tanks go underground Oct-Nov 2018

Cryostat arrives May 2018

Electronics installation Autumn 2020

HV install & sealed March 2020

OD construction Winter 2020

Dec 2021 **OD** Fill une 2021

LZ First Science Run

First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment arXiv:2207.03764

S2

S1

 ΔT

П

depth/Z

time

Outgoing

Particle

Electrons

Incoming Particle

Ratio of S2/S2 provides ER/NR discrimination

LZ First Results - July 2022

Minimum: 5.9×10^{-48} at 30 GeV

SD: WIMP-neutron

arXiv:2102.11740

XENONnT

LNGS, Italy

- ~6 t LXe target, enclosed in water Cherenkov veto (future plans for Gd-doping of water)
 - Inline radon distillation $\rightarrow < 1 \mu Bq/kg$
- First science run: 97.1 livedays collected
 - Issues with fields ran with drift field 23 V/cm (XENONnT sensitivity paper: 200 V/cm, LZ: 190 V/cm)
- Background in the (1, 30) keV search region lowest ever achieved in a dark matter detector, ~5 times lower than in XENON1T
- No NR limit yet
- ER excess in XENON1T definitively ruled out
- Limits published for solar axions, ALPs, v magnetic moment, dark photons Search for New Physics in Electronic Recoil

Data from XENONnT arXiv:2207.11330

XLZD

XENON, DARWIN and LZ have joined forces to form the **XLZD** consortium.

Science drivers:

- The ultimate probe of WIMPs down to the neutrino fog, with potentially transformative implications for particle physics and our view of the Universe
- A competitive and economic search for neutrinoless double-beta decay, which is so **fundamental** to nuclear physics and the origin of matter
- Measurements of multiple astrophysical neutrinos signals at lowest energies, with key insights into the physics of neutrinos

Sun

- pp neutrinos
- Solar
- metallicity
- ⁷Be, ⁸B, hep

Supernova

- Early alert
- Supernova neutrinos
- Multi-messenger astrophysics

WIMP Dark Matter

- Spin-independent
- Spin-dependent
- Sub-GeV
- Inelastic

Extended Dark Matter

- Dark photons
- Axion-like particles
- Planck mass

DARWIN

Neutrino Nature

- Neutrinoless
- Double electron capture
- Magnetic moment

XLZD Sensitivity Projections

Projected sensitivities showing final planned exposure for LZ and XENONnT and 200 t×y + 1000 t×y for the next generation experiment.

Low mass sensitivity using Migdal

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics arXiv:2203.02309

Liquid Argon

DEAP-3600

SNOLAB, Canada

- DEAP-3600 WIMP search sensitivity impacted by "neck" background
 - Surface α -decays + condensation + poor light collection \rightarrow topology mimicking NR events
- New constraints on Planck-scale mass dark matter from multiple scatters published last year
- Upgrade to be finished this year, Ar fill scheduled for winter 2022, data taking scheduled to resume in Spring 2022

"Overview and recent results from the DEAP-3600 experiment" A. Erlandson, Vienna, IDM 2022 "Constraints on dark matter-nucleon effective couplings with DEAP-3600 and prospects for the next campaign" Vicente Pesudo, Vienna, IDM 2022

Darkside-50

LNGS, Italy

- Dual phase liquid Argon TPC: 46.4 kg of Underground Argon (UAr)
- Recent updates to low mass WIMP search
 - Extended exposure, improved data selection, better calibration, better background modeling

• Additional new sub-GeV limit using Migdal Effect

"Search for low mass WIMP dark matter with DarkSide-Masato Kimura Vienna, IDM 2022

r eon Ч С Nu 1 Ĵ

Darkside-20K

DS-50 + DEAP + MiniClean + ArDM

- Dual phase liquid Argon TPC: 50 tons of Underground Argon (UAr)
- Gadolinium loaded acrylic (Gd-PMMA) surrounding TPC wall for neutron capture
- Single phase, 35 ton UAr Veto detector
- ProtoDUNE-like cryostat hosting 650 tons of Atmospheric Argon (AAr)
- TPC & veto equipped with 28 m² of Silicon Photomultiplier (SiPMs) readout
- Aim to reach LZ full sensitivity in 5 years

Dedicated Low Mass Searches

Light Dark Matter

- LXe leads at ~1 GeV+ but low mass sensitivity fundamentally limited by ionisation energy of Xe (13 eV) \rightarrow For MeV DM maximum kinetic energy is ~ 1 eV
- Mix of DM-nucleus, scattering DM-e scattering and both depending on the model
- Need **different technology** lots of small scale experiments currently probing the low mass regime & proposals for upgrades for larger experiments e.g. H-doping in LZ (HydroX)

Experiments specifically designed for low mass:

- SuperCDMS (Si, Ge)
- DarkSide-LowMass (LAr)
- SENSEI (Skipper-CCD)
- DAMIC-M (Skipper CCD)
- CRESST-III (CaWO₄,LiAlO₂, Al₂O₃, Si)
- NEWS-G (Ne/methane SPC)

Larger experiments that can employ special techniques/ considering upgrades:

- LZ
- **XENONnT**
- Darkside-20K

This is by no means an exhaustive list of light DM candidates.

Candidate	Light WIMPs	Solar Axion	ALPs	Sterile v	Hidden Photons		
Mass	sub-GeV	µeV - meV	10 ⁻¹¹ - 10 ³ eV	keV	1 keV - 10 GeV		
Detection Methods	ionisation-only searches, phonons, Migdal effect, doping of LXe with light elements	Axio-electric effect (ER spectrum), conversion to γ in microwave cavities	Axio-electric effect (mono energetic ER), conversion to γ in microwave cavities	Decay to <i>v</i> through active/ sterile mixing	Dark photo-electric effect, decay products		

"The landscape of low-threshold dark" matter direct detection in the next decade² Snowmass2021 Cosmic Frontier arXiv:2203.08297

SuperCDMS SNOLAB, Canada

- Target materials: Si (0.6 kg), Ge (1.4 kg)
 - ~1000 sensors per crystal
- Two types of detector: Interleaved Z-sensitive Ionization and Phonon (iZIP) & High Voltage (HV)
 - $iZip \rightarrow ER/NR$ discrimination
 - $HV \rightarrow low threshold$
- Timeline: testing and characterization is ongoing
 - Commissioning: 2023
 - First underground testing & early science: 2024
 - First science run with initial payload: early 2024
 - First results: 2025

"Overview of the SuperCDMS experiment" Matthew Wilson Vienna, IDM 2022

 \sim Durham Jniversity

Darkside-LowMass Under Consideration

Dedicated tonne-scale TPC for S2-only searches. Proposed location: Boulby, UK

Needs:

- Reduction of Ar radioactivity to reach $1 \mu Bq/kg$ (with UAr and Aria distillation column)
- SiPM radioactivity reduction to 1 mBq/PDM (x20 reduction on current generation)
- An Outer Detector to veto single neutron scatters (WATCHMAN?)

First phase: Ultrapure UAr ($1\mu Bq/kg$) and SiPMs (1mBq/PDM) building on STFC-funded UK R&D Potential second phase: doped LAr (Xe, allene, He) for reach and extra sensitivity

Queen's University, Canada, TeVPA

NEWS-G SNOLAB, Canada

- Sub-GeV DM detection with Spherical Proportional Counters
- SEDINE 60cm prototype, Ne+CH₄ target results published in 2018
- 135cm detector being commissioned at SNOLAB
- New measurements of quenching factor of neon nuclei in neon gas using TUNL neutron beam

"The NEWS-G detector at SNOLAB" arXiv:2205.15433

'Status and Future Prospects of the NEWS-G Experiment" P Knights, Vienna, IDM 2022

Directional Detection

Directional Detection Overcoming the Neutrino Floor/Fog*

*The neutrino fog is defined to be the regime for which n > 2, with the neutrino "floor" being the largest cross section for each mass where this transition occurs

Direct DM experiments will soon be limited by detecting CEvNS from astrophysics neutrinos

CYGNUS Sheffield. A Galactic Nuclear Recoil Observatory using low-density gas TPCs

Long term CYGNUS Vision: Multi-site Galactic Recoil Observatory with directional sensitivity to WIMPs and neutrinos

Targeting low-mass WIMP region (~10 keV) with directionality and recoil discrimination

CYGNUS **Directional R&D**

'CYGNUS: Directional Neutrino and Dark Matter Detection" Sven Vahsen, Seattle, SNOWMASS 2022

- **DRIFT**: Directionality pioneer based at Boulby
- **CYGNUS**: International collaboration of directionality experiments
 - 1-10 m3 unit cells, ~ 100-1000 cells
 - Negative ion SF₆+He target demonstrated
 - Fluorine: SD WIMP sensitivity
 - Helium: SI, low mass sensitivity
 - Recent R&D at Sheffield:
 - Multi-Mesh ThGEM (MMTHGEM) optimisation of mesh transparency
 - Radon removal from SF6 with molecular sieves

Possibility to measure directionality of CEVNS→ sensitive to new physics via recoil-angle distribution

Prototypes & Experiments

CYGNUS/DRIFT (UK)

Summary

- The search for dark matter continues, and grows broader...
 - We need a dual focus on increasing **exposure** and increasing low mass sensitivity
- UK playing strong role in world-leading LZ experiment
 - LZ has UK-based Physics Coordinator (Edinburgh) & WIMP Search Convener (Oxford)
- Next-gen / "G3" LXe: XLZD consortium formed, first meeting June 2022
 - Steering Committee ²/₃ LZ members are UK -based
 - neutrino physics \rightarrow upcoming paradigm shift in particle physics
- Multiple dedicated efforts to search for **low mass DM** where constraints are weak
 - UK involvement in Super-CDMS, DarkSide-LowMass, NEWS-G, CRESST-III
- in-situ screening, cleanliness, fabrication & operation

• XLZD (50-1000t of LXe) will be a **Rare Event Observatory**: probe WIMPs down to neutrino fog, $0\nu\beta\beta$, other

• Boulby Underground Laboratory continues to stand out as a world-leading low-background & cleanliness centre -

• Feasibility study for Boulby as a host facility for future major international rare event search experiments is ongoing

LZ First Science Run

:	Source	Expected Events	Fit Re
	β decays + Det. ER	218 ± 36	$222~\pm$
	$ u \; { m ER}$	27.3 ± 1.6	27.3 \pm
	127 Xe	9.2 ± 0.8	$9.3~\pm$
	124 Xe	5.0 ± 1.4	$5.2~\pm$
	136 Xe	15.2 ± 2.4	15.3 \pm
	$^{8}\mathrm{B}~\mathrm{CE} \nu \mathrm{NS}$	0.15 ± 0.01	0.15 \pm
	Accidentals	1.2 ± 0.3	1.2 \pm
	Subtotal	276 ± 36	$281~\pm$
	$^{37}\mathrm{Ar}$	[0, 291]	52.1^{+9}_{-8}
	Detector neutrons	$0.0^{+0.2}$	0.0^{+0}
	$30{ m GeV/c^2}~{ m WIMP}$	_	0.0^{+0}
	Total	_	$333 \pm$

Darkside-20K Sensitivity Projection

